跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍淑娟
研究生(外文):Shu-ChuanLan
論文名稱:隨機需求下之最佳生產批量模式
論文名稱(外文):Extended Production Quantity Models under Stochastic Demand
指導教授:李賢得李賢得引用關係
指導教授(外文):Shine-Der Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:66
中文關鍵詞:經濟生產批量生產存貨系統隨機需求期望成本模式
外文關鍵詞:production lot sizinginventorystochastic processoutsourcing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
當面臨隨機需求時,本論文提出一般型與簡化型兩種最佳生產批量決策模式。模式中針對定速生產,但需求為卜瓦松過程之固定批量生產系統進行探討,其目標為最小化包含機器整備成本、存貨持有成本與因需求隨機性而衍生之缺貨成本等之單位時間期望總成本。其中,缺貨型態按缺貨產生時點區分為於生產期中因累積總需求量大於已生產完成量而產生的暫態缺貨,與於批量生產完成時因累積總需求量大於生產批量而產生的週期缺貨。而依據缺貨型態之不同,將分別採用缺貨後補(暫態缺貨)與外包(週期缺貨)等不同之補貨政策加以因應,以滿足需求。
在生產速率大於平均需求速率的情況下,一般型最佳生產批量決策模式將暫態缺貨與週期缺貨對生產存貨系統所造成之影響同時納入模式中分析,其利用存貨水準、已生產完成量與累積總需求量間之關係,建構單位時間期望總成本模式,並可證得單位時間期望總成本之近似函數為生產批量之凸函數。另由演算實驗結果發現,相較於傳統經濟生產批量模式,一般型最佳化模式所得之最佳生產批量較大;且隨著平均需求速率與生產速率比值之增加,單位時間期望總成本的改善幅度顯著提升。其中,降低機器整備成本可大幅降低單位時間期望總成本。
在生產速率遠大於平均需求速率的情況下,產生瞬間缺貨與週期缺貨的發生機率微小,其效應假設可忽略不計,因此,簡化型最佳生產批量決策模式僅需考慮機器整備成本、存貨持有成本與暫態缺貨成本。在特定條件下,本研究證得簡化型最佳化模式之單位時間期望總成本的近似函數為生產批量之凸函數,且相較於傳統經濟生產批量模式,模式以較大之生產批量來因應隨機需求對生產存貨系統所造成之影響,並可顯著地降低單位時間期望總成本。
本研究為針對隨機需求而發展之固定生產批量下的最佳生產批量決策模式,綜合研究結果可發現,相較於傳統經濟生產批量模式,本論文所發展之模式可顯著降低生產存貨相關總成本,並顯示將需求不確定性納入決策模式中,可大幅提升生產存貨管理之決策品質。

In this thesis, an extended Economic Production Quantity (EPQ) model under stochastic demand is investigated, where a fixed lot sizing policy is implemented to reduce the complexity of production planning and inventory control, and outsourcing with a secondary facility is used to supplement the lot sizing policy and to cope with the random demand. The considered cost includes: setup cost for the batch production, inventory carrying cost, backorder cost when the demand cannot be met immediately during the production period, and outsourcing cost when the total demand is greater than the lot size in one replenishment cycle.
For the general case where production rate is larger than demand rate, both backorder and outsourcing may occur in one replenishment cycle. A per unit time expected cost model is developed. Under some mild conditions, it can be shown that the cost function is convex. The computational study has demonstrated that significant cost savings can be achieved by deploying the proposed production lot sizing policy with an outsourcing strategy when the mean demand rate is high.
For the simplified case where production rate is significantly larger than demand rate, the probability or the amount of outsourcing becomes negligible. A reduced per unit time expected cost model is developed. Under some mild conditions, the per unit time cost model is shown to be convex. Extensive computational tests have illustrated that the average cost reduction of the proposed model is significant when compared with that of the classical lot sizing policy.
The main contributions of this thesis are two folds. An extended EPQ model with two different operating strategies to deal with shortages is developed and analyzed. The computational tests have illustrated that the optimal lot sizes in the proposed models are consistently larger than the ones in the classical EPQ. The average cost reduction of the proposed models is significant when compared with those of the classical lot sizing policy. In addition, the impact of various parameters on the expected cost models and the lot sizing policies is illustrated.

摘要 I
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 3
1.3 研究範圍與限制 3
1.4 研究架構 4
第二章 文獻回顧 5
2.1 古典經濟生產批量模式 5
2.1.1 需求為已知固定常數型系統 6
2.1.2 需求為已知不定型系統 7
2.2 延伸型經濟生產批量模式 7
2.2.1 不可靠生產型系統 8
2.2.2 不完美生產型系統 9
2.2.3 隨機需求型系統 10
2.3 可缺貨型經濟生產批量模式 11
2.3.1 缺貨後補型系統 11
2.3.2 銷售損失型系統 12
2.3.3 部分銷售損失型系統 13
第三章 生產批量模式發展 17
3.1 問題描述 17
3.2 生產期之期望成本分析 24
3.3 消耗期之期望成本分析 27
3.4 一般型最佳生產批量決策模式 30
3.5 簡化型最佳生產批量決策模式 33
第四章 演算實驗分析 39
4.1 演算法發展 39
4.2 一般型最佳生產批量決策模式之演算實驗 42
4.2.1 演算範例 42
4.2.2 演算實驗與分析 44
4.3 簡化型最佳生產批量決策模式之演算實驗 47
4.3.1 演算範例 47
4.3.2 演算實驗與分析 49
4.4 小結 51
第五章 研究成果與後續研究議題 52
5.1 研究成果 52
5.2 後續研究議題 53
參考文獻 54
附錄 59
附錄一:卜瓦松分配理論性質證明 59
附錄二:生產期中產生暫態缺貨之發生機率分析 64

Abboud, N. E. A discrete-time Markov production-inventory model with machine breakdowns. Computers & Industrial Engineering, 39(1-2), 95-107, 2001.
Axsäter, S. Initiation of an inventory control system when the demand starts at a given time. International Journal of Production Economics, doi:10.1016/j.ijpe.2011.05.028, 2011.
Berg, M., Posner, M. J. M., and Zhao, H. Production-Inventory Systems with Unreliable Machines. Operations Research, 42(1), 111-118, 1994.
Bielecki, T., and Kumar, P. R. Optimality of zero-inventory policies for unreliable manufacturing systems. Operations Research, 36(4), 532-541, 1988.
Cárdenas-Barrón, L. E. The economic production quantity (EPQ) with shortage derived algebraically. International Journal of Production Economics, 70(3), 289-292, 2001.
Cárdenas-Barrón, L. E. Optimal manufacturing batch size with rework in a single-stage production system - a simple derivation. Computers & Industrial Engineering, 55(4), 758-765, 2008.
Chern, C. C., and Yang, P. Determining a threshold control policy for an imperfect production system with rework jobs. Naval Research Logistics, 46(3), 273-301, 1999.
Chiu, S. W., Wang, S. L., and Chiu, Y. S. P. Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns. European Journal of Operational Research, 180(2), 664-676, 2007.
Chiu, S. W. Production lot size problem with failure in repair and backlogging derived without derivatives. European Journal of Operational Research, 188(2), 610-615, 2008.
Chiu, Y. S. P. The effect of service level constraint on EPQ model with random defective rate. Mathematical Problems in Engineering, 2006, 1-13, 2006.
Chu, F., and Chu, C. B. Polynomial algorithms for single-item lot-sizing models with bounded inventory and backlogging or outsourcing. IEEE Transactions on Automation Science and Engineering, 4(2), 233-251, 2007.
Chung, K. J., and Hou, K. L. An optimal production run time with imperfect production processes and allowable shortages. Computers & Operations Research, 30(4), 483-490, 2003.
Dave, U. A deterministic lot-size inventory model with shortage and a linear trend in demand. Naval Research Logistics, 36(4), 507-514, 1989.
Deb, M., and Chaudhuri, K. A note on the heuristic for replenishment of trended inventories considering shortages. The Journal of the Operational Research Society, 38(5), 459-463, 1987.
Donaldson, W. A. Inventory replenishment policy for a linear trend in demand - an analytical solution. Operational Research Quarterly, 28(3), 663-670, 1977.
Doshi, B. T., Van der Duyn Schouten, F. A., and Talman, A. J. J. A production-inventory control model with a mixture of back-orders and lost-sales. Management Science, 24(10), 1078-1086, 1978.
Eroglu, A., and Ozdemir, G. An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106(2), 544-549, 2007.
Florian, M., and Klein, M. Deterministic production planning with concave costs and capacity constraints. Management Science, 18(1), 12-20, 1971.
Gavish, B., and Graves, S. C. A one-product production/inventory problem under continuous review policy. Operations Research, 28(5), 1228-1236, 1980.
Gershwin, S. B., Tan, B., and Veatch, M. H. Production control with backlog-dependent demand. IIE transactions, 41(6), 511-523, 2009.
Giri, B. C., and Dohi, T. Computational Aspects of an Extended EMQ Model with Variable Production Rate. Computers & Operational Research, 32(12), 3143-3161, 2005.
Giri, B. C., and Yun, W. Y. Optimal lot sizing for an unreliable production system under partial backlogging and at most two failures in a production cycle. International Journal of Production Economics, 95(2), 229-243, 2005.
Goyal, S. K., and Cárdenas-Barrón, L. E. Note on: Economic production quantity model for items with imperfect quality- a practical approach. International Journal of Production Economics, 77(1), 85-87, 2002.
Goyal, S. K., and Giri, B. C. The production–inventory problem of a product with time varying demand, production and deterioration rates. European Journal of Operational Research, 147(3), 549-557, 2003.
Graves, S. C., and Keilson, J. The compensation method applied to a one-product production/inventory problem. Mathematics of Operations Research, 6(2), 246-262, 1981.
Greaver, M. F. Strategic outsourcing: a structured approach to outsourcing decisions and initiatives. Amacom: New York, 1999.
Groenevelt, H., Pintelon, L., and Seidmann, A. Production lot sizing with machine breakdowns. Management Science, 38(1), 104-123, 1992.
Grubbström, R. W., and Erdem, A. The EOQ with backlogging derived without derivatives. International Journal of Production Economics, 59(1-3), 529-530, 1999.
Hadley, G., and Whitin, T. M. Analysis of Inventory Systems. Prentice Hall Inc.: Englewood Cliffs, New Jersey, USA, 1963.
Hariga, M. The inventory replenishment problem with a linear trend in demand. Computers & Industrial Engineering, 24(2), 143-150, 1993.
Hariga, M. Optimal EOQ models for deteriorating items with time-varying demand. The Journal of the Operational Research Society, 47(10), 1228-1246, 1996.
Hariga, M. A., and Benkherouf, L. Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. European Journal of Operational Research, 79(1), 123-137, 1994.
Harland, C., Knight, L., Lamming, R., and Walker, H. Outsourcing: assessing the risks and benefits for organizations, sectors and nations. International Journal of Operations & Production Management, 25(9), 831-850, 2005.
Harris, F. W. How many parts to make at once. Factory, The Magazine of Management, 10(2), 135-136, 152, 1913.
Huang, C. K. An optimal policy for a single-vendor single-buyer integrated production-inventory problem with process unreliability consideration. International Journal of Production Economics, 91(1), 91-98, 2004.
Kim, C. H., and Hong, Y. S. An extended EMQ model for a failure prone machine with general lifetime distribution. International Journal of Production Economics, 49(3), 215-223, 1997.
Kim, C. H., and Hong, Y. S. An optimal production run length in deteriorating production processes. International Journal of Production Economics, 58(2), 183-189, 1999.
Kim, C. H., Hong, Y. S., and Kim, S. Y. An extended optimal lot sizing model with an unreliable machine. Production Planning & Control: The Management of Operations, 8(6), 577-585, 1997.
Kouvelis, P., and Milner, J. M. Supply chain capacity and outsourcing decisions: the dynamic interplay of demand and supply uncertainty. IIE Transactions, 34(8), 717-728, 2002.
Lee, H. L. Lot sizing to reduce capacity utilization in a production process with defective items, process corrections, and rework. Management Science, 38(9), 1314-1328, 1992.
Lee, S. D., and Rung, J. M. Production lot sizing in failure prone two-stage serial systems. European Journal of Operational Research, 123(1), 42-60, 2000.
Liu, J. J., and Yang, P. Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs. European Journal of Operational Research, 91(3), 517-527, 1996.
Lutz, S., and Ritter, T. Outsourcing, supply chain upgrading and connectedness of a firm’s competencies. Industrial Marketing Management, 38(4), 387-393, 2009.
Makis, V., and Fung, J. An EMQ model with inspections and random machine failures. Journal of the Operational Research Society, 49(1), 66-76, 1998.
McClave, J. T., and Sincich, T. Statistics (8th ed.). Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 2000.
Moini, A., and Murthy, D. N. P. Optimal lot sizing with unreliable production system. Mathematical and Computer Modelling, 31(10), 245-250, 2000.
Pentico, D. W., Drake, M. J., and Toews, C. The deterministic EPQ with partial backordering: a new approach. Omega, 37(3), 624-636, 2009.
Phelps, R. I. Optimal inventory rule for a linear trend in demand with a constant replenishment period. Journal of the Operational Research Society, 31(5), 439-442, 1980.
Porteus, E. L. Optimal lot sizing, process quality improvement and setup cost reduction. Operations Research, 34(1), 137-144, 1986.
Rempala, R. A continuous production-inventory problem with regeneration cycles. International Journal of Production Economics, 93-94(8), 447-454, 2005.
Ronald, R., Yang, G. K., and Chu, P. Technical note: The EOQ and EPQ models with shortages derived without derivatives. International Journal of Production Economics, 92(2), 197-200, 2004.
Rosenblatt, M. J., and Lee, H. L. Economic production cycles with imperfect production processes. IIE Transactions, 18(1), 48-55, 1986.
Ross, S. M. Introduction to probability models (10th ed.). Academic Press Inc.: San Diego, 2009.
Salameh, M. K., and Jaber, M. Y. Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64(1-3), 59-64, 2000.
Sana, S. S. An economic production lot size model in an imperfect production system. European Journal of Operational Research, 201(1), 158-170, 2010.
Sarker, B. R., and Parija, G. R. An optimal batch size for a production system operating under a fixed-quantity, periodic delivery policy. Journal of the Operational Research Society, 45(8), 891-900, 1994.
Silver, E. A., Pyke, D. F., and Peterson, R. Inventory management and production planning and scheduling (3rd ed.). John Wiley & Sons Inc.: New York, 1998.
Sphicas, G. P. EOQ and EPQ with linear and fixed backorder costs: two cases identified and models analyzed without calculus. International Journal of Production Economics, 100(1), 59-64, 2006.
Taylor, H. M., and Karlin, S. An Introduction to Stochastic Modeling (3rd ed.). Academic Press Inc.: San Diego, 1998.
Toews, C., Pentico, D. W., and Drake, M. J. The deterministic EOQ and EPQ with partial backordering at a rate that is linearly dependent on the time to delivery. International Journal of Production Economics, 131(2), 643-649, 2011.
Vargas, V., and Metters, R. A master production scheduling procedure for stochastic demand and rolling planning horizons. International Journal of Production Economics, 132(2), 296-302, 2011.
Wagelmans, A. S., Hoesel, S. V., and Kolen, A. Economic lot sizing:An O(nlogn) algorithm that runs in linear time in the Wagner-Whitin case. Operations Research, 40, S145-S156, 1992.
Wagner, H. M., and Whitin, T. M. Dynamic version of the economic lot size model. Management Science, 5(1), 89-96, 1958.
Wang, C. H., and Sheu, S. H. Simultaneous determination of the optimal production-inventory and product inspection policies for a deteriorating production system. Computers & Operations Research, 28(11), 1093-1110, 2001.
Zipkin, P H. Foundations of inventory management (1st ed.). McGraw Hill Publication: New York, 2000.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top