(3.238.173.209) 您好!臺灣時間:2021/05/08 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳慶倫
研究生(外文):Ching-LunChen
論文名稱:利用聚丙烯腈-醋酸乙烯共聚物製備新穎膠/固態電解質應用於染料敏化太陽能電池之研究
論文名稱(外文):Preparations of dye-sensitized solar cells using novel gel- and solid- electrolytes based on poly(acrylonitrile-co-vinyl acetate) copolymer
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:173
中文關鍵詞:染料敏化太陽能電池聚丙烯腈膠態電解質
外文關鍵詞:Dye-senitized solar cellspolyacrylonitrilegel-state electrolyte
相關次數:
  • 被引用被引用:2
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
利用聚炳烯腈-醋酸乙烯作為一新穎膠化劑,膠化以3-甲氧基炳腈為基礎的液態電解質而製備高效能膠態電解質且應用於染料敏化太陽能電池(DSSCs)。該分子中的醋酸乙烯鏈段扮演著能讓共聚物溶解於電解質的角色;而丙烯腈鏈段則幫助交聯形成膠態結構。而此膠態電解質的導電度也因丙烯腈使碘化鋰及離子液體解離更完整,而使得與液態相近。此作用也造成TiO2的導帶稍微往正電位偏移。整體膠態DSSCs效率可達8.34%,幾乎有97%接近於液態電池的效率(8.6%)
然而,在組裝膠態DSSCs會遭遇的一個問題,即是電解質本身的高黏度造成相當難滲入具有中孔性的二氧化鈦電極;此問題在具有大工作面積的模組化電池更是顯而易見。因此利用聚炳烯腈-醋酸乙烯來膠化以乙腈為基礎的液態電解質且應用於膠態DSSCs。由於聚炳烯腈-醋酸乙烯與乙腈之間的高度作用力,電解質的膠化程序可在室溫下緩慢進行,且由膠化劑的含量及奈米粒子的加入可控制膠化時間由數小時甚至長達數十天。此性質可讓電解質在室溫下以液體狀態注入DSSCs,而灌入的電解質能完整地滲入二氧化鈦薄膜與該電極表面有良好接觸後,直接於孔洞內部進行膠化程序。根據乙腈為基礎的液態電解質所製備出的膠態DSSCs效能表現優於3-甲氧基炳腈為液態基礎的膠態DSSCs。以In-situ膠態電解質所製備的膠態DSSCs可達轉換較率9.03%,相當接近液態電池的效率(9.04%)。更進一步以二氧化鈦作為奈米添加物進膠態電解質可達效率9.46%,且穩定度達50℃、1000小時長效性。
改變聚炳烯腈-醋酸乙烯濃度在膠化時間上、膠態轉液態的相轉溫度以及膠態電解質與電池效能表現探討如下。其結果當增加聚炳烯腈-醋酸乙烯含量增加時,雖相轉溫度獲得提升但導電度下降。然而,膠態電池的效率並不隨著導電度改變而有明顯改變,反而與電解質是否能容易地滲入二氧化鈦電極。在含量小於15wt%的聚炳烯腈-醋酸乙烯作為膠化劑時,電解質仍可以In-situ的程序在室溫下灌注電解質至電池內部;但在高含量的聚炳烯腈-醋酸乙烯下,可提升灌注的操作溫度促使高黏度的電解質滲入電極孔洞,如此方式進行的膠態電池轉換效率在配合CYC-B11疏水染料可達10%以上。長效表現上在60℃、1000小時維持初始效率93%以上。
而當高含量的聚炳烯腈-醋酸乙烯仍然展現出高效的導電度以及DSSCs效能,因此進而組裝固態電解質應用於DSSCs。在揮發液態溶劑而形成固態電解質後,利用TGA可發現溶劑含量在裂解溫度到達前僅含3%;而調整固態電解質中碘濃度及添加二氧化鈦奈米粒子後的固態電解質,應用於最佳的光電極厚度下,輸水染料CYC-B11之固態DSSCs可達8.02%。

A high efficient gel-state electrolyte was fabricated by using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as an novel gelator of a MPN-based liquid electrolyte and applied for dye-sensitized solar cells (DSSCs). The VA segaments play a role to dissolve the copolymer into the electrolyte, and the AN segaments form a gel-state structure. The electric conductivity of the gel-state electrolyte is close to that of the liquid electrolyte, attributed to the enhancement effect of AN segments to the dissociation of LiI and DMPII. This effect also leads to a slightly downward shift of TiO2 CB edge toward positive potentials. The energy conversion efficiency of the DSSC achieved by using this gel-electrolyte is 8.34%, which is 97 % the value of the liquid-state cell (8.6%).
However, one problem encountered in fabricating gel-state DSSCs is the high viscosity of gel-electrolytes which makes difficulty for the well penetration of gel-electrolytes into mesoporous TiO2 matrixes. This problem is especially serious on module cells which have large working area. By using PAN-VA as a gelator of an acetonitrile (ACN)-based liquid electrolyte and applied for preparation gel-state DSSCs. Due to the high interaction of PAN-VA to ACN, the gelation of the electrolyte performs slowly at room temperature, and several to hundreds hours are required to approach the gel-state, depend on the amounts of gelator and filler contained in the electrolyte. This property allows the injection of the electrolyte into DSSCs at the liquid state under room temperature. The injected liquid electrolyte then undergoes in-situ gelation inside the mesoporous matrix of a TiO2 film, making good contact to the electrode surface. Based on the advantage of this ACN-based electrolyte, the performance of the corresponding gel-state DSSC is higher than that obtained by the 3-methoxypropionitrile (MPN)-based electrolytes. For the ACN system, the energy conversion efficiency of a gel-state DSSC using PAN-VA can achieved a value (9.03%) nearly identical to that of a liquid-state cell (9.04%). Furthermore, by further introduction of TiO2 nanoparticles as fillers of the gel-electrolyte, an efficiency (9.46 %) higher than that of the liquid version can be achieved. It was also shown that the stability of a DSSC using ACN-based electrolyte can maintain efficiency 1000 hours at 50℃。
The effects of PAN-VA concentration on the gelation rate, gel-to-liquid transition temperature, and performance of gel-state DSSCs are studied. The results show that increasing the content of PAN-VA increases the phase transition temperature, but decreases the conductivity of the gel-state electrolytes. However, the energy conversion efficiencies of the gel-state cells do not significantly decrease due to the decrease of conductivity, but are strongly affected by the penetration of the electrolyte into the TiO2 film. For PAN-VA concentrations ≤ 15 wt%, the electrolyte can be easily injected at room temperature due to in-situ gelation. For higher PAN-VA concentrations, good penetration of the highly viscous electrolytes can be achieved by elevating the operation temperature. By using the proposed methods, energy conversion efficiencies of above 10% for gel-state DSSCs. The cell can maintain the initial efficiency above 93% at 60℃, 1000 hours.
Since the PGE with high PAN-VA content demonstrated good performance in terms of electric conductivity and energy conversion efficiency of DSSCs, it was used to fabricate solid-state electrolytes for DSSCs. TGA results show that the weight loss of the sample is only 3% before thermal degradation. By adjusting I2 concentration and introducing TiO2 as nanofiller for optimal potoanode thickenss to prepare solid-state DSSCs, conversion efficiency of 8.02% are achieved.

中文摘要 I
英文摘要 III
致謝 V
總目錄 VII
圖目錄 X
表目錄 XVII
第一章 緒論 1
1-1.前言 1
1-2.目的與動機 2
第二章 原理與文獻回顧 4
2-1.太陽能電池 4
2-1-1.晶矽型 5
2-1-2.薄膜型 5
2-1-3.有機型 7
2-2.染料敏化太陽能電池介紹 8
2-2-1.工作原理 8
2-2-2.導電基板 12
2-2-3.氧化物半導體 13
2-2-4.敏化劑 14
2-2-5.電解質 18
2-2-6.對電極 20
2-3.文獻回顧 22
2-3-1.染料敏化太陽能電池 22
2-3-2.膠/固態敏化太陽能電池 25
2-3-2-1.膠態電解質 25
2-3-2-2.固態電解質 27
2-3-2-3.離子液體電解質 28
2-3-2-4.電洞傳輸材料 28
2-3-2-5.In-situ 膠態電解質 29
第三章 實驗儀器及分析原理 35
3-1.實驗藥品與材料 35
3-2.儀器原理與分析 36
3-2-1.X光繞射分析 36
3-2-2.SEM分析 37
3-2-3.流變儀黏度分析 38
3-2-4.太陽光模擬器 38
3-2-5.入射光子轉換效率量測系統(IPCE) 42
3-2-6.電化學交流阻抗分析 44
3-2-7.Intensity modulated photocurrent/ Photovoltage Spectroscopy 45
3-2-8.一般儀器 46
3-3.實驗方法、過程及實驗原理 48
3-3-1.二氧化鈦薄膜之製備 48
3-3-2.光電極敏化程序 50
3-3-3.液態/膠態/固態電解質之製備程序 50
3-3-4.電解質之導電度及擴散係數量測 51
3-3-5.DSSC之阻抗分析 54
3-3-6.DSSC元件之組裝 57
第四章 研究結果與討論 60
4-1.溶劑的選擇及共聚高分子聚炳烯腈-醋酸乙烯的應用 60
4-2.瞬間膠化型膠態電解質 66
4-2-1.膠化劑含量對離子導電度及擴散係數影響 70
4-2-2.膠化劑對DSSC光電轉換之影響及電極界面電性分析 79
4-2-3.混摻奈米粒子效應 95
4-2-4.長效穩定度測試-瞬間膠化型 102
4-3.In-situ膠化型膠態電解質 103
4-3-1.膠化時間及相轉化溫度 105
4-3-2.膠化劑含量對離子導電度及擴散係數影響 111
4-3-3.電解質滲透電極程度分析 112
4-3-4.膠態DSSC光電轉換效率及電性分析(MPN-system vs ACN system) 117
4-3-5.CYC-B11染料分子之應用 125
4-3-6.長效穩定度測試-In situ 膠化型 130
4-4.離子液體與高分子間作用力分析 134
4-4-1.膠化時間 134
4-4-2.離子導電度及擴散能力 136
4-5.固態電解質 142
4-5-1.條件最適化 142
4-5-1-1.固化劑含量 144
4-5-1-2.DMPII濃度 146
4-5-1-3.I2濃度 147
4-5-1-4.電極厚度 148
4-5-2.電解質滲入電極深部與孔隙分析 149
4-5-3.染料分子(N719 vs. CYC-B11)的固態DSSC應用 153
第五章 結論 156
未來工作 158
參考文獻 159

[1] S.R. Scully, M.T. Lloyd, R. Herrera, E.P. Giannelis and G.G. Malliaras, Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte, Synthetic Metals, 2004, 144, 291-296.
[2] Y.J. Kim, J.H. Kim, M.S. Kang, M.J. Lee, J. Won, J.C. Lee and Y.S. Kang, Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells, Advanced Materials, 2004, 16, 1753-1757.
[3] O.A. Ileperuma, M.A.K.L. Dissanayake, S. Somasunderam and L.R.A.K. Bandara, Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes, Solar Energy Materials and Solar Cells, 2004, 84, 117-124.
[4] H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao and J. Lin, The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells, Materials Chemistry and Physics, 2008, 110, 38-42.
[5] J. Kang, W. Li, X. Wang, Y. Lin, X. Li, X. Xiao and S. Fang, Gel polymer electrolytes based on a novel quaternary ammonium salt for dye-sensitized solar cells, Journal of Applied Electrochemistry, 2004, 34, 301-304.
[6] G. Wang, X. Zhou, M. Li, J. Zhang, J. Kang, Y. Lin, S. Fang and X. Xiao, Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells, Materials Research Bulletin, 2004, 39, 2113-2118.
[7] Z. Lan, J. Wu, J. Lin, M. Huang, P. Li and Q. Li, Influence of ionic additives NaI/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells, Electrochimica Acta, 2008, 53, 2296-2301.
[8] P.J. Li, J.H. Wu, M.L. Huang, S.C. Hao, Z. Lan, Q. Li and S. Kang, The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature, Electrochimica Acta, 2007, 53, 903-908.
[9] J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Huang, S. Yin and T. Sato, Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell, Electrochimica Acta, 2006, 51, 4243-4249.
[10] J. Zhao, A. Wang, M.A. Green and F. Ferrazza, 19.8% efficient ``honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, 1998, 73, 1991-1993.
[11] J. Zhao, A. Wang and M.A. Green, 24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates, Progress in Photovoltaics: Research and Applications, 1999, 7, 471-474.
[12] M.A. Green, K. Emery, Y. Hishikawa and W. Warta, Solar cell efficiency tables (version 37), Progress in Photovoltaics: Research and Applications, 2011, 19, 84-92.
[13] E.H. Brian, J.S. Henry and D.M. Michael, The renaissance of dye-sensitized solar cells, Nature Photonics, 2012, 6, 162-169.
[14] R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif and N.H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Applied Physics Letters, 2007, 90, 183516-183513.
[15] K.V. Oomman, P. Maggie and A.G. Craig, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nature Nanotechnology 2009, 4, 592-597.
[16] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.
[17] B. Wang and L.L. Kerr, Dye sensitized solar cells on paper substrates, Solar Energy Materials and Solar Cells, 2011, 95, 2531-2535.
[18] X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs), Chemical Communications, 2011, 47, 2664-2666.
[19] T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes, Chemical Communications, 2007, 4767-4769.
[20] T. Miyasaka, Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO2 Films, The Journal of Physical Chemistry Letters, 2011, 2, 262-269.
[21] C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh and J.-M. Wu, Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates, Journal of Materials Chemistry, 2011, 21, 5114-5119.
[22] S. Ito, N.-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chemical Communications, 2006, 4004-4006.
[23] H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simon and Y.B. Cheng, Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 30-36.
[24] O.R. Brian and l.G. Michae, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-740.
[25] L. Matt, E.G. Lori, C.J. Justin, S. Richard and Y. Peidong, Nanowire dye-sensitized solar cells, Nature Materials, 2005, 4, 455-459.
[26] M.A. Hossain, J.R. Jennings, Z.Y. Koh and Q. Wang, Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities, ACS Nano, 2011, 5, 3172-3181.
[27] P. Guo and M.A. Aegerter, RU(II) sensitized Nb2O5 solar cell made by the sol-gel process, Thin Solid Films, 1999, 351, 290-294.
[28] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa and C.A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, Nano Letters, 2008, 8, 3781-3786.
[29] J. Jiu, S. Isoda, F. Wang and M. Adachi, Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film, The Journal of Physical Chemistry B, 2006, 110, 2087-2092.
[30] J. Ferber and J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 1998, 54, 265-275.
[31] S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Progress in Photovoltaics: Research and Applications, 2007, 15, 603-612.
[32] Y. Li, J. Hagen, W. Schaffrath, P. Otschik and D. Haarer, Titanium dioxide films for photovoltaic cells derived from a sol–gel process, Solar Energy Materials and Solar Cells, 1999, 56, 167-174.
[33] C. Pérez León, L. Kador, B. Peng and M. Thelakkat, Characterization of the Adsorption of Ru-bpy Dyes on Mesoporous TiO2 Films with UV−Vis, Raman, and FTIR Spectroscopies, The Journal of Physical Chemistry B, 2006, 110, 8723-8730.
[34] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 1993, 115, 6382-6390.
[35] M. K. Nazeeruddin, P. Pechy and M. Gratzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex, Chemical Communications, 1997, 1705-1706.
[36] P. Péchy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi and M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, Journal of the American Chemical Society, 2001, 123, 1613-1624.
[37] M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society, 2005, 127, 16835-16847.
[38] D.M. D'Alessandro, L.S. Kelso and F.R. Keene, Stereochemical Influences on Intervalence Charge Transfer in Homodinuclear Complexes of Ruthenium, Inorganic Chemistry, 2001, 40, 6841-6844.
[39] T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, E.W.-G. Diau and M. Grätzel, Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins, Angewandte Chemie International Edition, 2010, 49, 6646-6649.
[40] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 2011, 334, 629-634.
[41] S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness, Advanced Materials, 2006, 18, 1202-1205.
[42] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy and M. Gratzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye, Chemical Communications, 2008, 5194-5196.
[43] H. Zhou, L. Wu, Y. Gao and T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers, Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 188-194.
[44] M.S. Roy, P. Balraju, M. Kumar and G.D. Sharma, Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2, Solar Energy Materials and Solar Cells, 2008, 92, 909-913.
[45] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-Sensitized Solar Cells, Chemical Reviews, 2010, 110, 6595-6663.
[46] F.d.r. Sauvage, S. Chhor, A. Marchioro, J.-E. Moser and M. Graetzel, Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells, Journal of the American Chemical Society, 2011, 133, 13103-13109.
[47] C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae and K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochimica Acta, 2008, 53, 2890-2896.
[48] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu and E. Wei-Guang Diau, Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells, Journal of Materials Chemistry, 2012, 22, 6267-6273.
[49] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu and C.-F. Chi, A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells, Electrochemistry Communications, 2010, 12, 1662-1665.
[50] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 2004, 570, 257-263.
[51] N. Papageorgiou, W.F. Maier and M. Grätzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, Journal of The Electrochemical Society, 1997, 144, 876-884.
[52] A. Kay and M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Materials and Solar Cells, 1996, 44, 99-117.
[53] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy and M. Grätzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, Journal of The Electrochemical Society, 2006, 153, A2255-A2261.
[54] W.J. Lee, E. Ramasamy, D.Y. Lee and J.S. Song, Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes, ACS Applied Materials & Interfaces, 2009, 1, 1145-1149.
[55] L. Kavan, J.H. Yum and M. Grätzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, ACS Nano, 2010, 5, 165-172.
[56] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt and I.A. Aksay, Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano, 2010, 4, 6203-6211.
[57] J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, Journal of Power Sources, 2008, 181, 172-176.
[58] Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin and L. Fan, Application of microporous polyaniline counter electrode for dye-sensitized solar cells, Electrochemistry Communications, 2008, 10, 1299-1302.
[59] S. Ahmad, J.H. Yum, H.J. Butt, M.K. Nazeeruddin and M. Gratzel, Efficient platinum-free counter electrodes for dye-sensitized solar cell applications, Chemphyschem, 2010, 11, 2814-2819.
[60] Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 153-157.
[61] T.C. Wei, C.C. Wan and Y.Y. Wang, Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells, Applied Physics Letters, 2006, 88, 103122.
[62] W. Hong, Y. Xu, G. Lu, C. Li and G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications, 2008, 10, 1555-1558.
[63] F. Benhu, M. Xiaoguang, S. Kuan and O. Jianyong, Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells, Applied Physics Letters, 2008, 93, 143103.
[64] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin and K.-C. Ho, A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode, Journal of Materials Chemistry, 2010, 20, 4067-4073.
[65] H. TSUBOMURA, M. MATSUMURA, Y. NOMURA and T. AMAMIYA, Dye sensitised zinc oxide : aqueous electolyte : platinum photocell, Nature, 1976, 261, 402-403.
[66] C. Yasuo, I. Ashraful, W. Yuki, K. Ryoichi, K. Naoki and H. Liyuan, Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%, Japanese Journal of Applied Physics, 2006, 45.
[67] M.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer and M. Grätzel, Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania, Inorganic Chemistry, 1999, 38, 6298-6305.
[68] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin and M. Grätzel, Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano, 2009, 3, 3103-3109.
[69] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine, The Journal of Physical Chemistry C, 2009, 113, 6290-6297.
[70] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, 2010, 4, 6032-6038.
[71] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer, Chemical Communications, 2009, 2198-2200.
[72] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials, 2010, 22, 1915-1925.
[73] H.J. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, Advanced Functional Materials, 2010, 20, 13-19.
[74] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells:  Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine, The Journal of Physical Chemistry B, 2001, 105, 12809-12815.
[75] N. Mohmeyer, P. Wang, H.-W. Schmidt, S.M. Zakeeruddin and M. Gratzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators, Journal of Materials Chemistry, 2004, 14, 1905-1909.
[76] N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S.M. Zakeeruddin and M. Gratzel, An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry, 2006, 16, 2978-2983.
[77] P. Wang, S.M. Zakeeruddin, I. Exnar and M. Gratzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chemical Communications, 2002, 2972-2973.
[78] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials, 2003, 2.
[79] P. Petrov, I. Berlinova, C.B. Tsvetanov, S. Rosselli, A. Schmid, A.B. Zilaei, T. Miteva, M. Dürr, A. Yasuda and G. Nelles, High-Molecular-Weight Polyoxirane Copolymers and their Use in High-Performance Dye-Sensitized Solar Cells, Macromolecular Materials and Engineering, 2008, 293, 598-604.
[80] Y.-H. Lai, C.-Y. Lin, J.-G. Chen, C.-C. Wang, K.-C. Huang, K.-Y. Liu, K.-F. Lin, J.-J. Lin and K.-C. Ho, Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes, Solar Energy Materials and Solar Cells, 2010, 94, 668-674.
[81] R. Komiya, L. Han, R. Yamanaka, A. Islam and T. Mitate, Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 123-127.
[82] Q. Yu, C. Yu, F. Guo, J. Wang, S. Jiao, S. Gao, H. Li and L. Zhao, A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator, Energy & Environmental Science, 2012, 5, 6151-6155.
[83] P.K. Singh, R.K. Nagarale, S.P. Pandey, H.W. Rhee and B. Bhattacharya, Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 023002.
[84] H.W. Han, W. Liu, J. Zhang and X.Z. Zhao, A Hybrid Poly(ethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells, Advanced Functional Materials, 2005, 15, 1940-1944.
[85] Y. Zhou, W. Xiang, S. Chen, S. Fang, X. Zhou, J. Zhang and Y. Lin, Improvements of photocurrent by using modified SiO2 in the poly(ether urethane)/poly(ethylene oxide) polymer electrolyte for all-solid-state dye-sensitized solar cells, Chemical Communications, 2009, 3895-3897.
[86] Z. Sun, R.-K. Zhang, H.-H. Xie, M. Liang, R.-H. Du and S. Xue, Influence of 4-N,N-dimethylaminopyridine on the photovoltaic performance of dye-sensitized solar cells with poly(ethyleneoxide)/oligo(ethylene glycol) blend electrolytes, Electrochimica Acta, 2011, 56, 7555-7562.
[87] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin and T. Sato, An All-Solid-State Dye-Sensitized Solar Cell-Based Poly(N-alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%, Journal of the American Chemical Society, 2008, 130, 11568-11569.
[88] G. Wang, L. Wang, S. Zhuo, S. Fang and Y. Lin, An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells, Chemical Communications, 2011, 47, 2700-2702.
[89] Y. Fang, W. Xiang, X. Zhou, Y. Lin and S. Fang, High-performance novel acidic ionic liquid polymer/ionic liquid composite polymer electrolyte for dye-sensitized solar cells, Electrochemistry Communications, 2011, 13, 60-63.
[90] K.-M. Lee, P.-Y. Chen, C.-P. Lee and K.-C. Ho, Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells, Journal of Power Sources, 2009, 190, 573-577.
[91] W. Yoon and X. Huang, A nonlinear viscoelastic–viscoplastic constitutive model for ionomer membranes in polymer electrolyte membrane fuel cells, Journal of Power Sources, 2011, 196, 3933-3941.
[92] B. Yu, C. Yiming, Z. Jing, W. Mingkui, L. Renzhi, W. Peng, M.Z. Shaik and G. Michael, High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nature Materials, 2008, 7, 620-630.
[93] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitze and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395, 583-585.
[94] W.-C. Chen, C.-Y. Chen, C.-G. Wu, K.-C. Ho and L. Wang, Effect of structural compatibility of dye and hole transport material on performance of solid-state dye-sensitized solar cells, Journal of Power Sources, 2012, 214, 113-118.
[95] D. Gebeyehu, C.J. Brabec, N.S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger and H. Schindler, Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials, Synthetic Metals, 2001, 125, 279-287.
[96] K.R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke and D. Haarer, Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells, Synthetic Metals, 2001, 121, 1573-1574.
[97] H.J. Snaith, A.J. Moule, C. Klein, K. Meerholz, R.H. Friend and M. Grätzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Letters, 2007, 7, 3372-3376.
[98] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu and S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Advanced Materials, 2010, 22, E150-E155.
[99] N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin and M. Grätzel, An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Letters, 2011, 11, 1452-1456.
[100] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin and M. Grätzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells, Journal of the American Chemical Society, 2011, 133, 18042-18045.
[101] Q.B. Meng, K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori and M. Uragami, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell, Langmuir, 2003, 19, 3572-3574.
[102] B. O'Regan, F. Lenzmann, R. Muis and J. Wienke, A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN:  Analysis of Pore Filling and IV Characteristics, Chemistry of Materials, 2002, 14, 5023-5029.
[103] G.R.A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V.V. Jayaweera and K. Tennakone, Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 183-185.
[104] H. Sakamoto, S. Igarashi, M. Uchida, K. Niume and M. Nagai, Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics, Organic Electronics, 2012, 13, 514-518.
[105] Y. Wang, Recent research progress on polymer electrolytes for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 2009, 93, 1167-1175.
[106] K. Seoung Hoon, J. James, L. Jiwon and K. Kang-Jin, Enhancement in Performance of Dye-Sensitized Solar Cells Modified with In Situ Photopolymerized PDEA in TiO2 Films, Journal of The Electrochemical Society, 2005, 152.
[107] T. Kato, A. Okazaki and S. Hayase, Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells, Chemical Communications, 2005, 363-365.
[108] L. Wang, S. Fang, Y. Lin, X. Zhou and M. Li, A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors, Chemical Communications, 2005, 5687-5689.
[109] K.-M. Lee, C.-Y. Hsu, W.-H. Chiu, M.-C. Tsui, Y.-L. Tung, S.-Y. Tsai and K.-C. Ho, Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction, Solar Energy Materials and Solar Cells, 2009, 93, 2003-2007.
[110] M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou and Y. Lin, The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi–solid dye-sensitized solar cells, Electrochimica Acta, 2007, 52, 4858-4863.
[111] K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe and S. Yanagida, A new alkyl-imidazole polymer prepared as an inonic polymer electrolyte by in situ polymerization of dye sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 81-85.
[112] S.-J. Lim, Y.-S. Kang and D.-W. Kim, Photovoltaic performance of dye-sensitized solar cells assembled by in-situ chemical cross-linking, Electrochemistry Communications, 2010, 12, 1037-1040.
[113] J.-G. Chen, C.-Y. Chen, C.-G. Wu and K.-C. Ho, In Situ Low Temperature Polymerization of Bismaleimide for Gel-Type Electrolyte for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 2010, 114, 13832-13837.
[114] O. Winther-Jensen, V. Armel, M. Forsyth and D.R. MacFarlane, In situ Photopolymerization of a Gel Ionic Liquid Electrolyte in the Presence of Iodine and Its Use in Dye Sensitized Solar Cells, Macromolecular Rapid Communications, 2010, 31, 479-483.
[115] G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells, Solar Energy Materials and Solar Cells, 2008, 92, 371-373.
[116] P.-T. Hsiao, Y.-L. Tung and H. Teng, Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 2010, 114, 6762-6769.
[117] G. Schlichthörl, S.Y. Huang, J. Sprague and A.J. Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy, The Journal of Physical Chemistry B, 1997, 101, 8141-8155.
[118] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw and I. Uhlendorf, Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy, The Journal of Physical Chemistry B, 1997, 101, 10281-10289.
[119] L.M. Peter and K.G.U. Wijayantha, Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells, Electrochimica Acta, 2000, 45, 4543-4551.
[120] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin and M. Grätzel, Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids, The Journal of Physical Chemistry C, 2007, 111, 6550-6560.
[121] Q. Wang, Z. Zhang, S.M. Zakeeruddin and M. Gratzel, Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination, The Journal of Physical Chemistry C, 2008, 112, 7084-7092.
[122] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta, 2001, 46, 3457-3466.
[123] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy, Solar Energy Materials and Solar Cells, 2005, 87, 117-131.
[124] Q. Wang, J.-E. Moser and M. Grätzel, Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, 2005, 109, 14945-14953.
[125] S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin and M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, 2008, 516, 4613-4619.
[126] V. Suryanarayanan, K.-M. Lee, J.-G. Chen and K.-C. Ho, High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents, Journal of Electroanalytical Chemistry, 2009, 633, 146-152.
[127] K.-M. Lee, V. Suryanarayanan and K.-C. Ho, Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells, Journal of Power Sources, 2009, 188, 635-641.
[128] C.S. Kim and S.M. Oh, Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes, Electrochimica Acta, 2000, 45, 2101-2109.
[129] Y.-L. Lee, Y.-J. Shen and Y.-M. Yang, A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications, Nanotechnology, 2008, 19, 455201.
[130] R. Kawano and M. Watanabe, Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid, Chemical Communications, 2003, 330-331.
[131] J. Nei de Freitas, A.F. Nogueira and M.-A. De Paoli, New insights into dye-sensitized solar cells with polymer electrolytes, Journal of Materials Chemistry, 2009, 19, 5279-5294.
[132] H. Kataoka, Y. Saito, Y. Uetani, S. Murata and K. Kii, Interactive Effect of the Polymer on Carrier Migration Nature in the Chemically Cross-Linked Polymer Gel Electrolyte Composed of Poly(ethylene glycol) Dimethacrylate, The Journal of Physical Chemistry B, 2002, 106, 12084-12087.
[133] G.Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik and K.M. Abraham, 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries, Electrochimica Acta, 2000, 45, 3127-3139.
[134] J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin and T. Sato, A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells, Advanced Functional Materials, 2007, 17, 2645-2652.
[135] S. Chengwu, D. Songyuan, W. Kongjia, P. Xu, G. Li, Z. Longyue, H. Linhua and K. Fantai, Influence of 1-methyl-3-propylimidazolium iodide on I3−/I− redox behavior and photovoltaic performance of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 2005, 86, 527-535.
[136] N. Koide, A. Islam, Y. Chiba and L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 296-305.
[137] L. Han, N. Koide, Y. Chiba, A. Islam and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance, Comptes Rendus Chimie, 2006, 9, 645-651.
[138] L. Han, N. Koide, Y. Chiba and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells, Applied Physics Letters, 2004, 84, 2433-2435.
[139] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochimica Acta, 2002, 47, 4213-4225.
[140] Z. Zhang, S.M. Zakeeruddin, B.C. O'Regan, R. Humphry-Baker and M. Grätzel, Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, 2005, 109, 21818-21824.
[141] J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, The Journal of Physical Chemistry B, 2001, 106, 325-333.
[142] I.n. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda and J. Bisquert, Recombination in Quantum Dot Sensitized Solar Cells, Acc. Chem. Res., 2009, 42, 1848-1857.
[143] P. Chen, J.H. Yum, F.D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R.H. Baker, J. Ko, M.K. Nazeeruddin and M. Grätzel, High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye, Nano Letters, 2009, 9, 2487-2492.
[144] P. Nam-Gyu, C. Soon-Ho, L. Jao van de, K. Kang-Jin and J.F. Arthur, Effect of Cations on the Open-Circuit Photovoltage and the Charge-Injection Efficiency of Dye-Sensitized Nanocrystalline Rutile TiO2 Films, Bulletin of the Korean Chemical Society, 2000, 21.
[145] J.E. Benedetti, M.A. de Paoli and A.F. Nogueira, Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte, Chemical Communications, 2008, 1121-1123.
[146] D. Kuang, C. Klein, H.J. Snaith, J.-E. Moser, R. Humphry-Baker, P. Comte, S.M. Zakeeruddin and M. Grätzel, Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells:  Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells, Nano Letters, 2006, 6, 769-773.
[147] T.-C. Wen, H.-H. Kuo and A. Gopalan, Studies on Composite Electrolytes Composed of Thermoplastic Polyurethane and Polyacrylonitrile, Macromolecules, 2001, 34, 2958-2963.
[148] M. Digar, S.L. Hung, H.L. Wang, T.C. Wen and A. Gopalan, Study of ionic conductivity and microstructure of a cross-linked polyurethane acrylate electrolyte, Polymer, 2002, 43, 681-691.
[149] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple, The Journal of Physical Chemistry B, 2005, 109, 3480-3487.
[150] M.-S. Kang, K.-S. Ahn and J.-W. Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes, Journal of Power Sources, 2008, 180, 896-901.
[151] C.-P. Lee, P.-Y. Chen, R. Vittal and K.-C. Ho, Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black, Journal of Materials Chemistry, 2010, 20, 2356-2361.
[152] Z. Lan, J. Wu, J. Lin and M. Huang, A novel gel electrolyte for quasi-solid-state dye-sensitized solar cells, Electrochimica Acta, 2012, 60, 17-22.
[153] I.K. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel and M.D. McGehee, Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Advanced Functional Materials, 2009, 19, 2431-2436.
[154] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin and M. Gratzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chemical Communications, 2008, 2635-2637.
[155] H. Choi, C. Baik, S. Kim, M.-S. Kang, X. Xu, H.S. Kang, S.O. Kang, J. Ko, M.K. Nazeeruddin and M. Gratzel, Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells, New Journal of Chemistry, 2008, 32, 2233-2237.
[156] Y.-S. Lin and C.-L. Chen, Wear Resistance of Low-Temperature Plasma-Polymerized Organosilica Deposited on Poly(ethylene terephthalate): The Effect of O2 Addition, Plasma Processes and Polymers, 2006, 3, 650-660.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔