|
[1] http://visibleearth.nasa.gov/view.php?id=55167 [2] http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html [3] http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl2012_en ergysavings_factsheet.pdf [4] H. J. Round, “A Note on Carborundum, Electrical World, vol. 49, pp. 309, 1907. [5] E. F. Schubert, Light Emitting Diodes, Cambridge University Press, 2006. [6] R. Juza and H. Hahn, “On the crystal structure of Cu3N, GaN and InN (translated from German), Zeitschrift fuer anorganische und allgemeine Chemie, vol. 239, pp. 282, 1938. [7] M. R. Lorenz and B. B. Binkowski, “Preparation, stability, and luminescence of gallium nitride, Journal of Electrochemistry Society, vol. 109, pp. 24, 1962. [8] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystalline GaN, Applied Physics Letters, vol. 15, pp. 327, 1969. [9] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser, “Electroluminescence in GaN, Journal of Luminescence, vol.4, pp. 63, 1971. [10] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, “GaN electroluminescent diodes, RCA Review, vol. 32, pp. 383, 1971. [11] H. P. Maruska, W. C. Rhines and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence, Material Research Bulletin, vol. 7, pp. 777, 1972. [12] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Japanese Journal of Applied Physics, vol. 28, pp. L2112, 1989. [13] S. Nakamura, N. Iwasa and M. Senoh, “Method of manufacturing p-type compound semiconductor, US Patent, 5306662, 1994. [14] http://www.asu.edu/clas/csss/NUE/index.html [15] W. Lu, P. Xie and C. M. Lieber, “Nanowire transistor performance limits and applications, IEEE Transactions on Electron Devices, vol. 55, pp. 2859, 2008. [16] F. Qian, S. Gradečak, Y. Li, C. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes, Nano Letters, vol. 5, pp. 2287, 2005. [17] M. A. Zimmler, F. Capasso, S. Müller and C. Ronning, Optically pumped nanowire lasers: invited review, Semiconductor Science and Technology, vol. 25, pp. 024001, 2010. [18] B. Tian, T. J. Kempa and C. M. Lieber, “Single nanowire photovoltaics, Chemical Society Reviews, vol. 38, pp. 16, 2009. [19] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells, Annual Review of Materials Research, vol. 41, pp. 269, 2011. [20] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux and C. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles, Journal of Applied Physics, vol. 99, pp. 104302, 2006. [21] A. K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, “Nanowire-based electrochemical biosensors, Electroanalysis, vol. 18, pp. 533, 2006. [22] P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next? Nano Letters, vol. 10, pp. 1529, 2010. [23] http://gizmodo.com/360260/nokia-morph-cellphone-rolls-up-stretches-cleans-itself [24] http://www.youtube.com/watch?v=IX-gTobCJHs [25] J. Piprek, R. Farrell, S. DenBaars and S. Nakamura, “Effects on built-in polarization on InGaN-GaN vertical cavity surface-emitting Lasers, IEEE Photonics Technology Letters, vol. 18, pp. 7, 2006. [26] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura and S. P. Denbaars, “Polarized light emission from nonpolar InGaN light-emitting diodes grown on a bulk m-plane GaN substrate, Japanese Journal of Applied Physics, 44(43), L1329, 2005. [27]W. L. Wilson, P. F. Szajowski, and L. E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science, vol. 262, pp. 1242-1244, 1993. [28]N. Mingo, Thermoelectric figure of merit of II-VI semiconductor nanowires, Applied Physics Letters, vol. 85, pp. 5986-5988, 2004. [29]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, Second ed. Berlin: Springer-Verlag, 2000. [30]S. Porowski, Growth and properties of single crystalline GaN substrates and homoepitaxial layers, Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997. [31]S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, et al., Polarity and its influence on growth mechanism during MOVPE growth of GaN sub-micrometer rods, Crystal Growth and Design, vol. 11, pp. 1573-1577, 2011. [32]M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001. [33]D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy, Applied Physics Letters, vol. 77, pp. 1464-1466, 2000. [34]J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999. [35]S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., Nanoindentation of epitaxial GaN films, Applied Physics Letters, vol. 77, pp. 3373-3375, 2000. [36]H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999. [37]Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Gallium Nitride Nanowire Nanodevices, Nano Letters, vol. 2, pp. 101-104, 2002. [38]J. Neugebauer and C. G. Van de Walle, Chemical trends for acceptor impurities in GaN, Journal of Applied Physics, vol. 85, pp. 3003-3005, 1999. [39]J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Ca and O ion implantation doping of GaN, Applied Physics Letters, vol. 68, pp. 1945-1945, 1996. [40]E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., Modification of GaN(0001) growth kinetics by Mg doping, Applied Physics Letters, vol. 84, pp. 2554-2556, Apr 2004. [41]A. Salvador, W. Kim, O. Aktas, A. Botchkarev, Z. Fan, and H. Morkoc, Near ultraviolet luminescence of Be doped GaN grown by reactive molecular beam epitaxy using ammonia, Applied Physics Letters, vol. 69, pp. 2692-2692, 1996. [42]P. Bergman, G. Ying, B. Monemar, and P. O. Holtz, Time-resolved spectroscopy of Zn- and Cd-doped GaN, Journal of Applied Physics, vol. 61, pp. 4589-4592, 1987. [43]S. Strite and H. Morkoç, GaN, AlN, and InN: A review, Journal of Vacuum Science and Technology B, vol. 10, pp. 1237-1266, 1992. [44]C. G. Van De Walle, C. Stampfl, and J. Neugebauer, Theory of doping and defects in III-V nitrides, Journal of Crystal Growth, vol. 189-190, pp. 505-510, 1998. [45]E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, The effect of Mg doping on GaN nanowires, Nanotechnology, vol. 17, pp. 5735-5739, Dec 2006. [46]G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al., Current rectification in a single GaN nanowire with a well-defined p-n junction, Applied Physics Letters, vol. 83, pp. 1578-1580, Aug 2003. [47]Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices, Nano Letters, vol. 3, pp. 343-346, Mar 2003. [48]J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2, Journal of Physical Chemistry, vol. 59, pp. 132-136, 1955. [49]E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures, Journal of Vacuum Science and Technology B, vol. 17, pp. 1742-1749, 1999. [50]A. Konar, A. Verma, T. Fang, P. Zhao, R. Jana, and D. Jena, Charge transport in non-polar and semi-polar III-V nitride heterostructures, Semiconductor Science and Technology, vol. 27, 2012. [51]S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, et al., Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors, Nature Materials, vol. 5, pp. 810-816, 2006. [52]M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, et al., Demonstration of nonpolar m-plane InGaN/GaN laser diodes, Japanese Journal of Applied Physics, Part 2: Letters, vol. 46, pp. L190-L191, 2007. [53]K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN, Applied Physics Letters, vol. 71, pp. 1996-1996, 1997. [54]H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, et al., Polarized light emission from nonpolar InGaN light-emitting diodes grown on a bulk m-plane GaN substrate, Japanese Journal of Applied Physics, Part 2: Letters, vol. 44, pp. L1329-L1332, 2005. [55]D. Zubia and S. D. Hersee, Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials, Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999. [56]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., The nanorod approach: GaN NanoLEDs for solid state lighting, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011. [57]S. Li and A. Waag, GaN based nanorods for solid state lighting, Journal of Applied Physics, vol. 111, p. 071101, 2012. [58]T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, et al., Quantum-confined Stark effects in the m-plane In0.15Ga 0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate, Applied Physics Letters, vol. 91, p. 181903, 2007. [59]H. Sekiguchi, K. Kishino, and A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate, Applied Physics Letters, vol. 96, p. 231104, 2010. [60]H. J. Fan, P. Werner, and M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small, vol. 2, pp. 700-717, 2006. [61]G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, Catalytic hydride vapour phase epitaxy growth of GaN nanowires, Nanotechnology, vol. 16, pp. 2342-2345, 2005. [62]J. Li, C. Lu, B. Maynor, S. Huang, and J. Liu, Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by Dip-Pen Nanolithographic Techniques, Chemistry of Materials, vol. 16, pp. 1633-1636, 2004. [63]C. Y. Nam, J. Y. Kim, and J. E. Fischer, Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth, Applied Physics Letters, vol. 86, pp. 1-3, 2005. [64]R. S. Wagner and W. C. Ellis, Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth, Applied Physics Letters, vol. 4, pp. 89-90, 1964. [65]B. Liu, Y. Bando, C. Tang, F. Xu, and D. Golberg, Quasi-aligned single-crystalline GaN nanowire arrays, Applied Physics Letters, vol. 87, p. 073106, 2005. [66]Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen, et al., Controllable synthesis of vertically aligned p-type GaN nanorod arrays on N-type Si substrates for heterojunction diodes, Advanced Functional Materials, vol. 18, pp. 3515-3522, 2008. [67]W.-C. Hou, L.-Y. Chen, W.-C. Tang, and F. C. N. Hong, Control of seed detachment in Au-assisted GaN nanowire growths, Crystal Growth and Design, vol. 11, pp. 990-994, 2011. [68]W. C. Hou, L. Y. Chen, and F. C. N. Hong, Fabrication of gallium nitride nanowires by nitrogen plasma, Diamond and Related Materials, vol. 17, pp. 1780-1784, Jul-Oct 2008. [69]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, 2009. [70]W.-C. Hou, T.-H. Wu, W.-C. Tang, and F. C.-N. Hong, Nucleation control for the growth of vertically aligned GaN nanowires, Nanoscale Research Letters, vol. 7, pp. 1-15, 2012. [71]E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, Watching GaN nanowires grow, Nano Letters, vol. 3, pp. 867-869, 2003. [72]J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, and L. J. Lauhon, Alternative catalysts for VSS growth of silicon and germanium nanowires, Journal of Materials Chemistry, vol. 19, pp. 849-857, 2009. [73]S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science, vol. 316, pp. 729-732, 2007. [74]C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, et al., Direct comparison of catalyst-free and catalyst-induced GaN nanowires, Nano Research, vol. 3, pp. 528-536, 2010. [75]R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Luminescence from stacking faults in gallium nitride, Applied Physics Letters, vol. 86, p. 021908, 2005. [76]P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, Emission properties of a -plane GaN grown by metal-organic chemical-vapor deposition, Journal of Applied Physics, vol. 98, p. 093519, 2005. [77]J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Chon, T. Joo, et al., Photoluminescent characteristics of Ni-catalyzed GaN nanowires, Applied Physics Letters, vol. 89, p. 043124, 2006. [78]C. Cheze, L. Geelhaar, B. Jenichen, and H. Riechert, Different growth rates for catalyst-induced and self-induced GaN nanowires, Applied Physics Letters, vol. 97, p. 153105, 2010. [79]J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008. [80]M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1), Journal of Crystal Growth, vol. 183, pp. 23-30, 1998. [81]M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks, Journal of Crystal Growth, vol. 189-190, pp. 138-141, 1998. [82]K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, Spontaneously grown GaN and AlGaN nanowires, Journal of Crystal Growth, vol. 287, pp. 522-527, 2006. [83]H. Sekiguchi, T. Nakazato, A. Kikuchi, and K. Kishino, Structural and optical properties of GaN nanocolumns grown on (0 0 0 1) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy, Journal of Crystal Growth, vol. 300, pp. 259-262, 2007. [84]O. Landre, C. Bougerol, H. Renevier, and B. Daudin, Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy, Nanotechnology, vol. 20, 2009. [85]R. Songmuang, O. Landre, and B. Daudin, From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer, Applied Physics Letters, vol. 91, p. 251902, 2007. [86]V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius, Physical Review B - Condensed Matter and Materials Physics, vol. 81, 2010. [87]R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111), Applied Physics Letters, vol. 90, p. 123117, 2007. [88]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, Nucleation conditions for catalyst-free GaN nanowires, Journal of Crystal Growth, vol. 300, pp. 94-99, 2007. [89]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy, Journal of Crystal Growth, vol. 310, pp. 3154-3158, 2008. [90]H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, S. S. Kim, and C. Lee, Self-catalytic growth and characterization of composite (GaN, InN) nanowires, Chemical Engineering Journal, vol. 165, pp. 720-727, 2010. [91]R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoical, E. Sutter, and H. Luth, Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy, Nano Letters, vol. 7, pp. 2248-2251, 2007. [92]B. Alloing, S. Vezian, O. Tottereau, P. Vennegues, E. Beraudo, and J. Zuniga-Perez, On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy, Applied Physics Letters, vol. 98, p. 011914, 2011. [93]M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, 2 Huntington Quadrangle, Suite N101, Melville, NY 11747-4502, United States, 2011. [94]W. Bergbauer, M. Strassburg, C. H. Kolper, N. Linder, C. Roder, J. Lahnemann, et al., Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells, Nanotechnology, vol. 21, 2010. [95]B. Daudin, J. L. Rouviere, and M. Arlery, Polarity determination of GaN films by ion channeling and convergent beam electron diffraction, Applied Physics Letters, vol. 69, pp. 2480-2480, 1996. [96]F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers, Applied Physics Letters, vol. 69, pp. 337-337, 1996. [97]J. D. Wei, S. F. Li, A. Atamuratov, H. H. Wehmann, and A. Waag, Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity, Applied Physics Letters, vol. 97, p. 172111, 2010. [98]B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials, in BNS 2002, May 18, 2002 - May 23, 2002, Amazonas, Brazil, 2002, pp. 252-258. [99]L. Macht, J. L. Weyher, P. R. Hageman, M. Zielinski, and P. K. Larsen, The direct influence of polarity on structural and electro-optical properties of heteroepitaxial GaN, Journal of Physics Condensed Matter, vol. 14, pp. 13345-13350, 2002. [100]N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol. 310, pp. 1124-1131, 2008. [101]H. M. Ng and A. Y. Cho, Investigation of Si doping and impurity incorporation dependence on the polarity of GaN by molecular beam epitaxy, in 20th North American Conference on Molecular Beam Epitaxy, October 1, 2001 - October 3, 2001, Providence, RI, United states, 2002, pp. 1217-1220. [102]L. K. Li, M. J. Jurkovic, W. I. Wang, H. J. M. Van, and P. P. Chow, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy, Applied Physics Letters, vol. 76, pp. 1740-1742, 2000. [103]C. T. Foxon, S. V. Novikov, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, et al., A complementary geometric model for the growth of GaN nanocolumns prepared by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol. 311, pp. 3423-3427, 2009. [104]J. Wei, R. Neumann, X. Wang, S. Li, S. Fundling, S. Merzsch, et al., Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2157-2159, 2011. [105]D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. Farley, et al., Defect reduction in GaN/(0001)sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers, Applied Physics Letters, vol. 92, p. 121902, 2008. [106]M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, 2 Huntington Quadrangle, Suite N101, Melville, NY 11747-4502, United States, 2011, p. 053506. [107]W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, vol. 277, pp. 1287-1289, Aug 29 1997. [108]H. W. Li, A. H. Chin, and M. K. Sunkara, Direction-dependent homoepitaxial growth of GaN nanowires, Advanced Materials, vol. 18, pp. 216-220, Jan 19 2006. [109]X. M. Cai, A. B. Djurisic, M. H. Xie, C. S. Chiu, and S. Gwo, Growth mechanism of stacked-cone and smooth-surface GaN nanowires, Applied Physics Letters, vol. 87, p. 183103, Oct 31 2005. [110]H. Y. Peng, N. Wang, X. T. Zhou, Y. F. Zheng, C. S. Lee, and S. T. Lee, Control of growth orientation of GaN nanowires, Chemical Physics Letters, vol. 359, pp. 241-245, 2002. [111]S. Y. Bae, H. W. Seo, D. S. Han, M. S. Park, W. S. Jang, C. W. Na, et al., Synthesis of gallium nitride nanowires with uniform [0 0 1] growth direction, Journal of Crystal Growth, vol. 258, pp. 296-301, 2003. [112]X. T. Zhou, T. K. Sham, Y. Y. Shan, X. F. Duan, S. T. Lee, and R. A. Rosenberg, One-dimensional zigzag gallium nitride nanostructures, Journal of Applied Physics, vol. 97, p. 104315, May 15 2005. [113]F. Kawamura, M. Imade, M. Yoshimura, Y. Mori, and T. Sasaki, Synthesis of GaN crystal using gallium hydride, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 44, pp. L1-L3, 2005 2005. [114]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, p. 055606, Feb 4 2009. [115]J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institute of Physics. Bristol and Philadelphia: Institute of Physics Publishing, 1995. [116]O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris, Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, Nano Letters, vol. 5, pp. 705-708, 2005. [117]C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, et al., ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across au electrodes, Nano Letters, vol. 6, pp. 263-266, 2006. [118]S. K. Lee, T. H. Kim, S. Y. Lee, K. C. Choi, and P. Yang, High-brightness gallium nitride nanowire UV-blue light emitting diodes, Philosophical Magazine, vol. 87, pp. 2105-2115, 2007. [119]T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, et al., Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications, Nanotechnology, vol. 17, pp. 3394-3399, 2006. [120]H. A. Pohl and J. S. Crane, Dielectrophoretic force, Journal of Theoretical Biology, vol. 37, pp. 1-13, 1972. [121]C. H. Lee, D. R. Kim, and X. Zheng, Orientation-controlled alignment of axially modulated pn silicon nanowires, Nano Letters, vol. 10, pp. 5116-5122, 2010. [122]D. L. Fan, R. C. Cammarata, and C. L. Chien, Precision transport and assembling of nanowires in suspension by electric fields, Applied Physics Letters, vol. 92, p. 093115, 2008. [123] http://zh.wikipedia.org/wiki/File:Scheme_TEM_en.svg [124]G. T. Wang, A. A. Talin, D. J. Werder, J. R. Creighton, E. Lai, R. J. Anderson, et al., Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition, Nanotechnology, vol. 17, pp. 5773-5780, 2006. [125]A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, High-quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate, Applied Physics Letters, vol. 67, pp. 2521-2521, 1995. [126]W.-C. Hou, L.-Y. Chen, W.-C. Tang, and F. C. N. Hong, Control of seed detachment in Au-assisted GaN nanowire growths, Crystal Growth and Design, vol. 11, pp. 990-994, 2011. [127]X. Weng, R. A. Burke, and J. M. Redwing, The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition, Nanotechnology, vol. 20, p. 085610, 2009. [128]P. Ghekiere, S. Mahieu, G. De Winter, R. De Gryse, and D. Depla, Scanning electron microscopy study of the growth mechanism of biaxially aligned magnesium oxide layers grown by unbalanced magnetron sputtering, Thin Solid Films, vol. 493, pp. 129-134, 2005. [129]K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: Effects of reactor pressure in MOVPE growth, Physica Status Solidi (A) Applied Research, vol. 176, pp. 535-543, 1999. [130]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, p. 055606, Feb 4 2009. [131]F. Kawamura, M. Imade, M. Yoshimura, Y. Mori, and T. Sasaki, Synthesis of GaN crystal using gallium hydride, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 44, pp. L1-L3, 2005. [132]A. Koukitu, M. Mayumi, and Y. Kumagai, Surface polarity dependence of decomposition and growth of GaN studied using in situ gravimetric monitoring, Journal of Crystal Growth, vol. 246, pp. 230-236, 2002. [133]E. V. Yakovlev, R. A. Talalaev, A. S. Segal, A. V. Lobanova, W. V. Lundin, E. E. Zavarin, et al., Hydrogen effects in III-nitride MOVPE, Journal of Crystal Growth, vol. 310, pp. 4862-4866, 2008. [134]S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, et al., Polarity and its influence on growth mechanism during MOVPE growth of GaN sub-micrometer rods, Crystal Growth and Design, vol. 11, pp. 1573-1577, 2011. [135]Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices, Nano Letters, vol. 3, pp. 343-346, Mar 2003. [136]W. Kim, A. Salvador, A. E. Botchkarev, O. Aktas, S. N. Mohammad, and H. Morcoc, Mg-doped p-type GaN grown by reactive molecular beam epitaxy, Applied Physics Letters, vol. 69, pp. 559-559, 1996. [137]M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Venne´gue`s, et al., Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire, Materials Science and Engineering: B, vol. 50, pp. 97-104, 1997. [138]J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pong, C. Y. Chen, C. N. Huang, et al., Photoluminescence spectroscopy of Mg-doped GaN, Journal of Applied Physics, vol. 84, pp. 4590-4594, 1998. [139]A. K. Viswanath, E. J. Shin, J. I. Lee, S. Yu, D. Kim, B. Kim, et al., Magnesium acceptor levels in GaN studied by photoluminescence, Journal of Applied Physics, vol. 83, pp. 2272-2275, 1998. [140]M. S. Son, S. I. Im, Y. S. Park, C. M. Park, T. W. Kang, and K. H. Yoo, Ultraviolet photodetector based on single GaN nanorod p-n junctions, Materials Science and Engineering C, vol. 26, pp. 886-888, 2006. [141]M. Tan, V. Mahalingam, and F. C. J. M. Van Veggel, White electroluminescence from a hybrid polymer-GaN:Mg nanocrystals device, Applied Physics Letters, vol. 91, pp. 093132-1, 2007. [142]J. S. Foresi and T. D. Moustakas, Metal contacts to gallium nitride, Applied Physics Letters, vol. 62, pp. 2859-2859, 1993. [143]Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, et al., Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells, Nano Letters, vol. 8, pp. 4191-4195, 2008. [144]C. H. Lee, D. R. Kim, and X. Zheng, Orientation-controlled alignment of axially modulated pn silicon nanowires, Nano Letters, vol. 10, pp. 5116-5122, 2010. [145]H. P. T. Nguyen, M. Djavid, K. Cui, and Z. Mi, Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon, Nanotechnology, vol. 23, 2012. [146]R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. D. Hart, et al., Size-dependent photoconductivity in MBE-grown GaN - Nanowires, Nano Letters, vol. 5, pp. 981-984, 2005. [147]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., The nanorod approach: GaN NanoLEDs for solid state lighting, Physica Status Solidi (C) vol. 8, pp. 2296-2301, 2011. [148]A. A. Talin, F. Leonard, B. S. Swartzentruber, X. Wang, and S. D. Hersee, Unusually strong space-charge-limited current in thin wires, Physical Review Letters, vol. 101, p. 076802, 2008. [149]J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Chon, T. Joo, et al., Photoluminescent characteristics of Ni-catalyzed GaN nanowires, Applied Physics Letters, vol. 89, p. 043124, 2006. [150]P. Hartman and P. Bennema, The attachment energy as a habit controlling factor. I. Theoretical considerations, Journal of Crystal Growth, vol. 49, pp. 145-156, 1980. [151]C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review, vol. 82, pp. 87-93, 1951. [152]H. Li, H. Chandrasekaran, M. K. Sunkara, R. Collazo, Z. Sitar, M. Stukowski, et al., Self-oriented growth of GaN films on molten gallium, in 2004 MRS Fall Meeting, November 29, 2004 - December 3, 2004, Boston, MA, United states, 2005, pp. 703-708. [153]K. H. Lee, J. Y. Lee, Y. H. Kwon, T. W. Kang, J. H. You, D. U. Lee, et al., Effects of defects on the morphologies of GaN nanorods grown on Si (111) substrates, Journal of Materials Research, vol. 24, pp. 3032-3037, 2009. [154]J. E. Northrup, J. Neugebauer, and L. T. Romano, Inversion domain and stacking mismatch boundaries in GaN, Physical Review Letters, vol. 77, pp. 103-106, 1996. [155]P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou, and Y. Bai, Surface transformation and inversion domain boundaries in gallium nitride nanorods, Applied Physics Letters, vol. 95, p. 211907, 2009. [156]Y. L. Lai, C. P. Liu, Y. H. Lin, R. M. Lin, D. Y. Lyu, Z. X. Peng, et al., Effects of the material polarity on the green emission properties of InGaN/GaN multiple quantum wells, Applied Physics Letters, vol. 89, p. 151906, 2006. [157]J. E. Northrup, Structure of the {1120} inversion domain boundary in GaN, Physica B: Condensed Matter, vol. 273-274, pp. 130-133, 1999. [158]J. E. Northrup and J. Neugebauer, Theory of GaN(1010) and (1120) surfaces, Physical Review B, vol. 53, pp. R10477-R10480, 1996. [159]J. E. Northrup, L. T. Romano, and J. Neugebauer, Surface energetics, pit formation, and chemical ordering in InGaN alloys, Applied Physics Letters, vol. 74, pp. 2319-2321, 1999. [160]S. L. Zhang, A. B. Djuriic, Y. F. Hsu, A. M. C. Ng, and M. H. Xie, Influence of different insulating polymers on the performance of ZnO nanorod based LEDs, in Proceedings of SPIE, Strasbourg, France, 2008, pp. 69881O-1. [161]D. A. Neamen, Semiconductor Physics and Devices, Third ed. New York: McGraw-Hill, 2003.
|