跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃譓伃
研究生(外文):Hui-YuHuang
論文名稱:In-House協同模式之複雜度分析
論文名稱(外文):Complexity Analysis of the In-House Collaboration Model: A Case Study
指導教授:呂執中呂執中引用關係
指導教授(外文):Jr-Jung Lyu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:供應鏈複雜度熵函數In-House生產系統
外文關鍵詞:supply chain complexityentropyIn-House
相關次數:
  • 被引用被引用:2
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
供應鏈網路被視為一複雜、且難以被描述、預測與控制的系統,由供應鏈下游所產生的資訊流不確定性與上游所產生的物流不確定性均是導致供應鏈行為越趨複雜的主因,一旦供應鏈網路不確定性增加,對於此系統之監控與管理就變得格外複雜,此時,管理者便需要更多資訊量以及有效之量化指標,分析並控制此複雜系統之狀態、連結結構以及連結程度。
本研究以資訊理論為基礎之熵函數量化供應鏈複雜度,藉由結構複雜度以及作業複雜度模型探討個案公司In-House生產系統之現況補貨流程,以及導入供應鏈協同後之協同補貨流程,在不同的供應鏈結構下物流與資訊流對供應鏈複雜度所產生的影響。所謂In-House生產系統是指製造商改變其生產策略,由成品製造轉變為半成品製造,並將零組件生產線直接架設於顧客生產廠區內,由顧客端進行最終產品生產與出貨,以就近供應的方式縮短零組件交貨時間,避免因長途運輸過程中所產生的運費、包裝與毀損等成本。於In-House生產系統下導入供應鏈協同的概念,有助於供應鏈成員彼此之間的資訊分享,降低長鞭效應所產生的庫存水準過高或是缺貨、進而導致營運成本增加的現象。
量化供應鏈複雜度之目的在於使供應鏈成員瞭解其於供應鏈網路之定位、與哪些供應鏈成員互動以及該如何互動,方能減少供應鏈不確定性以降低管理上之複雜性。因此,本研究以供應鏈物流與資訊流的觀點切入,針對個案公司In-House生產系統提出一個以複雜性的角度來檢視供應鏈績效之衡量指標,希望能提供管理者作為決策參考依據。
Supply chain network is considered a complex system that difficult to describe, understand, predict, control and manage. Uncertainty from information and material flow generate from supply chain are reasons that lead to increase the complexity of supply chain. If uncertainty increases, monitor and management for the system have become more and more difficulty. Therefore, managers need more information and quantitative indicators to analyze and control the status of the complex system.
This study describes an approach to the measurement of complexity in supply chain based on Shannon’s information entropy. Use structural and operational complexity model to quantify the effect of information and material flow on replenishment process (as-is model) and collaborative replenishment process (to-be model) of the “In-House” production system. Supply chain collaboration in “In-House” production system can increase information sharing and reduce “bull-whip effect” between the supply chain members.
The purpose of quantify the complexity of supply chain is enable the supply chain members to know how to reduce the complexity of supply chain in order to reduce the complexity of management. The main contribution of this study is to propose a complexity model which measures the supply chain performance by two aspects (information and material flow) for the “In-House” production system. A case study is presented to demonstrate the approach.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究範圍與目的 3
第四節 論文架構 4
第二章 文獻探討 5
第一節 IN-HOUSE生產系統 5
第二節 供應鏈協同(SUPPLY CHAIN COLLABORATION) 7
第三節 複雜度(COMPLEXITY) 8
2.3.1 複雜度的定義 8
2.3.2 供應鏈複雜度 10
2.3.3 結構複雜度與作業複雜度 13
第四節 資訊理論(INFORMATION THEORY) 16
2.4.1 熵函數的定義 16
2.4.2 熵函數的應用 17
第三章 供應鏈複雜度模型建構 21
第一節 問題描述 21
第二節 研究架構 23
第三節 結構複雜度 24
3.3.1 平均共有資訊量 24
3.3.2 模型建構 25
第四節 作業複雜度 30
3.4.1 流量變異 31
3.4.2 流量大小 33
第四章 個案研究 38
第一節 個案描述 38
4.1.1 個案公司In-House生產系統 40
4.1.2 個案公司In-House生產系統優缺點 44
第二節 IN-HOUSE生產系統之結構複雜度分析 45
4.2.1 現況補貨模型(As-Is model) 45
4.2.2 協同補貨模型(To-Be model) 49
第三節 IN-HOUSE生產系統之作業複雜度分析 53
4.3.1 流量變異 53
4.3.2 流量大小 57
4.3.3 敏感度分析 58
第五章 結論與建議 65
第一節 結論 65
第二節 未來研究方向 67
參考文獻 68
Alfaro, M. D., & Sepulveda, J. M. (2006). Chaotic behavior in manufacturing systems. International Journal of Production Economics, 101(1), 150-158.
Allesina, S., Azzi, A., Battini, D., & Regattieri, A. (2010). Performance measurement in supply chains: new network analysis and entropic indexes. International Journal of Production Research, 48(8), 2297-2321.
Arteta, B. M., & Giachetti, R. E. (2004). A measure of agility as the complexity of the enterprise system. Journal of Robotics and Computer-Integrated Manufacturing, 20(6), 495-503.
Battini, D., Persona, A., & Allesina, S. (2007). Towards a use of network analysis: quantifying the complexity of Supply Chain Networks. International Journal of Electronic Customer Relationship Managemen, 1(1), 75-90.
Beamon, B. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(18), 281-298.
Blackhurst, J., Wu, T., & O'grady, P. (2004). Network-based approach to modelling uncertainty in a supply chain. International Journal of Production Research, 42(8), 1639-1658.
Blecker, T., & Abdelkafi, N. (2006). Complexity and variety in mass customization systems: analysis and recommendations. Management Decision, 44(7), 908-929.
Calinescu, A., Efstathiou, J., Huaccho Huatuco, L., & Sivadasan, S. (2001). Classes of complexity in manufacturing. 17th national conference on manufacturing research, 351-356.
Calinescu, A., Efstathiou, J., Schirn, J., & Bermejo, J. (1998). Applying and assessing two methods for measuring complexity in manufacturing. Journal of the Operational Research Society, 49(7), 723-733.
Calinescu, A., Efstathiou, J., Sivadasan, S., Schirn, J., & Huaccho Huatuco, L. (2000). Complexity in manufacturing: An information theoretic approach. Proceedings of the conference on complexity and complex systems in industry, 30-44.
Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead time, and information. Management Science, 46(3), 436-443.
Chung, W. W. C.. & Leung, S. W. F., (2005), Collaborative planning, forecasting and replenishment: a case study in copper clad laminate industry, Production Planning & Control, Vol. 16, 6, pp. 563-574.
Frizelle, G., & Woodcock, E. (1995). Measuring complexity as an aid to developing operational strategy. International Journal of Operation and Production Management, 15(5), 26-39.
Gonzalez, C. (2005). The use of microworlds to study dynamic decision making. Computers in Human Behavior, 21(2), 273-286.
Gravier, M. J., & Kelly, B. P. (2012). Measuring the cost of complexity in supply chains: Comparison of weighted entropy and the bullwhip effect index. Modelling Value, 257-271.
He, X., & Wu, Y. (2011). Analysis of supply chain system stability based on network structure. International Conference on Mechatronic Science, Electric Engineering and Computer, 1326-1330.
Hu, S. J., Zhu, X., Wang, H., & Koren, Y. (2008). Product variety and manufacturing complexity in assembly systems and supply chains. Cirp Annals-Manufacturing Technology, 57(1), 45-48.
Huaccho Huatuco, L., Efstathiou, J., Calinescu, A., Sivadasan, S., & Kariuki, S. (2009). Comparing the impact of different rescheduling strategies on the entropic-related complexity of manufacturing systems. International Journal of Production Research, 47(15), 4305-4325.
Huang, T. X., & Yan, J. H. (2008). The Research on Complexity of Supply Chain Inventory Management under Information Entropy. Proceedings of 2008 International Conference on Management Science and Engineering, 575-581.
Hwarng, H. B., Chong, C. S. P., Xie, N., & Burgess, T. F. (2005). Modelling a complex supply chain: Understanding the effect of simplified assumptions. International Journal of Production Research, 43(13), 2829-2872.
Hwarng, H. B., & Xie, N. (2008). Understanding supply chain dynamics: A chaos perspective. European Journal of Operational Research, 184(3), 1163-1178.
Isik, F. (2010). An entropy-based approach for measuring complexity in supply chains. International Journal of Production Research, 48(12), 3681-3696.
Lakshminarayanan, S., & Raj, T. S. (2008). Entropy based optimization of decentralized supply chain networks. The International Federation of Automatic Control.
Larsen, E. R., Morecroft, J. D. W., & Thomsen, J. S. (1999). Complex behaviour in a production-distribution model. European Journal of Operational Research, 119(1), 61-74.
Lee, H. L., & Tang, C. S. (1997). Modelling the costs and benefits of delayed product differentiation. Management Science, 43(1), 40-53.
Lyu, J.,Ding, J. H.. & Chen, P. S., (2009), Coordinating replenishment mechanisms in supply chain: From the collaborative supplier and store-level retailer perspective, International Journal of Production Economics, Vol. 123, 1, pp. 221-234.
Makui, A., & Aryanezhad, M. B. (2003). A new method for measuring the static complexity in manufacturing. Journal of the Operational Research Society, 54(5), 555-557.
Milgate, M. (2001). Supply chain complexity and delivery performance: an international exploratory study. Supply Chain Management: An International Journal, 6(3), 106-118.
Rivkin, J. W., & Siggelkow, N. (2007). Patterned interactions in complex systems: Implications for exploration. Management Science, 53(7), 1068-1085.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
Shuiabi, E., Thomson, V., & Bhuiyan, N. (2005). Entropy as a measure of operational flexibility. European Journal of Operational Research, 165(3), 696-707.
Sivadasan, S., Efstathiou, J., Calinescu, A., & Huatuco, L. H. (2006). Advances on measuring the operational complexity of supplier–customer systems. European Journal of Operational Research, 171(1), 208-226.
Sivadasan, S., Efstathiou, J., Frizelle, G., Shirazi, R., & Calinescu, A. (2002). An information-theoretic methodology for measuring the operational complexity of supplier-customer systems. International Journal of Operations & Production Management, 22(1), 80-102.
Smart, J., Calinescu, A., & Huatuco, L. H. (2011). Extending the information-theoretic measures of the dynamic complexity of manufacturing systems. International Journal of Production Research, 43(2), 1-18.
Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321-339.
Wiendahl, H. P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. Annals of the CRIP, 43(2), 1-8.
Wilding, R. (1998). The supply chain complexity triangle: Uncertainty generation in the supply chain. International Journal of Physical Distribution & Logistics Management, 28(8), 599-616.
Wu, Y., Frizelle, G., Ayral, L., Marsein, J., Merwe, E. V. d., & Zhou, D. (2002). A simulation study on supply chain complexity in manufacturing industry. Conference of Manufacturing Complexity Network.
Wu, Y., Frizelle, G., & Efstathiou, J. (2007). A study on the cost of operational complexity in customer–supplier systems. International Journal of Production Economics, 106(1), 217-229.
Wu, Y., & Zhang, D. Z. (2007). Demand fluctuation and chaotic behaviour by interaction between customers and suppliers. International Journal of Production Economics, 107(1), 250-259.
Wu, Y. R., Huatuco, L. H., Frizelle, G., & Smart, J. (2012). A method for analysing operational complexity in supply chains. Journal of the Operational Research Society, 1-14.
Yang, B., Burns, N. D., & Backhouse, C. J. (2004). Management of uncertainty through postponement. International Journal of Production Research, 42(6), 1049-1064.
Yu, Z. X.,Yan, H.. & Cheng, T. C. E., (2001), Benefits of information sharing with supply chain partnerships. Industrial Management & Data Systems, Vol. 101, 3-4, pp. 114-119.
Zhu, S. & Xu, Y., (2012), Complexity measure of supply chain networks. Control and Decision Conference.
電子全文 電子全文(網際網路公開日期:20231231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top