|
[1]W. L. Klein, G. A. Krafft, and C. E. Finch, Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum?, Trends Neurosci, vol. 24, pp. 219-24, Apr 2001. [2]C. L. Masters and K. Beyreuther, Alzheimer's disease, BMJ, vol. 316, pp. 446-8, Feb 7 1998. [3]L. Mucke, Neuroscience: Alzheimer's disease, Nature, vol. 461, pp. 895-7, Oct 15 2009. [4]http://www.genome.jp/dbget-bin/www_bget?map05010. [5]M. Bedard, D. W. Molloy, T. Standish, G. H. Guyatt, J. Dsouza, C. Mondadori, et al., Clinical-Trials in Cognitively Impaired Older Adults - Home Versus Clinic Assessments, Journal of the American Geriatrics Society, vol. 43, pp. 1127-1130, Oct 1995. [6]R. N. Rosenberg, R. W. Richter, R. C. Risser, K. Taubman, I. Prado-Farmer, E. Ebalo, et al., Genetic factors for the development of Alzheimer disease in the Cherokee Indian, Arch Neurol, vol. 53, pp. 997-1000, Oct 1996. [7]S. T. DeKosky, Managing Alzheimer's disease, Neurology, vol. 48, pp. S1-S1, May 1997. [8]D. I. Kaufer, Cholinesterase-inhibitor therapy for dementia: novel clinical substrates and mechanisms for treatment response, CNS Spectr, vol. 7, pp. 742-50, Oct 2002. [9]N. Pantchev, D. Gassmann, and M. Globokar-Vrhovec, Increasing numbers of Giardia (but not coccidian) infections in ferrets, 2002 to 2010, Veterinary Record, vol. 168, May 14 2011. [10]R. C. Mohs, R. S. Doody, J. C. Morris, J. R. Ieni, S. L. Rogers, C. A. Perdomo, et al., A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients, Neurology, vol. 57, pp. 481-488, Aug 14 2001. [11]F. Inglis, The tolerability and safety of cholinesterase inhibitors in the treatment of dementia, International Journal of Clinical Practice, pp. 45-63, Jun 2002. [12]R. Blesa, R. Bullock, Y. He, H. Bergman, G. Gambina, J. Meyer, et al., Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer's disease, Pharmacogenet Genomics, vol. 16, pp. 771-4, Nov 2006. [13]R. Bullock and R. Lane, Executive dyscontrol in dementia, with emphasis on subcortical pathology and the role of butyrylcholinesterase, Curr Alzheimer Res, vol. 4, pp. 277-93, Jul 2007. [14]R. Bullock, J. Touchon, H. Bergman, G. Gambina, Y. He, G. Rapatz, et al., Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer's disease over a 2-year period, Curr Med Res Opin, vol. 21, pp. 1317-27, Aug 2005. [15]P. Bentham, R. Gray, E. Sellwood, and J. Raftery, Effectiveness of rivastigmine in Alzheimer's disease. Improvements in functional ability remain unestablished, BMJ, vol. 319, pp. 640-1, Sep 4 1999. [16]A. McCaddon, P. Hudson, G. Davies, A. Hughes, J. H. Williams, and C. Wilkinson, Homocysteine and cognitive decline in healthy elderly, Dement Geriatr Cogn Disord, vol. 12, pp. 309-13, Sep-Oct 2001. [17]B. Winblad, G. Grossberg, L. Frolich, M. Farlow, S. Zechner, J. Nagel, et al., IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease, Neurology, vol. 69, pp. S14-22, Jul 24 2007. [18]B. Winblad, J. Cummings, N. Andreasen, G. Grossberg, M. Onofrj, C. Sadowsky, et al., A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer's disease--rivastigmine patch versus capsule, Int J Geriatr Psychiatry, vol. 22, pp. 456-67, May 2007. [19]J. Corey-Bloom, The efficacy and safety of ENA-713 in patients with mild to moderately severe Alzheimer's disease, Journal of the American Geriatrics Society, vol. 46, pp. S12-S12, Sep 1998. [20]S. Gauthier, Advances in the pharmacotherapy of Alzheimer's disease, Canadian Medical Association Journal, vol. 166, pp. 616-623, Mar 5 2002. [21]P. N. Tariot, P. R. Solomon, J. C. Morris, P. Kershaw, S. Lilienfeld, and C. Ding, A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group, Neurology, vol. 54, pp. 2269-76, Jun 27 2000. [22]J. M. Lopez-Arrieta and L. Schneider, Metrifonate for Alzheimer's disease, Cochrane Database Syst Rev, p. CD003155, 2006. [23]C. M. Bird and N. Burgess, The hippocampus and memory: insights from spatial processing, Nat Rev Neurosci, vol. 9, pp. 182-94, Mar 2008. [24]P. Mavrogiorgou, H. J. Gertz, R. Ferszt, R. Wolf, K. J. Bar, and G. Juckel, Are routine methods good enough to stain senile plaques and neurofibrillary tangles in different brain regions of demented patients?, Psychiatr Danub, vol. 23, pp. 334-9, Dec 2011. [25]C. Lamy, C. Duyckaerts, P. Delaere, C. Payan, J. Fermanian, V. Poulain, et al., Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients, Neuropathol Appl Neurobiol, vol. 15, pp. 563-78, Nov-Dec 1989. [26]D. M. Walsh and D. J. Selkoe, Deciphering the molecular basis of memory failure in Alzheimer's disease, Neuron, vol. 44, pp. 181-93, Sep 30 2004. [27]V. Wilquet and B. De Strooper, Amyloid-beta precursor protein processing in neurodegeneration, Curr Opin Neurobiol, vol. 14, pp. 582-8, Oct 2004. [28]P. B. Olkhanud, M. Mughal, K. Ayukawa, E. Malchinkhuu, M. Bodogai, N. Feldman, et al., DNA immunization with HBsAg-based particles expressing a B cell epitope of amyloid beta-peptide attenuates disease progression and prolongs survival in a mouse model of Alzheimer's disease, Vaccine, vol. 30, pp. 1650-8, Feb 21 2012. [29]T. Jonsson, J. K. Atwal, S. Steinberg, J. Snaedal, P. V. Jonsson, S. Bjornsson, et al., A mutation in APP protects against Alzheimer's disease and age-related cognitive decline, Nature, vol. 488, pp. 96-9, Aug 2 2012. [30]G. Di Fede, M. Catania, M. Morbin, G. Rossi, S. Suardi, G. Mazzoleni, et al., A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis, Science, vol. 323, pp. 1473-7, Mar 13 2009. [31]B. De Strooper and T. Voet, Alzheimer's disease: A protective mutation, Nature, vol. 488, pp. 38-9, Aug 2 2012. [32]D. Morgan, D. M. Diamond, P. E. Gottschall, K. E. Ugen, C. Dickey, J. Hardy, et al., A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease, Nature, vol. 408, pp. 982-5, Dec 21-28 2000. [33]C. Janus, J. Pearson, J. McLaurin, P. M. Mathews, Y. Jiang, S. D. Schmidt, et al., A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease, Nature, vol. 408, pp. 979-82, Dec 21-28 2000. [34]F. Bard, C. Cannon, R. Barbour, R. L. Burke, D. Games, H. Grajeda, et al., Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease, Nat Med, vol. 6, pp. 916-9, Aug 2000. [35]R. Kisilevsky, L. J. Lemieux, P. E. Fraser, X. Kong, P. G. Hultin, and W. A. Szarek, Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease, Nat Med, vol. 1, pp. 143-8, Feb 1995. [36]P. E. Fraser, A. A. Darabie, and J. A. McLaurin, Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides. implications for drug development, J Biol Chem, vol. 276, pp. 6412-9, Mar 2 2001. [37]S. S. Sisodia and P. H. St George-Hyslop, gamma-Secretase, notch, A beta and Alzheimer's disease: Where do the presenilins fit in?, Nature Reviews Neuroscience, vol. 3, pp. 281-290, Apr 2002. [38]G. L. Wenk, Neuropathologic changes in Alzheimer's disease, Journal of Clinical Psychiatry, vol. 64, pp. 7-10, 2003. [39]H. Braak and K. Del Tredici, Where, when, and in what form does sporadic Alzheimer's disease begin?, Current Opinion in Neurology, vol. 25, pp. 708-714, Dec 2012. [40]R. S. Desikan, H. J. Cabral, C. P. Hess, W. P. Dillon, C. M. Glastonbury, M. W. Weiner, et al., Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease, Brain, vol. 132, pp. 2048-57, Aug 2009. [41]H. I. Field, S. A. Scollen, C. Luccarini, C. Baynes, J. Morrison, A. M. Dunning, et al., Seq4SNPs: new software for retrieval of multiple, accurately annotated DNA sequences, ready formatted for SNP assay design, Bmc Bioinformatics, vol. 10, Jun 12 2009. [42]P. Tiraboschi, L. A. Hansen, L. J. Thal, and J. Corey-Bloom, The importance of neuritic plaques and tangles to the development and evolution of AD, Neurology, vol. 62, pp. 1984-1989, Jun 8 2004. [43]C. Bouras, P. R. Hof, P. Giannakopoulos, J. P. Michel, and J. H. Morrison, Regional Distribution of Neurofibrillary Tangles and Senile Plaques in the Cerebral-Cortex of Elderly Patients - a Quantitative-Evaluation of a One-Year Autopsy Population from a Geriatric Hospital, Cerebral Cortex, vol. 4, pp. 138-150, Mar-Apr 1994. [44]M. Hashimoto, E. Rockenstein, L. Crews, and E. Masliah, Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases, Neuromolecular Medicine, vol. 4, pp. 21-35, 2003. [45]I. Benilova, E. Karran, and B. De Strooper, The toxic A beta oligomer and Alzheimer's disease: an emperor in need of clothes, Nature Neuroscience, vol. 15, pp. 349-357, Mar 2012. [46]P. R. Turner, K. O'Connor, W. P. Tate, and W. C. Abraham, Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory, Progress in Neurobiology, vol. 70, pp. 1-32, May 2003. [47]C. Priller, T. Bauer, G. Mitteregger, B. Krebs, H. A. Kretzschmar, and J. Herms, Synapse formation and function is modulated by the amyloid precursor protein, Journal of Neuroscience, vol. 26, pp. 7212-7221, Jul 5 2006. [48]T. Wisniewski, J. Ghiso, and B. Frangione, Biology of A beta amyloid in Alzheimer's disease, Neurobiology of Disease, vol. 4, pp. 313-328, 1997. [49]H. Arai, S. Higuchi, T. Muramatsu, T. Iwatsubo, H. Sasaki, and J. Q. Trojanowski, Apolipoprotein E gene in diffuse Lewy body disease with or without co-existing Alzheimer's disease, Lancet, vol. 344, p. 1307, Nov 5 1994. [50]D. J. Selkoe, Alzheimer's disease: genes, proteins, and therapy, Physiol Rev, vol. 81, pp. 741-66, Apr 2001. [51]R. Cappai and A. R. White, Amyloid beta, International Journal of Biochemistry & Cell Biology, vol. 31, pp. 885-889, Sep 1999. [52]T. Saito, T. Suemoto, N. Brouwers, K. Sleegers, S. Funamoto, N. Mihira, et al., Potent amyloidogenicity and pathogenicity of Abeta43, Nat Neurosci, vol. 14, pp. 1023-32, Aug 2011. [53]Y. Huang and L. Mucke, Alzheimer mechanisms and therapeutic strategies, Cell, vol. 148, pp. 1204-22, Mar 16 2012. [54]B. Van Broeck, C. Van Broeckhoven, and S. Kumar-Singh, Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches, Neurodegener Dis, vol. 4, pp. 349-65, 2007. [55]B. A. Yankner, L. K. Duffy, and D. A. Kirschner, Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides, Science, vol. 250, pp. 279-82, Oct 12 1990. [56]X. Chen and S. D. Yan, Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer's disease, IUBMB Life, vol. 58, pp. 686-94, Dec 2006. [57]N. H. Greig, M. P. Mattson, T. Perry, S. L. Chan, T. Giordano, K. Sambamurti, et al., New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-alpha inhibitors, and GLP-1 receptor agonists, Ann N Y Acad Sci, vol. 1035, pp. 290-315, Dec 2004. [58]J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics, Science, vol. 297, pp. 353-6, Jul 19 2002. [59]J. Hardy and D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer's disease, Trends Pharmacol Sci, vol. 12, pp. 383-8, Oct 1991. [60]D. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, et al., Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse, Nature, vol. 400, pp. 173-7, Jul 8 1999. [61]C. Haass, Initiation and propagation of neurodegeneration, Nat Med, vol. 16, pp. 1201-4, Nov 2010. [62]E. Masliah, E. Rockenstein, I. Veinbergs, Y. Sagara, M. Mallory, M. Hashimoto, et al., beta-Amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease, Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 12245-12250, Oct 9 2001. [63]P. Kurosinski, M. Guggisberg, and J. Gotz, Alzheimer's and Parkinson's disease - overlapping or synergistic pathologies?, Trends in Molecular Medicine, vol. 8, pp. 3-5, Jan 2002. [64]D. K. Lahiri, M. R. Farlow, K. Sambamurti, N. H. Greig, E. Giacobini, and L. S. Schneider, A critical analysis of new molecular targets and strategies for drug developments in Alzheimer's disease, Current Drug Targets, vol. 4, pp. 97-112, Feb 2003. [65]H. F. Dovey, V. John, J. P. Anderson, L. Z. Chen, P. D. Andrieu, L. Y. Fang, et al., Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain, Journal of Neurochemistry, vol. 76, pp. 173-181, Jan 2001. [66]C. Soto, E. M. Sigurdsson, L. Morelli, R. A. Kumar, E. M. Castano, and B. Frangione, beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy, Nature Medicine, vol. 4, pp. 822-826, Jul 1998. [67]B. Permanne, C. Adessi, G. P. Saborio, S. Fraga, M. J. Frossard, J. Van Dorpe, et al., Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide, Faseb Journal, vol. 16, pp. 860-+, Apr 2002. [68]R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. McLean, et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice, Neuron, vol. 30, pp. 665-676, Jun 2001. [69]R. A. Marr, E. Rockenstein, A. Mukherjee, M. S. Kindy, L. B. Hersh, F. H. Gage, et al., Neprilysin gene transfer reduces human amyloid pathology in transgenic mice, Journal of Neuroscience, vol. 23, pp. 1992-1996, Mar 15 2003. [70]W. Farris, S. Mansourian, Y. Chang, L. Lindsley, E. A. Eckman, M. P. Frosch, et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 4162-4167, Apr 1 2003. [71]S. Weggen, J. L. Eriksen, P. Das, S. A. Sagi, R. Wang, C. U. Pietrzik, et al., A subset of NSAIDs lower amyloidogenic A beta 42 independently of cyclooxygenase activity, Nature, vol. 414, pp. 212-216, Nov 8 2001. [72]F. Hernandez, F. Lim, J. J. Lucas, C. Perez-Martin, F. Moreno, and J. Avila, Transgenic mouse models with tau pathology to test therapeutic agents for Alzheimer's disease, Mini Rev Med Chem, vol. 2, pp. 51-8, Feb 2002. [73]C. J. Phiel, C. A. Wilson, V. M. Lee, and P. S. Klein, GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides, Nature, vol. 423, pp. 435-9, May 22 2003. [74]G. Li, A. Faibushevich, B. J. Turunen, S. O. Yoon, G. Georg, M. L. Michaelis, et al., Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons, J Neurochem, vol. 84, pp. 347-62, Jan 2003. [75]J. Gotz, J. R. Streffer, D. David, A. Schild, F. Hoerndli, L. Pennanen, et al., Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy, Mol Psychiatry, vol. 9, pp. 664-83, Jul 2004. [76]T. L. Platt, V. L. Reeves, and M. P. Murphy, Transgenic models of Alzheimer's disease: Better utilization of existing models through viral transgenesis, Biochim Biophys Acta, vol. 1832, pp. 1437-48, Sep 2013. [77]M. Sastre, J. Walter, and S. M. Gentleman, Interactions between APP secretases and inflammatory mediators, J Neuroinflammation, vol. 5, p. 25, 2008. [78]M. E. Egan, M. Pearson, S. A. Weiner, V. Rajendran, D. Rubin, J. Glockner-Pagel, et al., Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects, Science, vol. 304, pp. 600-2, Apr 23 2004. [79]S. Eggert, K. Paliga, P. Soba, G. Evin, C. L. Masters, A. Weidemann, et al., The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves alpha-, beta-, gamma-, and epsilon-like cleavages: modulation of APLP-1 processing by n-glycosylation, J Biol Chem, vol. 279, pp. 18146-56, Apr 30 2004. [80]P. H. Reddy and M. F. Beal, Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease, Trends Mol Med, vol. 14, pp. 45-53, Feb 2008. [81]C. Zhang, Natural Compounds That Modulate BACE1-processing of Amyloid-beta Precursor Protein in Alzheimer's Disease, Discovery Medicine, vol. 76, pp. 189-197, Sep 2012. [82]L. C. Walker, H. Levine, 3rd, M. P. Mattson, and M. Jucker, Inducible proteopathies, Trends Neurosci, vol. 29, pp. 438-43, Aug 2006. [83]M. Hoshi, M. Sato, S. Matsumoto, A. Noguchi, K. Yasutake, N. Yoshida, et al., Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3 beta, Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 6370-6375, May 27 2003. [84]M. P. Lambert, A. K. Barlow, B. A. Chromy, C. Edwards, R. Freed, M. Liosatos, et al., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins, Proc Natl Acad Sci U S A, vol. 95, pp. 6448-53, May 26 1998. [85]K. A. DaSilva, J. E. Shaw, and J. McLaurin, Amyloid-beta fibrillogenesis: Structural insight and therapeutic intervention, Experimental Neurology, vol. 223, pp. 311-321, Jun 2010. [86]M. Takami, Y. Nagashima, Y. Sano, S. Ishihara, M. Morishima-Kawashima, S. Funamoto, et al., gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment, J Neurosci, vol. 29, pp. 13042-52, Oct 14 2009. [87]I. Benilova and B. De Strooper, An overlooked neurotoxic species in Alzheimer's disease, Nat Neurosci, vol. 14, pp. 949-50, Aug 2011. [88]B. De Strooper, R. Vassar, and T. Golde, The secretases: enzymes with therapeutic potential in Alzheimer disease, Nat Rev Neurol, vol. 6, pp. 99-107, Feb 2010. [89]J. Shen and R. J. Kelleher, 3rd, The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism, Proc Natl Acad Sci U S A, vol. 104, pp. 403-9, Jan 9 2007. [90]M. Bentahir, O. Nyabi, J. Verhamme, A. Tolia, K. Horre, J. Wiltfang, et al., Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms, J Neurochem, vol. 96, pp. 732-42, Feb 2006. [91]Y. Qi-Takahara, M. Morishima-Kawashima, Y. Tanimura, G. Dolios, N. Hirotani, Y. Horikoshi, et al., Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase, J Neurosci, vol. 25, pp. 436-45, Jan 12 2005. [92]M. Shimojo, N. Sahara, T. Mizoroki, S. Funamoto, M. Morishima-Kawashima, T. Kudo, et al., Enzymatic characteristics of I213T mutant presenilin-1/gamma-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs gamma-site cleavage of amyloid precursor protein C-terminal fragment beta, J Biol Chem, vol. 283, pp. 16488-96, Jun 13 2008. [93]J. T. Jarrett, E. P. Berger, and P. T. Lansbury, Jr., The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease, Biochemistry, vol. 32, pp. 4693-7, May 11 1993. [94]G. Bitan, M. D. Kirkitadze, A. Lomakin, S. S. Vollers, G. B. Benedek, and D. B. Teplow, Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways, Proc Natl Acad Sci U S A, vol. 100, pp. 330-5, Jan 7 2003. [95]T. Saito, T. Suemoto, N. Brouwers, K. Sleegers, S. Funamoto, N. Mihira, et al., Potent amyloidogenicity and pathogenicity of A beta 43, Nature Neuroscience, vol. 14, pp. 1023-U120, Aug 2011. [96]K. Zou, J. J. Liu, A. Watanabe, S. Hiraga, S. Y. Liu, C. Tanabe, et al., A beta(43) Is the Earliest-Depositing A beta Species in APP Transgenic Mouse Brain and Is Converted to A beta(41) by Two Active Domains of ACE, American Journal of Pathology, vol. 182, pp. 2322-2331, Jun 2013. [97]P. St George-Hyslop and G. Schmitt-Ulms, ALZHEIMER'S DISEASE Selectively tuning gamma-secretase, Nature, vol. 467, pp. 36-37, Sep 2 2010. [98]I. Benilova and B. De Strooper, An overlooked neurotoxic species in Alzheimer's disease, Nature Neuroscience, vol. 14, pp. 949-950, Aug 2011. [99]J. Shen and R. J. Kelleher, The presenilin hypothesis of Alzheimer's disease: Evidence for a loss-of-function pathogenic mechanism, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 403-409, Jan 9 2007. [100]M. P. Lambert, A. K. Barlow, B. A. Chromy, C. Edwards, R. Freed, M. Liosatos, et al., Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins, Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 6448-6453, May 26 1998. [101]J. D. Harper, S. S. Wong, C. M. Lieber, and P. T. Lansbury, Observation of metastable A beta amyloid protofibrils by atomic force microscopy, Chemistry & Biology, vol. 4, pp. 119-125, Feb 1997. [102]D. M. Walsh, A. Lomakin, G. B. Benedek, M. M. Condron, and D. B. Teplow, Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate, Journal of Biological Chemistry, vol. 272, pp. 22364-22372, Aug 29 1997. [103]J. Hardy, The amyloid hypothesis for Alzheimer's disease: a critical reappraisal, J Neurochem, vol. 110, pp. 1129-34, Aug 2009. [104]J. Kim, L. Onstead, S. Randle, R. Price, L. Smithson, C. Zwizinski, et al., A beta 40 inhibits amyloid deposition in vivo, Journal of Neuroscience, vol. 27, pp. 627-633, Jan 17 2007. [105]E. McGowan, F. Pickford, J. Kim, L. Onstead, J. Eriksen, C. Yu, et al., A beta 42 is essential for parenchymal and vascular amyloid deposition in mice, Neuron, vol. 47, pp. 191-199, Jul 21 2005. [106]A. Jan, O. Gokce, R. Luthi-Carter, and H. A. Lashuel, The ratio of monomeric to aggregated forms of A beta 40 and A beta 42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity, Journal of Biological Chemistry, vol. 283, pp. 28176-28189, Oct 17 2008. [107]K. Ono, M. M. Condron, and D. B. Teplow, Effects of the English (H6R) and Tottori (D7N) Familial Alzheimer Disease Mutations on Amyloid beta-Protein Assembly and Toxicity, Journal of Biological Chemistry, vol. 285, pp. 23184-23195, Jul 23 2010. [108]L. Keller, H. Welander, H. H. Chiang, L. O. Tjernberg, I. Nennesmo, A. K. Wallin, et al., The PSEN1 I143T mutation in a Swedish family with Alzheimer's disease: clinical report and quantification of A beta in different brain regions, European Journal of Human Genetics, vol. 18, pp. 1202-1208, Nov 2010. [109]H. Welander, J. Franberg, C. Graff, E. Sundstrom, B. Winblad, and L. O. Tjernberg, A beta 43 is more frequent than A beta 40 in amyloid plaque cores from Alzheimer disease brains, Journal of Neurochemistry, vol. 110, pp. 697-706, Jul 2009. [110]S. Parvathy, P. Davies, V. Haroutunian, D. P. Purohit, K. L. Davis, R. C. Mohs, et al., Correlation between A beta x-40-, A beta x-42-, and A beta x-43-containing amyloid plaques and cognitive decline, Archives of Neurology, vol. 58, pp. 2025-2032, Dec 2001. [111]T. Iizuka, M. Shoji, Y. Harigaya, T. Kawarabayashi, M. Watanabe, M. Kanai, et al., Amyloid Beta-Protein Ending at Thr43 Is a Minor Component of Some Diffuse Plaques in the Alzheimers-Disease Brain, but Is Not Found in Cerebrovascular Amyloid, Brain Research, vol. 702, pp. 275-278, Dec 8 1995. [112]D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, GROMACS: fast, flexible, and free, J Comput Chem, vol. 26, pp. 1701-18, Dec 2005. [113]L. Verlet, Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol. 159, pp. 98-&, 1967. [114]M. Levitt, Dynamics of Proteins and Nucleic-Acids - Mccammon,Ja, Harvey,Sc, Nature, vol. 330, pp. 120-120, Nov 12 1987. [115]J. A. Mccammon, B. R. Gelin, and M. Karplus, Dynamics of Folded Proteins, Nature, vol. 267, pp. 585-590, 1977. [116]E. A. Volkov, Difference Method of Estimating Errors in Numerical Solutions T0 Boundary Value Problems for an Ordinary Differential Equation, Doklady Akademii Nauk Sssr, vol. 197, pp. 758-&, 1971. [117]M. Levitt, Molecular-Dynamics of Native Protein .1. Computer-Simulation of Trajectories, Journal of Molecular Biology, vol. 168, pp. 595-620, 1983. [118]M. Levitt, Molecular-Dynamics of Native Protein .2. Analysis and Nature of Motion, Journal of Molecular Biology, vol. 168, pp. 621-657, 1983. [119]D. Beeman, Some Multistep Methods for Use in Molecular-Dynamics Calculations, Journal of Computational Physics, vol. 20, pp. 130-139, 1976. [120]S. D. M. White, Numerical Recipes - the Art of Scientific Computing - Presse,Wh, Flannery,Bp, Teukolsky,Sa, Vetterling,Wt, Scientist, vol. 1, pp. 23-23, Nov 17 1986. [121]M. Canales and J. A. Padro, Computer-Simulation Study of Relative Diffusion in Simple Liquids, Journal of Physics-Condensed Matter, vol. 3, pp. 7945-7955, Oct 7 1991. [122]J. A. Cognet, J. Gabarro-Arpa, P. Cuniasse, G. V. Fazakerley, and M. Le Bret, Molecular mechanics and dynamics of an abasic frameshift in DNA and comparison to NMR data, J Biomol Struct Dyn, vol. 7, pp. 1095-115, Apr 1990. [123]Y. Li and G. Wahnstrom, Molecular-dynamics simulation of hydrogen diffusion in palladium, Phys Rev B Condens Matter, vol. 46, pp. 14528-14542, Dec 1 1992. [124]D. R. Flower, K. Phadwal, I. K. Macdonald, P. V. Coveney, M. N. Davies, and S. Wan, T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges, Immunome Res, vol. 6 Suppl 2, p. S4, 2010. [125]E. Lindahl, B. Hess, and D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, vol. 7, pp. 306-317, 2001. [126]W. R. P. Scott, P. H. Hunenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, et al., The GROMOS biomolecular simulation program package, Journal of Physical Chemistry A, vol. 103, pp. 3596-3607, May 13 1999. [127]M. W. van der Kamp and V. Daggett, Influence of pH on the human prion protein: insights into the early steps of misfolding, Biophys J, vol. 99, pp. 2289-98, Oct 6 2010. [128]Y. Ueda, H. Taketomi, and N. Go, Studies on Protein Folding, Unfolding, and Fluctuations by Computer-Simulation .2. 3-Dimensional Lattice Model of Lysozyme, Biopolymers, vol. 17, pp. 1531-1548, 1978. [129]M. L. Klein and W. Shinoda, Large-scale molecular dynamics simulations of self-assembling systems, Science, vol. 321, pp. 798-800, Aug 8 2008. [130]S. J. Marrink, A. H. de Vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, Journal of Physical Chemistry B, vol. 108, pp. 750-760, Jan 15 2004. [131]S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, The MARTINI force field: Coarse grained model for biomolecular simulations, Journal of Physical Chemistry B, vol. 111, pp. 7812-7824, Jul 12 2007. [132]C. A. Lopez, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hunenberger, and S. J. Marrink, Martini Coarse-Grained Force Field: Extension to Carbohydrates, Journal of Chemical Theory and Computation, vol. 5, pp. 3195-3210, Dec 2009. [133]M. Venturoli, B. Smit, and M. M. Sperotto, Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins, Biophysical Journal, vol. 88, pp. 1778-1798, Mar 2005. [134]L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S. J. Marrink, The MARTINI coarse-grained force field: Extension to proteins, Journal of Chemical Theory and Computation, vol. 4, pp. 819-834, May 2008. [135]J. Gu, F. Bai, H. Li, and X. Wang, A generic force field for protein coarse-grained molecular dynamics simulation, Int J Mol Sci, vol. 13, pp. 14451-69, 2012. [136]F. Massi and J. E. Straub, Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation, Proteins, vol. 42, pp. 217-29, Feb 1 2001. [137]R. Fildes and K. Nikolopoulos, Spyros Makridakis: An interview with the International Journal of Forecasting, International Journal of Forecasting, vol. 22, pp. 625-636, 2006. [138]F. Massi, J. W. Peng, J. P. Lee, and J. E. Straub, Simulation study of the structure and dynamics of the Alzheimer's amyloid peptide congener in solution, Biophys J, vol. 80, pp. 31-44, Jan 2001. [139]L. Shen, H. F. Ji, and H. Y. Zhang, Why Is the C-terminus of Abeta(1-42) more unfolded than that of Abeta(1-40)? Clues from hydrophobic interaction, J Phys Chem B, vol. 112, pp. 3164-7, Mar 13 2008.
|