跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳東憲
研究生(外文):Tung-HsienWu
論文名稱:以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用
論文名稱(外文):The Growth of Gallium Nitride Nanorods by Plasma-Enhanced Chemical Vapor Deposition for Optoelectronic Device Applications
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Franklin Chau-Nan Hong
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:210
中文關鍵詞:電漿輔助化學氣相沉積法奈米線奈米柱氮化鎵p−n接面介電泳電泳發光二極體反轉區塊界面電致發光
外文關鍵詞:plasma-enhanced chemical vapor depositionnanowiresnanorodsgallium nitridep−n junctiondielectrophoresiselectrophoresislight-emitting diodesinversion domain boundarieselectroluminescence
相關次數:
  • 被引用被引用:8
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:2
由於氮化鎵具有極佳之光電特性,常用以製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。一維奈米結構具有獨特非均向(anisotropic)特性,已廣泛應用於各種光電元件之製作。本研究將結合氮化鎵與一維奈米結構之優勢,以本實驗室自行開發之爐管型電漿輔助化學氣相沉積設備,成長一維氮化鎵奈米結構。本論文可概分為兩大部分,分別為採用鎳觸媒以氣−固−固機制成長氮化鎵奈米線;另一部分為採用無觸媒之成長機制,成長氮化鎵奈米柱。
在第一部分之研究中,我們發現在過量的鎵蒸氣環境下,會導致氮化鎵奈米線之側向成長,並發展出角錐及鋸齒狀等結構。然,在適當的氫氣含量下,可藉由氫電漿與鎵原子之反應,使鎵原子自基板或氮化鎵奈米線表面脫附,令奈米線表面之鎵原子濃度下降,進而達到抑制奈米線表面之成核與成長,以維持一維結構之形貌。此外,本研究採用氮化鎂作為p型氮化鎵之摻雜前驅物,成長具軸向p−n接面之氮化鎵奈米線。為進一步探討氮化鎵奈米線之電性,本研究採用交流電場輔助法,製作氮化鎵奈米線之兩端元件。藉由兩端元件之電流−電壓特性曲線,可確認n型與p型氮化鎵奈米線分別與鋁電極及鎳電極間形成歐姆接觸,且本研究所成長之氮化鎵奈米線,的確具有軸向p−n接面。
在第二部分中,本研究成功在Si(100)及c-Sapphire基板上,長出垂直於基板表面之氮化鎵奈米柱。為探討開始進行成長氮化鎵奈米柱前之基板表面狀態,本研究在系統已升至成長溫度,在尚未啟動電漿前,將基板移至系統低溫水冷區,藉由低溫避免基板上之沉積物的熱裂解,並以AFM分析基板之表面狀態。由AFM分析可知,在開始進行成長前,基板上便已沉積三維島狀結構,推測應為金屬鎵之液滴。為探討所成長之奈米柱極性,本研究藉由KOH進行濕式蝕刻,並發現蝕刻後之氮化鎵奈米柱直徑大幅縮減,然,其底部直徑與蝕刻前並無明顯差異。此實驗結果證實本研究所成長之氮化鎵奈米柱同時具有Ga-polar之核及N-polar的殼,兩者之間應存在反轉區塊界面。本研究亦成長了具p−n接面之氮化鎵奈米柱,並製作為發光二極體。由元件之電流−電壓整流曲線可證實p−n接面之存在。此外,在30 mA之驅動電流下,也觀察到紫色的電致發光現象。本論文也提出影響氮化鎵奈米柱發光二極體之輻射複合效率及內部量子效率之潛在因子,包含Shockley-Read-Hall非輻射複合、電子溢流及通道窄化。本論文也針對以上現象,提出可行之方法,未來將具有朝向大面積且採用任意基板製作奈米柱發光二極體發展之潛力。

GaN is an excellent semiconductor material for the application of light emitting diode, laser diode, sensor and high mobility transistor due to its nature property. The anisotropic property of 1-D nano-structure has been applied in many fields such as optoelectronic devices. In this work, we combine these two advantages and present a homemade PEVCD system for the 1-D nano structural GaN growth. There are two sections in this work; the first one is mainly about the growth of GaN nanowires with nickel as catalyst by VSS growth mechanism. The second part is about growing GaN nanorods via self-assembled mechanism.
In the first part, we have found that the lateral homoepitaxial growth on GaN nanowires is suppressed by introducing hydrogen gas into the plasma-enhanced chemical vapor deposition (PECVD) apparatus for the growth of GaN nanowires. The formation of GaHx (x=2, 3) species due to the reaction between gallium atoms and hydrogen plasma is shown to decrease the amount of excess gallium atoms adsorbed on GaN nanowire surfaces, which results in the elimination of nucleation on the nanowire surface and thus improves the surface smoothness of the nanowire. The stacked-cone nanostructures appear under low hydrogen or hydrogen-less conditions, but completely disappear under high hydrogen conditions in the PECVD system. The mechanism of the elimination of lateral growth on the nanowire surface is further proposed.
Due to the n-type characteristics of intrinsic gallium nitride (GaN), p-type GaN is more difficult to synthesize than n-GaN in forming the p–n junctions for optoelectronic applications. For the growth of the p-type gallium nitride, magnesium is used as the dopant. The Mg-doped GaN nanowires (NWs) have been synthesized on (111)-oriented silicon substrates by plasma-enhanced chemical vapor deposition. The scanning electron microscope images showed that the GaN NWs were bent at high Mg doping levels, and the transmission electron microscope characterization indicated that single-crystalline GaN NWs grew along 〈0001〉 orientation. As shown by energy dispersive spectroscopy, the Mg doping levels in GaN NWs increased with increasing partial pressure of magnesium nitride, which was employed as the dopant precursor for p-GaN NW growth. Photoluminescence measurements suggested the presence of both p- and n‐type GaN NWs. Furthermore, the GaN NWswith axial p–n junctionswere aligned between either two-Ni or two-Al electrodes by applying alternating current voltages. The current–voltage characteristics have confirmed the formation of axial p–n junctions in GaN nanowires.
In the second part, vertically-aligned GaN nanorods are successfully grown on the Si(100) and c-sapphire substrate. The growth mechanism are investigated and believed to grow via drop-epitaxy. We found that some islands were formed in the very early stage of growth which is believed to be Ga droplets since the nitrogen-plasma was not even turned on at this moment and these results were supported by performing AFM analysis on the substrate surface. After the wet etching GaN nanorods by means of KOH, we obtained a nanowire with identical diameter. These results indicated that both N-polarity and Ga-polarity are existed within the nanowire structure.
The GaN nanorods with p−n junctions were made into light emitting diode devices. The rectifying I−V curves further confirm the formation of p−n junction in the GaN nanorods. The violet electroluminescence was also observed under 30 mA. We also suggested some factors that played important roles for reducing the radiative recombination efficiency of GaN nanorods-based LED, including Shockley-Read-Hall recombination, electron overflow and channel narrowing. In the end of this thesis, we propose some ways to resolve the problems we’ve met and hopefully make the potentiality of large area and flexible LEDs into reality.

中文摘要 ..I
英文摘要 .III
誌謝 .....VI
目錄 ....VIII
表目錄 …....XIV
圖目錄 .XV
第一章 緒論 ...1
1-1 前言 ...1
1-2 發光二極體之歷史演進 ...3
1-3 氮化鎵發光二極體之發展演進 ...4
1-4 奈米材料之發展與潛力 ...6
1-5 研究動機 .11
1-6 論文架構 .14
第二章 理論基礎與文獻回顧 .16
2-1氮化鎵之結構與特性 .16
2-1-1 氮化鎵之結晶構造…………………………………….............17
2-1-2 氮化鎵之基本性質…………………………………… ……...18
2-1-3 成長氮化鎵之基板………………………...………………. …21
2-1-4 p型氮化鎵之成長……………...………………………….. …23
2-1-5 纖鋅礦結構氮化鎵之內部極化場效應……………………….26
2-2 一維氮化鎵奈米結構之成長………………...……………31
2-2-1 觸媒輔助成長法……………………………………………….33
2-2-1-1 氣−液−固機制成長氮化鎵奈米柱………………………33
2-2-1-2 氣−固−固機制成長氮化鎵奈米柱………………………37
2-2-2 自組裝成長氮化鎵奈米柱…………….………………………39
2-2-3 氣相組成對氮化鎵奈米線之徑向成長效應……………….....47
2-3 電漿理論…………………………………………………...50
2-3-1 電漿定義與特性………………………………………………50
2-3-2 電介質放電…………………………………………………….55
2-4 交流電場輔助排列法……………………………………...58
第三章 實驗步驟與方法…………………………………....…..62
3-1 實驗流程………………………………………………...…62
3-2 實驗設備……………………………………………….…..63
3-2-1 爐管型電漿輔助化學氣相沉積系統………………………….63
3-2-2 石英管反應腔體……………………………………………….65
3-2-3 三區段加熱管狀式高溫爐……………………………………70
3-2-4 電漿電源供應器…………………………….…………………70
3-2-5 抽氣及真空系統…………………………….…………………70
3-2-6 壓力監控系統…………………………….……………………71
3-2-7 流量控制系統…………………………….……………………71
3-2-8 光罩對準機…………………………….………………………71
3-2-9 電子槍鍍膜系統…………………………….…………………72
3-2-10 交流電場輔助排列之電源供應器……………………...……73
3-2-11 示波器………………………………………………………74
3-3 實驗材料……………………………………………...……75
3-3-1 實驗氣體……………………………………………………….75
3-3-2 基板材料……………………………………………………….76
3-3-3 真空管件材料…………………………………………………76
3-3-4 蒸鍍與濺鍍靶材………………………………………………77
3-3-5 化學藥品……………………………………………………….77
3-4 實驗步驟……………………………………...……………78
3-4-1 以鎳觸媒進行氮化鎵奈米線之成長………………………….78
3-4-1-1 配製0.01M硝酸鎳乙醇溶液…………………………….78
3-4-1-2 基板前處理……………………………………………….78
3-4-1-3 以爐管型PECVD設備成長氮化鎵奈米線……………80
3-4-2 以鎳觸媒成長具軸向p−n接面之氮化鎵奈米線……………81
3-4-2-1 基板前處理……………………………………………….81
3-4-2-2 利用電子槍蒸鍍系統沉積鎳薄膜………………………83
3-4-2-3 以爐管型PECVD設備成長氮化鎵奈米線……………83
3-4-3 製作氮化鎵奈米線兩端元件及電性分析……………………85
3-4-3-1 基板前處理……………………………………………….85
3-4-3-2 定義電極圖案……………………………………………85
3-4-3-3 以電子槍蒸鍍系統沉積金屬電極………………………86
3-4-3-4 以交流電場輔助法排列氮化鎵奈米線…………………87
3-4-4 以氣−固機制進行氮化鎵奈米柱之成長…………………….87
3-4-4-1 基板前處理……………………………………………….87
3-4-4-2 以爐管型PECVD設備成長氮化鎵奈米柱……………88
3-4-5 以氣−固機制成長具p−n接面之氮化鎵奈米柱……………89
3-4-5-1 基板前處理……………………………………………….89
3-4-5-2 以爐管型PECVD設備成長具p−n接面之氮化鎵奈米柱…………………………………………………………90
3-4-6 具p−n接面之氮化鎵奈米柱的發光二極體元件製作
3-5 實驗分析…………………………………………...............91
3-5-1 掃描式電子顯微鏡…….………………………………………91
3-5-2 能量散佈分析儀……………………………………………….93
3-5-3 掃描式電子顯微鏡…….………………………………………94
3-5-4 X光繞射分析儀……………………………………………….97
3-5-5 光致螢光光譜儀……………………………………………….98
3-5-6 電性量測系統………………………………………………….99
第四章 結果與討論…………………....………………………100
4-1 氫電漿對氮化鎵奈米線之成長效應.…………….……..100
4-1-1 升溫過程之氣氛效應………………………………….……100
4-1-2 氫氣含量之效應……………………………………….……103
4-1-3 氫氣抑制氮化鎵奈米線側向成長之機制探討……………105
4-1-4 章節結語……………………………………………………108
4-2 成長具軸向p−n接面之氮化鎵奈米線……………….…116
4-2-1 氮化鎂溫度對氮化鎵奈米線之影響………………………116
4-2-2 氮化鎵奈米線之兩端元件製作及電性量測………………119
4-2-3 章節結語……………………………………………………...124
4-3 以自組裝機制成長氮化鎵奈米柱……….……………...134
4-3-1 溫度與工作壓力對氮化鎵奈米柱成長之影響……………...135
4-3-2 氮化鎵奈米柱之成長機制探討……………………………139
4-3-3 成長具p−n接面之氮化鎵奈米柱………………………….144
4-3-4 氮化鎵奈米柱之發光二極體元件製作……………………146
4-3-4-1 旋塗式玻璃之塗佈與蝕刻……………………………...147
4-3-4-2 氮化鎵奈米柱發光二極體之電性量測………………152
4-3-5 章節結語……………………………………………………158
第五章 結論與未來展望……...………………………….……178
5-1 結論………………………………………………………178
5-2 未來展望…………………………………………………183
參考文獻………………………………………………….……...186
自述………………………………………………………....……207
著作列表………………………………………………….…...…208












表目錄

表2-1 氮化鎵之基本物理特性 …………………………………………..17
表2-2 氮化鎵之基本電性……………..………………………………….20
表2-3 常見半導體材料之物性比較……………..……………………….20
表2-4 常見用於成長氮化鎵之基板材料的晶格常數及其熱性質……23
表2-5 常見用於成長p型氮化鎵之摻雜元素及其活化能………………24
表2-6 以VSS機制成長矽及鍺奈米線之文獻整理……………………39
表4-1-1 不同回火環境對鎳觸媒粒徑之影響…………………………...111
表4-3-3 以無觸媒製程成長具p−n接面之氮化鎵奈米柱的實驗參數………………………………………………………….…..167















圖目錄

圖1-1 美國NASA藉由衛星於外太空拍攝之夜晚的地球……………….1
圖1-2 美國能源部所發布之各種照明技術的發光效率演進圖…….……2
圖1-3 各種天然與人造物之尺度示意圖………………………………….9
圖1-4 未來的奈米光電整合型電路示意圖……….………………………10
圖1-5 NOKIA在2008年所發表的手持電子裝置概念機……………11
圖1-6 氮化鎵奈米線發光二極體之架構示意圖………………………13
圖2-1-1 常見半導體材料之晶格常數及其能隙大小……………………17
圖2-1-2 氮化鎵晶格結構及其單位晶胞(unit cell)示意圖…………………………………………………….……………18
圖2-1-3 纖鋅礦結構中的(a)極化面與非極化面,圖(b)則為半極化晶面示意圖…………………………………………………….…………27
圖2-1-4 載子於纖鋅礦氮化鎵發光二極體中,沿極化方向(c方向)與非極化方向(a方向)傳導之能帶示意圖……...…………………..…...28
圖2-1-5 晶面之氮化鎵於不同極化角之光致螢光光譜……………………………………………………………….…29
圖2-1-6 c-plane與m-plane InGaN/GaN多重量子井LED,在不同極化片之角度所量測的EL強度………………………………………30
圖2-2-1 核–殼式氮化鎵奈米柱奈米發光二極體之元件示意圖。圖(a)為整體概觀圖,圖(b)則為其橫截面示意圖…………………………..32
圖2-2-2 採用金觸媒以VLS機制成長氮化鎵奈米柱之示意圖…………34
圖2-2-3 (a)與(c)為採用不同直徑之金奈米粒子進行氮化鎵奈米柱成長的SEM影像,(b)與(d)為其相應之奈米柱直徑分布圖。(a)與(c)所採用之金觸媒直徑分別約為153 nm及236 nm………………35
圖2-2-4 以金觸媒成長氮化鎵奈米線之高解析穿透式電子顯微鏡影像,右下角為其低倍率之影像……………………………………….36
圖2-2-5 分別採用N-rich(a)及Ga-rich(b)實驗參數,於Si(111)基板上進行氮化鎵成長之SEM照片………………………………………....40
圖2-2-6 由(a)到(d)分別為在AlN/Si上成長4.5、6、10及15分鐘氮化鎵後所拍攝之HRTEM影像。(a)為球形島狀;(b)為截角經字塔型;(c)為金字塔型;(d)為奈米柱之結構……………………………42
圖2-2-7 不同成長時間之氮化鎵奈米結構的HRTEM影像。(a)與(b)分別為成長12及15分鐘後之結果。白色圓圈處為因晶格不匹配所造成之差排………………………………………………………42
圖2-2-8 氮化鎵奈米結構演進示意圖。奈米結構下方之垂直交叉符號為差排位置…………………………………………………………43
圖2-2-9 (a)VB成核機制示意圖,若島狀結構小於臨界尺寸,則會因Ga擴散至較穩定之核種而導致島狀結構消失。(b)奈米柱自穩定的核種進行成長之機制示意圖………………………………….....44
圖2-2-10 以MBE成長奈米柱之機制示意圖……………………………45
圖3-1-1 電漿中兩側電極之電壓與電流關係圖………………………….56
圖2-4-1 對pn矽奈米線施加一直流電場時,其上之電泳力與介電泳力,以及電泳力矩及介電泳力矩之作用方式示意圖……………….60
圖2-4-2 經過交流電場輔助排列之p–n矽奈米線的電流–電壓曲線……61
圖3-1-1 本論文之研究流程圖…………………………………………….62
圖3-2-1 系統A,用於藉由VSS機制成長氮化鎵奈米線之爐管型電漿輔助化學氣相沉積系統……………………………………………66
圖3-2-2 系統B,用於藉由VSS機制成長氮化鎵奈米線之爐管型電漿輔助化學氣相沉積系統……………………………………………67
圖3-2-3 系統C,用於藉由VS機制成長氮化鎵奈米線之爐管型電漿輔助化學氣相沉積系統……………………………………………68
圖3-2-4 系統D,用於藉由VS機制成長氮化鎵奈米線之爐管型電漿輔助化學氣相沉積系統……………………………………………69
圖3-4-1 採用鎳觸媒成長氮化鎵奈米線之實驗流程圖………………….79
圖3-4-2 採用鎳觸媒成長具軸向p–n接面之氮化鎵奈米線,及其兩端元件製作的實驗流程示意圖……………………………………….82
圖3-5-1 電子束與式片之交互作用……………………………………….93
圖3-5-2 特性X光之產生機制示意圖…………………………………….94
圖3-5-3 TEM之結構示意圖………………………………………..……..96
圖3-5-4 X光繞射分析儀………………………………………..………...97
圖4-1-1 以PECVD系統成長GaN奈米線之程序………………………109
圖4-1-2 不同氣氛下進行硝酸鎳之高溫退火製程所產生之鎳觸媒奈米粒子SEM俯視圖。(a)為在氮氣中進行高溫退火製程,(b)則為在氫電漿環境中進行之……………………………………………110
圖4-1-3 經過不同環境之高溫退火後所獲得之鎳奈米粒子直徑分布直方圖。(a)為於氮氣下進行硝酸鎳之退火,(b)則為於氫電漿環境下進行退火………………………………….……………………..110
圖4-1-4 將基板及Ga溫度均設定為900℃,令氮氣與氫氣之總流量為200 sccm,改變氫氣所占流率百分比所長出之GaN奈米線的45度角SEM照片。其中由(a)到(d)分別為氫氣所占流率百分比為5%、10%、15%及20%...................................................................111
圖4-1-5 將基板及Ga溫度分別設定為900℃及850℃,令氮氣與氫氣之總流量為200 sccm,改變氫氣所占流率百分比所長出之GaN奈米線的45度角SEM照片。其中由(a)到(d)分別為氫氣所占流率百分比為5%、10%、15%及20%...................................................112
圖4-1-6 將基板與Ga溫度分別設定為900℃及850℃時,令氫氣所占流率為20%所長出之氮化鎵奈米線的室溫光致螢光光譜….......113
圖4-1-7 氮化鎵奈米線之低倍率TEM影像(顯示於圖片右上角)、明場(bright-field) HRTEM影像及其相應之擇區繞射圖譜(顯示於圖片右下角)。右上角為其低倍率之TEM影像。其中,(a)為一維奈米線,SAED與HRTEM之拍攝均採用[0001] zone axis;(b)為具有錐狀側向成長結構之奈米線,SAED與HRTEM之拍攝均採用[01-10] zone axis。圖4-9 (b)右上角之低倍率TEM影像中,觸媒位置標示於紅色圓圈處…………………………………114
圖4-1-8 氫電漿抑制氮化鎵奈米線側向成長之成長模式。具有高度活性的黃綠色氫原子,與奈米線側壁上吸附的藍色Ga原子反應後形成GaHx (x= 2, 3),再從奈米線上進行脫附………………….115
圖4-1-9 傾斜45度角所拍攝之氮化鎵奈米線的SEM照片。將基板與Ga溫度設定為900 ℃及850℃,並在開始成長後的前30分鐘,控制氫氣流率所占比例為20%,再將比例調為0%,並進行30分鐘之成長………………………………………………………115
圖4-2-1 以PECVD系統成長GaN奈米線之爐管溫度設定曲線………127
圖4-2-2 採用PECVD所成長之GaN:Mg奈米線的SEM照片。其中,氮化鎂之溫度分別控制在(a)700℃、(b)725℃、(a)750℃、(b)775℃、(a)800℃及(b)825℃。圖中的比例尺均為1 μm………….……..128
圖4-2-3 藉由EDS分析氮化鎂溫度與GaN:Mg奈米線中的鎂含量關係曲線圖……………………………………………………………...129
圖4-2-4 當氮化鎂設定為700℃,所成長出的GaN:Mg奈米線之HRTEM影像,及其相應的擇區繞射圖。HRTEM影像中的比例尺為5 nm。HRTEM與SAED圖,均採用 zone axis………….…130
圖4-2-5 具有軸向p–n接面之氮化鎵奈米線的室溫連續波光致螢光光譜………………………………………………………………131
圖4-2-6 氮化鎵奈米線之兩端元件電流–電壓曲線圖。圖(a)及(b)為利用交流電場(峰對峰電壓為10V,頻率為5MHz),分別將GaN:Mg奈米線與i-GaN奈米線分別排列於兩個鎳電極與鋁電極之間,所量測到的電流–電壓曲線圖。圖(c)及(d)則是利用交流電場(峰對峰電壓為10V,頻率為5MHz),將於氮化鎂溫度設定為750 ℃下所成長之具軸向p-n接面的氮化鎵奈米線,分別排列在兩個鎳電極與兩個鋁電極之間,所量測到的電流–電壓曲線圖.......132
圖4-2-7 電子與電洞之三種複合機制。由左至右分別為輻射複合、Shockley-Read-Hall複合以及歐傑複合………………………..133
圖4-2-8 隨奈米柱直徑大小而變的空乏區(陰影處)大小、傳導帶形狀、價帶邊緣(Ev)以及複合能障(U)示意圖…………………………133
圖4-3-1-1 改變Ga與c-Sapphire基板所處之溫度與工作壓力,並進行氮化鎵之成長的45度角SEM照片。由上圖可知,當溫度為915℃時,工作壓力只要在1.0~2.5 Torr.範圍內,均會長出氮化鎵薄膜。而溫度為965℃時,則為垂直於基板之奈米柱結構……………161
圖4-3-1-2 改變Ga與Si(100)基板所處之溫度與工作壓力,並進行氮化鎵之成長的45度角SEM照片。由上圖可知,工作壓力只要在1.0~2.5 Torr.範圍內,無論溫度為915℃或965℃均會長出氮化鎵奈米柱…………………………………………………………162
圖4-3-1-3 1.0、1.5以及2.5 Torr.工作壓力下,於成長區之氮原子與鎵原子的比例示意圖…………………………………………………163
圖4-3-2-1 氮化鎵奈米柱之HRTEM及SAED分析。(a)氮化鎵奈米柱之低倍率TEM明場影像及其相應之SAED圖譜;(b)奈米柱底部左側之HRTEM影像。HRTEM及SAED之zone axis均為 …………………………………………………………...164
圖4-3-2-2 於c-Sapphire及Si(100)基板上進行金屬鎵之沉積,並以AFM分析沉積前後之表面形貌。圖(a-b)分別為沉積前的c-Sapphire及Si(100)基板表面形貌;而圖(c-d)則分別為圖(a-b)相應之沉積Ga後的AFM影像…………………………………………………165
圖4-3-2-3 以5M KOH於80℃對氮化鎵奈米柱進行濕式蝕刻。(a-b)蝕刻前之不同倍率的傾斜45度角SEM影像;(c-d) 蝕刻後之不同倍率的傾斜45度角SEM影像……………………………………….166
圖4-3-2-4 在纖鋅礦氮化鎵之 (a)及 (b)晶面之IDB示意圖..166
圖4-3-2-5 (a)具有兩種纖鋅礦區塊(CCD與OTD)之c軸成長取向的氮化鎵奈米柱橫切面示意圖;(b) 晶面上之原子排列及IDB示意圖………………………………………………………………167
圖4-3-2-6 本研究中的氮化鎵奈米柱成長機制示意圖…………………167
圖4-3-3-1 於成長一小時本質氮化鎵奈米柱後,接著於不同氮化鎂溫度下成長一小時p型氮化鎵,以成長出具p−n接面之氮化鎵奈米柱。(a-f)之氮化鎂溫度分別為715℃、740℃、765℃、790℃、815℃以及840℃………………………………………………………169
圖4-3-3-2 採用不同氮化鎂溫度所成長之p−n接面氮化鎵奈米柱的室溫光致螢光光譜……………………………………………………...168
圖4-3-4-1 氮化鎵奈米柱發光二極體之元件製作流程示意圖…………...170
圖4-3-4-2 SOG、PVA、PS及PMMA之光吸收度量測結果………………170
圖4-3-4-3 以不同材質作為p-GaN/n-ZnO奈米柱發光二極體之電致發光頻譜………………………………………………………………171
圖4-3-4-4 在不同轉速下進行SOG之旋轉塗佈後,所拍攝之的橫切面SEM影像。(a-d)分別為1000 rpm、2000 rpm、3000 rpm以及4000 rpm………………………………………………………………171
圖4-3-4-5 旋轉塗佈之轉速對SOG厚度之影響…………………………172
圖4-3-4-6 採用4.36%氫氟酸水溶液對SOG進行不同濕式蝕刻時間後,所拍攝之橫切面SEM影像。(a)蝕刻前;(b)蝕刻30秒;(c)蝕刻60秒;(d)蝕刻90秒………………………………………………172
圖4-3-4-7 採用0.94%氫氟酸水溶液對SOG進行不同濕式蝕刻時間後,所拍攝之橫切面SEM影像。(a)蝕刻前;(b-e)分別為蝕刻60、120、180、240秒……………………………………………………..173
圖4-3-4-8 採用0.94%氫氟酸水溶液對SOG進行濕式蝕刻,蝕刻時間與蝕刻厚度之關係圖………………………………………………173
圖4-3-4-9 於已成長氮化鎵奈米柱之矽基板上塗佈SOG後,所拍攝之傾斜45度角的SEM照片。(a)及(b)為不同倍率下所拍攝之SEM影像………………………………………………………………174
圖4-3-4-10 (a)與(b)為50 wt% SOG塗佈於已成長氮化鎵奈米柱之矽基板上的傾斜45度角及橫切面SEM影像。(c)及(d)則為57.1 wt% SOG塗佈後之不同倍率的傾斜45度角SEM影像…………174
圖4-3-4-11 以0.94%氫氟酸水溶液蝕刻覆蓋於氮化鎵奈米柱上之SOG前(a)後(b)之傾斜45度角的SEM照片。蝕刻時間為6分鐘…175
圖4-3-4-12 氮化鎵奈米柱兩端元件之架構照片及其示意圖…………175
圖4-3-4-13 具p−n接面之氮化鎵奈米柱的兩端元件電流−電壓特性曲線。(a)為In-n+-Si(100)-Ga之I−V曲線圖;(b) 為Pt-n+-Si(100)-Ga之I−V曲線圖(c-e)分別為Mg3N2於765℃、790℃及815℃下成長p-GaN之I−V曲線圖。圖(b-d)之二極體啟動電壓分別約為2、2.25及2.6V…………………………176
圖4-3-4-14 (a)n-GaN與p-GaN各自的能帶示意圖;(b)p-n GaN於熱平衡時之能帶示意圖……………………………………………177
圖4-3-4-15 氮化鎵奈米柱LED之電致發光照片。照片中箭頭所指之位置為紫色EL發光處…………………………………………….177

[1] http://visibleearth.nasa.gov/view.php?id=55167
[2] http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html
[3] http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl2012_en
ergysavings_factsheet.pdf
[4] H. J. Round, “A Note on Carborundum, Electrical World, vol. 49, pp. 309, 1907.
[5] E. F. Schubert, Light Emitting Diodes, Cambridge University Press, 2006.
[6] R. Juza and H. Hahn, “On the crystal structure of Cu3N, GaN and InN (translated from German), Zeitschrift fuer anorganische und allgemeine Chemie, vol. 239, pp. 282, 1938.
[7] M. R. Lorenz and B. B. Binkowski, “Preparation, stability, and luminescence of gallium nitride, Journal of Electrochemistry Society, vol. 109, pp. 24, 1962.
[8] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystalline GaN, Applied Physics Letters, vol. 15, pp. 327, 1969.
[9] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser, “Electroluminescence in GaN, Journal of Luminescence, vol.4, pp. 63, 1971.
[10] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, “GaN electroluminescent diodes, RCA Review, vol. 32, pp. 383, 1971.
[11] H. P. Maruska, W. C. Rhines and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence, Material Research Bulletin, vol. 7, pp. 777, 1972.
[12] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Japanese Journal of Applied Physics, vol. 28, pp. L2112, 1989.
[13] S. Nakamura, N. Iwasa and M. Senoh, “Method of manufacturing p-type compound semiconductor, US Patent, 5306662, 1994.
[14] http://www.asu.edu/clas/csss/NUE/index.html
[15] W. Lu, P. Xie and C. M. Lieber, “Nanowire transistor performance limits and applications, IEEE Transactions on Electron Devices, vol. 55, pp. 2859, 2008.
[16] F. Qian, S. Gradečak, Y. Li, C. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes, Nano Letters, vol. 5, pp. 2287, 2005.
[17] M. A. Zimmler, F. Capasso, S. Müller and C. Ronning, Optically pumped nanowire lasers: invited review, Semiconductor Science and Technology, vol. 25, pp. 024001, 2010.
[18] B. Tian, T. J. Kempa and C. M. Lieber, “Single nanowire photovoltaics, Chemical Society Reviews, vol. 38, pp. 16, 2009.
[19] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells, Annual Review of Materials Research, vol. 41, pp. 269, 2011.
[20] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux and C. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles, Journal of Applied Physics, vol. 99, pp. 104302, 2006.
[21] A. K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, “Nanowire-based electrochemical biosensors, Electroanalysis, vol. 18, pp. 533, 2006.
[22] P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next? Nano Letters, vol. 10, pp. 1529, 2010.
[23] http://gizmodo.com/360260/nokia-morph-cellphone-rolls-up-stretches-cleans-itself
[24] http://www.youtube.com/watch?v=IX-gTobCJHs
[25] J. Piprek, R. Farrell, S. DenBaars and S. Nakamura, “Effects on built-in polarization on InGaN-GaN vertical cavity surface-emitting Lasers, IEEE Photonics Technology Letters, vol. 18, pp. 7, 2006.
[26] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura and S. P. Denbaars, “Polarized light emission from nonpolar InGaN light-emitting diodes grown on a bulk m-plane GaN substrate, Japanese Journal of Applied Physics, 44(43), L1329, 2005.
[27]W. L. Wilson, P. F. Szajowski, and L. E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science, vol. 262, pp. 1242-1244, 1993.
[28]N. Mingo, Thermoelectric figure of merit of II-VI semiconductor nanowires, Applied Physics Letters, vol. 85, pp. 5986-5988, 2004.
[29]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, Second ed. Berlin: Springer-Verlag, 2000.
[30]S. Porowski, Growth and properties of single crystalline GaN substrates and homoepitaxial layers, Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
[31]S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, et al., Polarity and its influence on growth mechanism during MOVPE growth of GaN sub-micrometer rods, Crystal Growth and Design, vol. 11, pp. 1573-1577, 2011.
[32]M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001.
[33]D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy, Applied Physics Letters, vol. 77, pp. 1464-1466, 2000.
[34]J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
[35]S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., Nanoindentation of epitaxial GaN films, Applied Physics Letters, vol. 77, pp. 3373-3375, 2000.
[36]H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999.
[37]Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Gallium Nitride Nanowire Nanodevices, Nano Letters, vol. 2, pp. 101-104, 2002.
[38]J. Neugebauer and C. G. Van de Walle, Chemical trends for acceptor impurities in GaN, Journal of Applied Physics, vol. 85, pp. 3003-3005, 1999.
[39]J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Ca and O ion implantation doping of GaN, Applied Physics Letters, vol. 68, pp. 1945-1945, 1996.
[40]E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., Modification of GaN(0001) growth kinetics by Mg doping, Applied Physics Letters, vol. 84, pp. 2554-2556, Apr 2004.
[41]A. Salvador, W. Kim, O. Aktas, A. Botchkarev, Z. Fan, and H. Morkoc, Near ultraviolet luminescence of Be doped GaN grown by reactive molecular beam epitaxy using ammonia, Applied Physics Letters, vol. 69, pp. 2692-2692, 1996.
[42]P. Bergman, G. Ying, B. Monemar, and P. O. Holtz, Time-resolved spectroscopy of Zn- and Cd-doped GaN, Journal of Applied Physics, vol. 61, pp. 4589-4592, 1987.
[43]S. Strite and H. Morkoç, GaN, AlN, and InN: A review, Journal of Vacuum Science and Technology B, vol. 10, pp. 1237-1266, 1992.
[44]C. G. Van De Walle, C. Stampfl, and J. Neugebauer, Theory of doping and defects in III-V nitrides, Journal of Crystal Growth, vol. 189-190, pp. 505-510, 1998.
[45]E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, The effect of Mg doping on GaN nanowires, Nanotechnology, vol. 17, pp. 5735-5739, Dec 2006.
[46]G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al., Current rectification in a single GaN nanowire with a well-defined p-n junction, Applied Physics Letters, vol. 83, pp. 1578-1580, Aug 2003.
[47]Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices, Nano Letters, vol. 3, pp. 343-346, Mar 2003.
[48]J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2, Journal of Physical Chemistry, vol. 59, pp. 132-136, 1955.
[49]E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures, Journal of Vacuum Science and Technology B, vol. 17, pp. 1742-1749, 1999.
[50]A. Konar, A. Verma, T. Fang, P. Zhao, R. Jana, and D. Jena, Charge transport in non-polar and semi-polar III-V nitride heterostructures, Semiconductor Science and Technology, vol. 27, 2012.
[51]S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, et al., Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors, Nature Materials, vol. 5, pp. 810-816, 2006.
[52]M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, et al., Demonstration of nonpolar m-plane InGaN/GaN laser diodes, Japanese Journal of Applied Physics, Part 2: Letters, vol. 46, pp. L190-L191, 2007.
[53]K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN, Applied Physics Letters, vol. 71, pp. 1996-1996, 1997.
[54]H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, et al., Polarized light emission from nonpolar InGaN light-emitting diodes grown on a bulk m-plane GaN substrate, Japanese Journal of Applied Physics, Part 2: Letters, vol. 44, pp. L1329-L1332, 2005.
[55]D. Zubia and S. D. Hersee, Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials, Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999.
[56]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., The nanorod approach: GaN NanoLEDs for solid state lighting, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
[57]S. Li and A. Waag, GaN based nanorods for solid state lighting, Journal of Applied Physics, vol. 111, p. 071101, 2012.
[58]T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, et al., Quantum-confined Stark effects in the m-plane In0.15Ga 0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate, Applied Physics Letters, vol. 91, p. 181903, 2007.
[59]H. Sekiguchi, K. Kishino, and A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate, Applied Physics Letters, vol. 96, p. 231104, 2010.
[60]H. J. Fan, P. Werner, and M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small, vol. 2, pp. 700-717, 2006.
[61]G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, Catalytic hydride vapour phase epitaxy growth of GaN nanowires, Nanotechnology, vol. 16, pp. 2342-2345, 2005.
[62]J. Li, C. Lu, B. Maynor, S. Huang, and J. Liu, Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by Dip-Pen Nanolithographic Techniques, Chemistry of Materials, vol. 16, pp. 1633-1636, 2004.
[63]C. Y. Nam, J. Y. Kim, and J. E. Fischer, Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth, Applied Physics Letters, vol. 86, pp. 1-3, 2005.
[64]R. S. Wagner and W. C. Ellis, Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth, Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[65]B. Liu, Y. Bando, C. Tang, F. Xu, and D. Golberg, Quasi-aligned single-crystalline GaN nanowire arrays, Applied Physics Letters, vol. 87, p. 073106, 2005.
[66]Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen, et al., Controllable synthesis of vertically aligned p-type GaN nanorod arrays on N-type Si substrates for heterojunction diodes, Advanced Functional Materials, vol. 18, pp. 3515-3522, 2008.
[67]W.-C. Hou, L.-Y. Chen, W.-C. Tang, and F. C. N. Hong, Control of seed detachment in Au-assisted GaN nanowire growths, Crystal Growth and Design, vol. 11, pp. 990-994, 2011.
[68]W. C. Hou, L. Y. Chen, and F. C. N. Hong, Fabrication of gallium nitride nanowires by nitrogen plasma, Diamond and Related Materials, vol. 17, pp. 1780-1784, Jul-Oct 2008.
[69]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, 2009.
[70]W.-C. Hou, T.-H. Wu, W.-C. Tang, and F. C.-N. Hong, Nucleation control for the growth of vertically aligned GaN nanowires, Nanoscale Research Letters, vol. 7, pp. 1-15, 2012.
[71]E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, Watching GaN nanowires grow, Nano Letters, vol. 3, pp. 867-869, 2003.
[72]J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, and L. J. Lauhon, Alternative catalysts for VSS growth of silicon and germanium nanowires, Journal of Materials Chemistry, vol. 19, pp. 849-857, 2009.
[73]S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science, vol. 316, pp. 729-732, 2007.
[74]C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, et al., Direct comparison of catalyst-free and catalyst-induced GaN nanowires, Nano Research, vol. 3, pp. 528-536, 2010.
[75]R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Luminescence from stacking faults in gallium nitride, Applied Physics Letters, vol. 86, p. 021908, 2005.
[76]P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, Emission properties of a -plane GaN grown by metal-organic chemical-vapor deposition, Journal of Applied Physics, vol. 98, p. 093519, 2005.
[77]J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Chon, T. Joo, et al., Photoluminescent characteristics of Ni-catalyzed GaN nanowires, Applied Physics Letters, vol. 89, p. 043124, 2006.
[78]C. Cheze, L. Geelhaar, B. Jenichen, and H. Riechert, Different growth rates for catalyst-induced and self-induced GaN nanowires, Applied Physics Letters, vol. 97, p. 153105, 2010.
[79]J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
[80]M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1), Journal of Crystal Growth, vol. 183, pp. 23-30, 1998.
[81]M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks, Journal of Crystal Growth, vol. 189-190, pp. 138-141, 1998.
[82]K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, Spontaneously grown GaN and AlGaN nanowires, Journal of Crystal Growth, vol. 287, pp. 522-527, 2006.
[83]H. Sekiguchi, T. Nakazato, A. Kikuchi, and K. Kishino, Structural and optical properties of GaN nanocolumns grown on (0 0 0 1) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy, Journal of Crystal Growth, vol. 300, pp. 259-262, 2007.
[84]O. Landre, C. Bougerol, H. Renevier, and B. Daudin, Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy, Nanotechnology, vol. 20, 2009.
[85]R. Songmuang, O. Landre, and B. Daudin, From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer, Applied Physics Letters, vol. 91, p. 251902, 2007.
[86]V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius, Physical Review B - Condensed Matter and Materials Physics, vol. 81, 2010.
[87]R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111), Applied Physics Letters, vol. 90, p. 123117, 2007.
[88]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, Nucleation conditions for catalyst-free GaN nanowires, Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
[89]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy, Journal of Crystal Growth, vol. 310, pp. 3154-3158, 2008.
[90]H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, S. S. Kim, and C. Lee, Self-catalytic growth and characterization of composite (GaN, InN) nanowires, Chemical Engineering Journal, vol. 165, pp. 720-727, 2010.
[91]R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoical, E. Sutter, and H. Luth, Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy, Nano Letters, vol. 7, pp. 2248-2251, 2007.
[92]B. Alloing, S. Vezian, O. Tottereau, P. Vennegues, E. Beraudo, and J. Zuniga-Perez, On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy, Applied Physics Letters, vol. 98, p. 011914, 2011.
[93]M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, 2 Huntington Quadrangle, Suite N101, Melville, NY 11747-4502, United States, 2011.
[94]W. Bergbauer, M. Strassburg, C. H. Kolper, N. Linder, C. Roder, J. Lahnemann, et al., Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells, Nanotechnology, vol. 21, 2010.
[95]B. Daudin, J. L. Rouviere, and M. Arlery, Polarity determination of GaN films by ion channeling and convergent beam electron diffraction, Applied Physics Letters, vol. 69, pp. 2480-2480, 1996.
[96]F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers, Applied Physics Letters, vol. 69, pp. 337-337, 1996.
[97]J. D. Wei, S. F. Li, A. Atamuratov, H. H. Wehmann, and A. Waag, Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity, Applied Physics Letters, vol. 97, p. 172111, 2010.
[98]B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials, in BNS 2002, May 18, 2002 - May 23, 2002, Amazonas, Brazil, 2002, pp. 252-258.
[99]L. Macht, J. L. Weyher, P. R. Hageman, M. Zielinski, and P. K. Larsen, The direct influence of polarity on structural and electro-optical properties of heteroepitaxial GaN, Journal of Physics Condensed Matter, vol. 14, pp. 13345-13350, 2002.
[100]N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol. 310, pp. 1124-1131, 2008.
[101]H. M. Ng and A. Y. Cho, Investigation of Si doping and impurity incorporation dependence on the polarity of GaN by molecular beam epitaxy, in 20th North American Conference on Molecular Beam Epitaxy, October 1, 2001 - October 3, 2001, Providence, RI, United states, 2002, pp. 1217-1220.
[102]L. K. Li, M. J. Jurkovic, W. I. Wang, H. J. M. Van, and P. P. Chow, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy, Applied Physics Letters, vol. 76, pp. 1740-1742, 2000.
[103]C. T. Foxon, S. V. Novikov, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, et al., A complementary geometric model for the growth of GaN nanocolumns prepared by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol. 311, pp. 3423-3427, 2009.
[104]J. Wei, R. Neumann, X. Wang, S. Li, S. Fundling, S. Merzsch, et al., Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2157-2159, 2011.
[105]D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. Farley, et al., Defect reduction in GaN/(0001)sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers, Applied Physics Letters, vol. 92, p. 121902, 2008.
[106]M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, 2 Huntington Quadrangle, Suite N101, Melville, NY 11747-4502, United States, 2011, p. 053506.
[107]W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, vol. 277, pp. 1287-1289, Aug 29 1997.
[108]H. W. Li, A. H. Chin, and M. K. Sunkara, Direction-dependent homoepitaxial growth of GaN nanowires, Advanced Materials, vol. 18, pp. 216-220, Jan 19 2006.
[109]X. M. Cai, A. B. Djurisic, M. H. Xie, C. S. Chiu, and S. Gwo, Growth mechanism of stacked-cone and smooth-surface GaN nanowires, Applied Physics Letters, vol. 87, p. 183103, Oct 31 2005.
[110]H. Y. Peng, N. Wang, X. T. Zhou, Y. F. Zheng, C. S. Lee, and S. T. Lee, Control of growth orientation of GaN nanowires, Chemical Physics Letters, vol. 359, pp. 241-245, 2002.
[111]S. Y. Bae, H. W. Seo, D. S. Han, M. S. Park, W. S. Jang, C. W. Na, et al., Synthesis of gallium nitride nanowires with uniform [0 0 1] growth direction, Journal of Crystal Growth, vol. 258, pp. 296-301, 2003.
[112]X. T. Zhou, T. K. Sham, Y. Y. Shan, X. F. Duan, S. T. Lee, and R. A. Rosenberg, One-dimensional zigzag gallium nitride nanostructures, Journal of Applied Physics, vol. 97, p. 104315, May 15 2005.
[113]F. Kawamura, M. Imade, M. Yoshimura, Y. Mori, and T. Sasaki, Synthesis of GaN crystal using gallium hydride, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 44, pp. L1-L3, 2005 2005.
[114]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, p. 055606, Feb 4 2009.
[115]J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institute of Physics. Bristol and Philadelphia: Institute of Physics Publishing, 1995.
[116]O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris, Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, Nano Letters, vol. 5, pp. 705-708, 2005.
[117]C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, et al., ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across au electrodes, Nano Letters, vol. 6, pp. 263-266, 2006.
[118]S. K. Lee, T. H. Kim, S. Y. Lee, K. C. Choi, and P. Yang, High-brightness gallium nitride nanowire UV-blue light emitting diodes, Philosophical Magazine, vol. 87, pp. 2105-2115, 2007.
[119]T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, et al., Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications, Nanotechnology, vol. 17, pp. 3394-3399, 2006.
[120]H. A. Pohl and J. S. Crane, Dielectrophoretic force, Journal of Theoretical Biology, vol. 37, pp. 1-13, 1972.
[121]C. H. Lee, D. R. Kim, and X. Zheng, Orientation-controlled alignment of axially modulated pn silicon nanowires, Nano Letters, vol. 10, pp. 5116-5122, 2010.
[122]D. L. Fan, R. C. Cammarata, and C. L. Chien, Precision transport and assembling of nanowires in suspension by electric fields, Applied Physics Letters, vol. 92, p. 093115, 2008.
[123] http://zh.wikipedia.org/wiki/File:Scheme_TEM_en.svg
[124]G. T. Wang, A. A. Talin, D. J. Werder, J. R. Creighton, E. Lai, R. J. Anderson, et al., Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition, Nanotechnology, vol. 17, pp. 5773-5780, 2006.
[125]A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, High-quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate, Applied Physics Letters, vol. 67, pp. 2521-2521, 1995.
[126]W.-C. Hou, L.-Y. Chen, W.-C. Tang, and F. C. N. Hong, Control of seed detachment in Au-assisted GaN nanowire growths, Crystal Growth and Design, vol. 11, pp. 990-994, 2011.
[127]X. Weng, R. A. Burke, and J. M. Redwing, The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition, Nanotechnology, vol. 20, p. 085610, 2009.
[128]P. Ghekiere, S. Mahieu, G. De Winter, R. De Gryse, and D. Depla, Scanning electron microscopy study of the growth mechanism of biaxially aligned magnesium oxide layers grown by unbalanced magnetron sputtering, Thin Solid Films, vol. 493, pp. 129-134, 2005.
[129]K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: Effects of reactor pressure in MOVPE growth, Physica Status Solidi (A) Applied Research, vol. 176, pp. 535-543, 1999.
[130]W. C. Hou and F. C.-N. Hong, Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires, Nanotechnology, vol. 20, p. 055606, Feb 4 2009.
[131]F. Kawamura, M. Imade, M. Yoshimura, Y. Mori, and T. Sasaki, Synthesis of GaN crystal using gallium hydride, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 44, pp. L1-L3, 2005.
[132]A. Koukitu, M. Mayumi, and Y. Kumagai, Surface polarity dependence of decomposition and growth of GaN studied using in situ gravimetric monitoring, Journal of Crystal Growth, vol. 246, pp. 230-236, 2002.
[133]E. V. Yakovlev, R. A. Talalaev, A. S. Segal, A. V. Lobanova, W. V. Lundin, E. E. Zavarin, et al., Hydrogen effects in III-nitride MOVPE, Journal of Crystal Growth, vol. 310, pp. 4862-4866, 2008.
[134]S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, et al., Polarity and its influence on growth mechanism during MOVPE growth of GaN sub-micrometer rods, Crystal Growth and Design, vol. 11, pp. 1573-1577, 2011.
[135]Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices, Nano Letters, vol. 3, pp. 343-346, Mar 2003.
[136]W. Kim, A. Salvador, A. E. Botchkarev, O. Aktas, S. N. Mohammad, and H. Morcoc, Mg-doped p-type GaN grown by reactive molecular beam epitaxy, Applied Physics Letters, vol. 69, pp. 559-559, 1996.
[137]M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Venne´gue`s, et al., Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire, Materials Science and Engineering: B, vol. 50, pp. 97-104, 1997.
[138]J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pong, C. Y. Chen, C. N. Huang, et al., Photoluminescence spectroscopy of Mg-doped GaN, Journal of Applied Physics, vol. 84, pp. 4590-4594, 1998.
[139]A. K. Viswanath, E. J. Shin, J. I. Lee, S. Yu, D. Kim, B. Kim, et al., Magnesium acceptor levels in GaN studied by photoluminescence, Journal of Applied Physics, vol. 83, pp. 2272-2275, 1998.
[140]M. S. Son, S. I. Im, Y. S. Park, C. M. Park, T. W. Kang, and K. H. Yoo, Ultraviolet photodetector based on single GaN nanorod p-n junctions, Materials Science and Engineering C, vol. 26, pp. 886-888, 2006.
[141]M. Tan, V. Mahalingam, and F. C. J. M. Van Veggel, White electroluminescence from a hybrid polymer-GaN:Mg nanocrystals device, Applied Physics Letters, vol. 91, pp. 093132-1, 2007.
[142]J. S. Foresi and T. D. Moustakas, Metal contacts to gallium nitride, Applied Physics Letters, vol. 62, pp. 2859-2859, 1993.
[143]Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, et al., Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells, Nano Letters, vol. 8, pp. 4191-4195, 2008.
[144]C. H. Lee, D. R. Kim, and X. Zheng, Orientation-controlled alignment of axially modulated pn silicon nanowires, Nano Letters, vol. 10, pp. 5116-5122, 2010.
[145]H. P. T. Nguyen, M. Djavid, K. Cui, and Z. Mi, Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon, Nanotechnology, vol. 23, 2012.
[146]R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. D. Hart, et al., Size-dependent photoconductivity in MBE-grown GaN - Nanowires, Nano Letters, vol. 5, pp. 981-984, 2005.
[147]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., The nanorod approach: GaN NanoLEDs for solid state lighting, Physica Status Solidi (C) vol. 8, pp. 2296-2301, 2011.
[148]A. A. Talin, F. Leonard, B. S. Swartzentruber, X. Wang, and S. D. Hersee, Unusually strong space-charge-limited current in thin wires, Physical Review Letters, vol. 101, p. 076802, 2008.
[149]J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Chon, T. Joo, et al., Photoluminescent characteristics of Ni-catalyzed GaN nanowires, Applied Physics Letters, vol. 89, p. 043124, 2006.
[150]P. Hartman and P. Bennema, The attachment energy as a habit controlling factor. I. Theoretical considerations, Journal of Crystal Growth, vol. 49, pp. 145-156, 1980.
[151]C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review, vol. 82, pp. 87-93, 1951.
[152]H. Li, H. Chandrasekaran, M. K. Sunkara, R. Collazo, Z. Sitar, M. Stukowski, et al., Self-oriented growth of GaN films on molten gallium, in 2004 MRS Fall Meeting, November 29, 2004 - December 3, 2004, Boston, MA, United states, 2005, pp. 703-708.
[153]K. H. Lee, J. Y. Lee, Y. H. Kwon, T. W. Kang, J. H. You, D. U. Lee, et al., Effects of defects on the morphologies of GaN nanorods grown on Si (111) substrates, Journal of Materials Research, vol. 24, pp. 3032-3037, 2009.
[154]J. E. Northrup, J. Neugebauer, and L. T. Romano, Inversion domain and stacking mismatch boundaries in GaN, Physical Review Letters, vol. 77, pp. 103-106, 1996.
[155]P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou, and Y. Bai, Surface transformation and inversion domain boundaries in gallium nitride nanorods, Applied Physics Letters, vol. 95, p. 211907, 2009.
[156]Y. L. Lai, C. P. Liu, Y. H. Lin, R. M. Lin, D. Y. Lyu, Z. X. Peng, et al., Effects of the material polarity on the green emission properties of InGaN/GaN multiple quantum wells, Applied Physics Letters, vol. 89, p. 151906, 2006.
[157]J. E. Northrup, Structure of the {1120} inversion domain boundary in GaN, Physica B: Condensed Matter, vol. 273-274, pp. 130-133, 1999.
[158]J. E. Northrup and J. Neugebauer, Theory of GaN(1010) and (1120) surfaces, Physical Review B, vol. 53, pp. R10477-R10480, 1996.
[159]J. E. Northrup, L. T. Romano, and J. Neugebauer, Surface energetics, pit formation, and chemical ordering in InGaN alloys, Applied Physics Letters, vol. 74, pp. 2319-2321, 1999.
[160]S. L. Zhang, A. B. Djuriic, Y. F. Hsu, A. M. C. Ng, and M. H. Xie, Influence of different insulating polymers on the performance of ZnO nanorod based LEDs, in Proceedings of SPIE, Strasbourg, France, 2008, pp. 69881O-1.
[161]D. A. Neamen, Semiconductor Physics and Devices, Third ed. New York: McGraw-Hill, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊