跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱建鈞
研究生(外文):Jian-JyunChiu
論文名稱:混合拉氏轉換法搭配曲線擬合法探討非線性熱遲滯現象及其潛熱效應
論文名稱(外文):Thermal Lagging Behavior With The Effect Of Latent Heat By Using Hybird Laplace Transfer And Curve-Fitting Methods
指導教授:趙隆山
指導教授(外文):Long-Sun Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:133
中文關鍵詞:熱遲滯現象混合拉氏轉換法曲線擬合法
外文關鍵詞:thermal lagging behaviorhybrid Laplace transfer methodcurve-fitting scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  科技發展日新月異,為了解決工程應用上所遭遇的微尺度熱傳問題,必須仰賴巨觀的傅立葉熱傳現象之基礎,進而解析微觀的非傅立葉熱傳行為,最終才能夠探討實際的工程問題。
  本文主要目的為使用混合拉氏轉換法,並適時搭配曲線擬合法分析非傅立葉熱傳問題,若熱傳過程中涉及相變化行為,則運用溫度回復法處理潛熱效應。
  由於∂θ(δ,0)/∂β 為以混合拉氏轉換法進行時間迭代模擬非傅立葉熱傳問題-熱波模式結果震盪的主因,因此本文藉由研究修正式時間迭代法所得之∂θ(δ,0)/∂β數值,並且應用曲線擬合法尋找其數學關係,最終歸納而得另一種時間迭代方法,稱為擬合式時間迭代法,能夠有效模擬非傅立葉熱傳問題-熱波模式,進而分析其潛熱效應之影響;∂^2 θ(δ,0)/∂δ^2為混合拉氏轉換法進行時間迭代模擬非傅立葉熱傳問題-雙相差模式結果不穩定的主因,故本文同樣藉由研究修正式時間迭代法所求得之∂^2 θ(δ,0)/∂δ^2數值,並應用曲線擬合法歸納而得其數學關係,最終同樣運用擬合式時間迭代法有效模擬非傅立葉熱傳問題-雙相差模式,且探討其相變化行為。
Technology development advances rapidly day by day. To solve micro-scale heat transfer problems encountered in engineering applications is necessarily based on the macroscopic Fourier heat transfer phenomena. With the basis, the microscopic non-Fourier heat transfer problems would be analyzed effectively and therefore the actual heat transfer problems in engineering could be studied. The main purpose of this paper is using the hybrid Laplace transform method with curve fitting techniques to analyze the non-Fourier heat transfer problems. If the heat transfer process involves phase-change, the temperature recovery method is applied to handle the effect of latent-heat release.
∂θ(δ,0)/∂β is the main reason causing the numerical oscillating results in solving CV wave models by using the hybrid Laplace transform method and the time marching scheme. In the study, the oscillating problem is solved by developing a curve-fitting formula to calculate ∂θ(δ,0)/∂β, which is derived from the modified time-marching method of the previous works. The developed method is called the curve-fitting time marching scheme. Afterwards, the CV model with the release of latent heat could be analyzed numerically.
∂^2 θ(δ,0)/∂δ^2 is the primary cause leading to the unstable numerical results in solving dual-phase models. Similarly, a curve-fitting formula is obtained to calculate ∂^2 θ(δ,0)/∂δ^2, which could help to solve the dual-phase model effectively. Subsequently, the dual-phase model with phase change could be investigated numerically.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XVII
第一章 緒論 1
1-1 文獻回顧 3
1-2 研究方法與目的 9
第二章 理論分析 12
2-1 熱傳問題之數學模式 14
2-2 史蒂芬問題 19
2-3 拉氏轉換法 21
第三章 數值分析方法 30
3-1 混合拉氏轉換法 32
3-1.1混合拉氏轉換-有限差分法 33
3-1.2 混合拉氏轉換-控制體積法 35
3-2 修正式時間迭代法 38
3-3 溫度回復法 42
第四章 熱波模式 55
4-1 剖析修正式時間迭代法 57
4-1.1 溫度對時間一次微分項 57
4-1.2 脈波數值擬合 59
4-2脈波數值擬合之修正 62
4-2.1 直接差分法 62
4-2.2 能量均分法 63
4-3 擬合式時間迭代法 64
4-4 非傅立葉相變化熱傳問題-熱波模式 69
第五章 雙相差模式 88
5-1 剖析修正式時間迭代法 90
5-2 二次微分項的計算方法 93
5-2.1 有限差分近似 94
5-2.2 特殊形式之有限差分近似 96
5-3 擬合式時間迭代法 98
5-4 非傅立葉相變化熱傳問題-雙相差模式 100
第六章 結論 126
參考文獻 128
[1]J. B. J. Fourier, Théorie analytique de la chaleur: Didot, 1822.
[2]M. Kaganov, I. Lifshitz, and L. Tanatarov, Relaxation between electrons and the crystalline lattice, Sov. Phys. JETP, vol. 4, pp. 173-178, 1957.
[3]S. Anisimov and B. Kapeliovich, Electron emission from metal surfaces exposed to ultrashort laser pulses, Zh. Eksp. Teor. Fiz, vol. 66, pp. 375-7, 1974.
[4]T. Qiu and C. Tien, Heat transfer mechanisms during short-pulse laser heating of metals, Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C);(United States), vol. 115, pp. 835-841, 1993.
[5]R. A. Guyer and J. Krumhansl, Solution of the linearized phonon Boltzmann equation, Physical Review, vol. 148, pp. 766-778, 1966.
[6]A. Majumdar, Microscale heat conduction in dielectric thin films, ASME Transactions Journal of Heat Transfer, vol. 115, pp. 7-16, 1993.
[7]D. D. Joseph and L. Preziosi, Heat waves, Reviews of Modern Physics, vol. 61, pp. 41-73, 1989.
[8]G. Caviglia, A. Morro, and B. Straughan, Thermoelasticity at cryogenic temperatures, International journal of non-linear mechanics, vol. 27, pp. 251-263, 1992.
[9]C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Compte Rendus, vol. 247, pp. 431-433, 1958.
[10]P. Vernotte, Les paradoxes de la théorie continue de l’équation de la chaleur, CR Acad. Sci, vol. 246, pp. 3154-3155, 1958.
[11]P. Vernotte, Some possible complications in the phenomena of thermal conduction, Compte Rendus, vol. 252, pp. 2190-2191, 1961.
[12]G. F. Carey and M. Tsai, Hyperbolic Heat Transfer With Reflection, Numerical Heat Transfer, vol. 5, pp. 309-327, 1982.
[13]D. E. Glass, M. N. Özişik, D. S. McRae, and B. Vick, On The Numerical Solution Of Hyperbolic Heat Conduction, Numerical Heat Transfer, vol. 8, pp. 497-504, 1985.
[14]K. K. Tamma and S. B. Railkar, Specially Tailored Trans Finite-Element Formulations For Hyperbolic Heat Conduction Involving Non-Fourier Effects, Numerical Heat Transfer, Part B: Fundamentals, vol. 15, pp. 211-226, 1989.
[15]T. DA YU, Experimental support for the lagging behavior in heat propagation, Journal of thermophysics and heat transfer, vol. 9, pp. 686-693, 1995.
[16]D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, Journal of heat transfer, vol. 117, pp. 8-16, 1995.
[17]D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
[18]D. W. Tang and N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, vol. 42, pp. 855-860, 1999.
[19]陳良彰, 熱遲滯現象之數值分析, 碩士, 工程科學系, 國立成功大學, 台灣, 2007.
[20]M. A. Al-Nimr and Mohammad K. Alkam, Overshooting Phenomenon in the Hyperbolic Microscopic Heat Conduction Model, International Journal of Thermophysics, vol. 24, pp. 577-583, 2002.
[21]M. Al-Nimr and M. K. Alkam, Overshooting phenomenon in the hyperbolic microscopic heat conduction model, International Journal of Thermophysics, vol. 24, pp. 577-583, 2003.
[22]F. Rizzo and D. Shippy, A method of solution for certain problems of transient heat conduction, AIAA Journal, vol. 8, pp. 2004-2009, 1970.
[23]P. J. Antaki, Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux, International journal of heat and mass transfer, vol. 41, pp. 2253-2258, 1998.
[24]G. Honig and U. Hirdes, A Method for the Numerical Inversion of Laplace Transforms Journal of Computational and Applied Mathematics, vol. 10, pp. 112-132, 1984.
[25]陳寒濤, 混合數值分析法在暫態熱傳上之應用, 博士, 機械工程學系, 國立成功大學, 台灣, 1987.
[26]H. T. Chen and J. Y. Lin, Application of the Laplace transform to one-dimensional non-linear transient heat conduction in hollow cylinders, Communications in Applied Numerical Methods vol. 7, pp. 241-252, 1991.
[27]H. T. Chen and J. Y. Lin, Application of the hybrid method to transient heat conduction in one-dimensional composite layers Computers & Structures, vol. 39, pp. 451-458, 1991.
[28]H. T. Chen and J. Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problems International Journal of Heat and Mass Transfer, vol. 34, pp. 1301-1308, 1991.
[29]H. T. Chen and J. Y. Lin, Application of the Laplace transform to nonlinear transient problems, Applied Mathematical Modelling, vol. 15, pp. 144-151, 1991.
[30]黃俊誠, 混合拉氏轉換與數值分析法在傅立葉與非傅立葉熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2008.
[31]郭晉凱, 混合拉氏轉換法求解相變化熱傳問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2009.
[32]張智超, 混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2010.
[33]曾楷倫, 混合拉氏轉換法求解非傅立葉相變化熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2011.
[34]D. Y. Tzou, M. N. Ozisik, and R. J. Chiffelle, The Lattice Temperature In The Microscopic Two-Step Model, ASME Journal of Heat Transfer, vol. 116, pp. 1034-1038, 1994.
[35]盧峻德, 混合拉氏轉換法求解雙曲線相變化熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2012.
[36]翁銘彥, 砷化鎵長晶之模式分析, 碩士, 工程科學系, 國立成功大學, 台灣, 2003.
[37]J. A. Dantzig, Modelling liquid–solid phase changes with melt convection, International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
[38]J. S. Hsiao, An Efficient Algorithm For Finite-Difference Analyses of Heat Transfer with Melting and Solidification, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 653-666, 1985.
[39]A. W. Date, A Strong Enthalpy Formulation for the Stefan Problem, International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
[40]V. R. Voller and C. R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
[41]T. C. Tszeng, Y.T. Im, and S. Kobayashi, Thermal Analysis of Solidification by the Temperature Recovery Method International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[42]D. Y. Tzou and Y. Zhang, An Analytical Study on the Fast-transient Process in Small Scales International Journal of Engineering Science, vol. 33, pp. 1449-1463, 1995.
[43]D. Y. Tzou, Macro-to micro-scale heat transfer: the lagging behavior: Hemisphere Pub, 1997.
[44]Y. C. Liu and L. S. Chao, Modified effective specific heat method of solidification problems, Materials transactions, vol. 47, pp. 2737-2744, 2006.
[45]D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational fluid mechanics and heat transfer. United States: Hemisphere Publishing,New York, NY, 1984.
[46]林傑毓, 解析暫態熱傳問題之新數值方法, 博士, 機械工程學系, 國立成功大學, 台灣, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.王珍玲,行政計畫與民眾參與-以最高行政法院99年度判字第30號為例,法學新論,27期,2010年12月。
2. 2.王浦傑,論行政計畫,法學叢刊,188期,2002年10月。
3. 4.吳志光,ETC裁判與行政契約-兼論德國行政契約法制之變革方向,月旦法學雜誌,第135期,2006年8月。
4. 5.李建良,論基本權利之程序功能與程序基本權-德國理論的借鑑與反思,憲政時代,29卷,4期,2004年。
5. 7.李震山,論行政程序之民主法治化,中央警察大學學報,31期,1997年6月。
6. 8.何愛文,公共工程採BOT模式所衍生法律問題之研究,律師雜誌,213期,1997年6月。
7. 9.林明昕,行政程序法的適用範圍-解讀行政程序法第三條、法學講座,第三期,2002年3月。
8. 13.姜世明,論遲延提出攻擊防禦方法之失權,法官協會雜誌,2卷2期,2000年12月。
9. 15.陳明堂、郭宏榮,行政程序法上聽證運作之實務與技巧,研考雙月刊,31卷3期,2007年6月。
10. 16.陳英淙,探討行政程序中聽證制度之憲法法理,憲政時代,23卷4期,1998年4月。
11. 18.陳愛娥,行政計畫確定程序法制的建構-法律制度繼受的案例,月旦法學雜誌,180期,2010年5月。
12. 21.程明修,公私協力行為對建構「行政合政法」之影響-以台北高等行政法院ETC案為契機,月旦法學雜誌,第135期,2006年8月。
13. 22.傅玲靜,由行政程序法之適用論我國環境影響評估審查之法制,中原財經法學,23期,2009年12月。
14. 23.傅玲靜,計畫確定程序法制之實然與應然-以行政機關建設大眾捷運系統之計畫確定程序為中心,中原財經法學,16期,2006年6月。
15. 24.傅玲靜,由行政之參與論於許可程序中迅速原則之實現-以德國聯邦行政程序法為中心,中原財經法學,13期,2004年12月。