(18.204.227.34) 您好!臺灣時間:2021/05/14 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳柏諭
研究生(外文):Bo-YuChen
論文名稱:癸酸與十四烷酸修飾聚賴胺酸自組裝微胞及醣修飾微胞應用於藥物載體
論文名稱(外文):Self-assembled micelles from decanoic acid and tetradecanoic acid-modified Poly(L-lysine) copolypeptides and saccharide-modified micelles as drug carriers
指導教授:詹正雄詹正雄引用關係
指導教授(外文):Jen-Shiung Jan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:63
中文關鍵詞:聚賴胺酸自組裝雙醣薑黃素
外文關鍵詞:poly(L-lysine)self-assembledsaccharidecurcumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究以Poly(L-lysine) (PLL) (Mw = 97800, 40600, 19100) 為骨幹與酰基酸酐反應合成Poly(L-lysine)-graft-decanoyl (PLD) 和 poly(L-lysine)-graft-tetradecanoyl (PLT) ,並探討其自組裝行為。從實驗結果發現藉由調控酰基上的碳鏈長度和接枝比例不但會改變雙親性高分子的親疏水特性,亦能改變聚胺基酸的二級結構並進而影響自組裝粒子的大小及構型。在酸性和中性條件下所製備的奈米微胞大小由動態光散射 (DLS) 及穿透式電子顯微鏡 (TEM) 證實約 70 至 235 nm,而臨界聚集濃度 (CAC) 在 5.2×10-2~1.0×10-3 mg/mL。此結果與先前所探討 poly(L-lysine)-graft-hexanoyl (PLH) 的粒徑和 CAC 還來的小以外,自組裝構型也不同。藉由微胞的內核疏水特性包覆疏水性天然藥物-薑黃素,經由 DLS測得粒徑約在 90 至 165 nm,並定出包覆薑黃素的效率可達 43 % 。更甚,將此可生物相容性、生物可降解性的藥物載體奈米粒子中加入槴仔素 (Genipin) 以穩定其結構,粒徑範圍在 100 至 190 nm。透過一連串對聚胺基酸上的官能基修飾所得到的 PLD 和 PLT 不僅能夠藉由環境應答改變奈米粒子的大小,亦能裝載疏水藥物,使這些兩親性共聚胺基酸在未來能夠有機會應用於應依領域的標靶藥物載體或奈米包覆體。
The simple preparation strategy and self-assembly behavior of poly(L-lysine)-graft-decanoyl (PLD) and poly(L-lysine)-graft-tetradecanoyl (PLT) have been demonstrated. In the study, we synthesized three different poly(L-lysine) (PLL) chain length (Mw = 97800, 40600, 19100) and incorporated with two different acyl chain in various substitution levels by reacting with acyl anhydride. The experimental data revealed that the interplay between hydrophobic fatty chain and the secondary conformational changes determined the self-assembed nanostructures of PLD and PLT. The micellar nanostructures were formed with the mean sizes between 70 and 325 nm in acidic and neutral aqueous solution. The critical aggregation concentration (CAC) were in the range of 5.2×10-2~1.0×10-3 mg/mL, which is smaller than our previous report on poly(L-lysine)-graft-hexanoyl (PLH). The chain conformational changes were observed the increase of relative content of helix, sheet and turn conformations as a result of incorporation of acyl chains and different pH value. The as-prepared particles were employed for natural hydrophobic drug encapsulation. The curcumin were used as a model drug with the encapsulation efficiency higher than 90% and loading capacity up to 43%, which is higher than most of the related studies. The sizes of curcumin-loaded micelles were range between 90 and 165 nm, and would increase to 100~190 nm when further crosslinking by genipin. With versatility of this synthesis strategy, additional functionality can be incorporated on PLD and PLT, which can allow these amphiphilic copolypeptides to be useful as targeted drug carriers, nanoencapsulants in the biomedical fields.
Contents
Abstract IV
摘要 V
致謝 VI
Contents VII
List of Tables IX
List of Schemes X
List of Figures XI
Chapter 1. Introduction 1
1.1 Overview 1
1.2 Polypeptide 1
1.3 Research motivation 2
Chapter 2. Literature review 5
2.1 Poly(L-lysine) (PLL) 5
2.1.1 Synthesis of polypeptides 5
2.1.2 Physical properties of PLL 7
2.2 Polypeptide-based block copolymers 9
2.3 Graft copolymers: Chitosan-based graft copolymers 11
2.4 Physical properties and application of curcumin 13
2.5 Crosslinking agent: Genipin 15
Chapter 3. Experimental section 19
3.1 Materials 19
3.2 Synthesis and sample preparation 20
3.2.1 Synthesis of poly(L-lysine)-graft-decanoyl (PLD) and poly(L-lysine)-graft-tetradecanoyl (PLT) 20
3.2.2 Synthesis of poly(L-lysine)-graft-Decanoyl-graft-Lactobionolactone (PLD/Lac) and poly(L-lysine)-graft-Tetradecanoyl-graft-Lactobionolactone (PLT/Lac) 22
3.2.3 Preparation of graft copolypeptides nanoparticles 24
3.3 Characterization and Sample Measurements 24
3.3.1 Gel Permeation Chromatography (GPC) 24
3.3.2 Proton Nuclear Magnetic Resonance ( 1H-NMR) 24
3.3.3 Critical aggregation concentration (CAC) 25
3.3.4 Dynamic Light Scattering (DLS) 26
3.3.5 Transmission Electron Microscopy (TEM) 27
3.3.6 Circular Dichroism (CD) 27
3.3.7 Ultraviolet-Visible Spectroscopy (UV-VIS) 28
3.4 Application as drugs carriers 29
3.4.1 Encapsulation of Curcumin in nanospheres 29
3.4.2 Crosslinking of curcumin-loaded nanospheres 30
Chapter 4. Results and discussions 31
4.1 Synthesis of amphiphilic graft copolypeptides 31
4.2 Critical aggregation concentration (CAC) 36
4.3 Self-assembly of graft copolypeptides 39
4.4 CD analysis 45
4.5 Synthesis, characterization of PLD/Lac and PLT/Lac 49
4.6 Encapsulation of curcumin and crosslinking by genipin 52
Chapter 5. Conclusion 54
References 55
Appendix 63

References
1Deming TJ. Synthetic polypeptides for biomedical applications. Progress in Polymer Science; 32: 858-875 (2007).
2Zhang LF, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polymers for Advanced Technologies; 9: 677-699 (1998).
3Forster S, Antonietti M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Advanced Materials; 10: 195-203 (1998).
4Discher DE, Eisenberg A. Polymer vesicles. Science; 297: 967-973 (2002).
5Riess G. Micellization of block copolymers. Progress in Polymer Science; 28: 1107-1170 (2003).
6Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. Block copolymer vesicles - using concepts from polymer chemistry to mimic biomembranes. Polymer; 46: 3540-3563 (2005).
7Schlaad H. Solution properties of polypeptide-based copolymers. In: Klok HA, Schlaad H, editors. Peptide Hybrid Polymers 2006. p. 53-73.
8Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics; 71: 463-474 (2009).
9Carlsen A, Lecommandoux S. Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science; 14: 329-339 (2009).
10LoPresti C, Lomas H, Massignani M, Smart T, Battaglia G. Polymersomes: nature inspired nanometer sized compartments. Journal of Materials Chemistry; 19: 3576-3590 (2009).
11Tong R, Christian DA, Tang L, Cabral H, Baker JR, Jr., Kataoka K, et al. Nanopolymeric Therapeutics. Mrs Bulletin; 34: 422-431 (2009).
12Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine; 2: 8-21 (2006).
13D'Addio SM, Prud'homme RK. Controlling drug nanoparticle formation by rapid precipitation. Advanced Drug Delivery Reviews; 63: 417-426 (2011).
14Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Advanced Functional Materials; 19: 1553-1566 (2009).
15Chandra R, Rustgi R. Biodegradable polymers. Progress in Polymer Science; 23: 1273-1335 (1998).
16Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials; 3: 244-248 (2004).
17Rodriguez-Hernandez J, Checot F, Gnanou Y, Lecommandoux S. Toward 'smart' nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science; 30: 691-724 (2005).
18Deming TJ. Polypeptide materials: New synthetic methods and applications. Advanced Materials; 9: 299-305 (1997).
19Kricheldorf HR. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angewandte Chemie-International Edition; 45: 5752-5784 (2006).
20Deming TJ. Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization. In: Klok HA, Schlaad H, editors. Peptide Hybrid Polymers2006. p. 1-18.
21Dimitrov I, Kukula H, Colfen H, Schlaad H. Advances in the synthesis and characterization of polypeptide-based hybrid block copolymers. Macromolecular Symposia; 215: 383-393 (2004).
22Babin J, Rodriguez-Hernandez J, Lecommandoux S, Klok HA, Achard MF. Self-assembled nanostructures from peptide-synthetic hybrid block copolymers: Complex, stimuli-responsive rod-coil architectures. Faraday Discussions; 128: 179-192 (2005).
23Checot F, Brulet A, Oberdisse J, Gnanou Y, Mondain-Monval O, Lecommandoux S. Structure of polypeptide-based diblock copolymers in solution: Stimuli-responsive vesicles and micelles. Langmuir; 21: 4308-4315 (2005).
24Lubbert A, Castelletto V, Hamley IW, Nuhn H, Scholl M, Bourdillon L, et al. Nonspherical assemblies generated from polystyrene-b-poly(L-lysine) polyelectrolyte block copolymers. Langmuir; 21: 6582-6589 (2005).
25Gil GO, Losik M, Schlaad H, Drechsler M, Hellweg T. Properties of pH-Responsive Mixed Aggregates of Polystyrene-block-poly(L-lysine) and Nonionic Surfactant in Solution and Adsorbed at a Solid Surface. Langmuir; 24: 12823-12828 (2008).
26Kukula H, Schlaad H, Antonietti M, Forster S. The formation of polymer vesicles or peptosomes by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. Journal of the American Chemical Society; 124: 1658-1663 (2002).
27Konak C, Reschel T, Oupicky D, Ulbrich K. Thermally controlled association in aqueous solutions of poly(L-lysine) grafted with poly (N-isopropylacrylamide). Langmuir; 18: 8217-8222 (2002).
28Jeong JH, Kang HS, Yang SR, Kim JD. Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer; 44: 583-591 (2003).
29Xu N, Du F-S, Li Z-C. Synthesis of poly(L-lysine)-graft-polyesters through Michael addition and their self-assemblies in aqueous solutions. Journal of Polymer Science Part a-Polymer Chemistry; 45: 1889-1898 (2007).
30Nottelet B, El Ghzaoui A, Coudane J, Vert M. Novel amphiphilic poly(epsilon-caprolactone)-g-poly(L-lysine) degradable copolymers. Biomacromolecules; 8: 2594-2601 (2007).
31Cai C, Lin J, Chen T, Tian X. Aggregation Behavior of Graft Copolymer with Rigid Backbone. Langmuir; 26: 2791-2797 (2010).
32Huang Y-C, Arham M, Jan J-S. Alkyl chain grafted poly(L-lysine): self-assembly and biomedical application as carriers. Soft Matter; 7: 3975-3983 (2011).
33Maruyama A, Ishihara T, Kim JS, Kim SW, Akaike T. Nanoparticle DNA carrier with poly(L-lysine) grafted polysaccharide copolymer and poly(D,L-lactic acid). Bioconjugate Chemistry; 8: 735-742 (1997).
34Perrino C, Lee S, Choi SW, Maruyama A, Spencer ND. A biomimetic alternative to poly(ethylene glycol) as an antifouling coating: Resistance to nonspecific protein adsorption of poly(L-lysine)-graft-dextran. Langmuir; 24: 8850-8856 (2008).
35Wilson JT, Krishnamurthy VR, Cui W, Qu Z, Chaikof EL. Noncovalent Cell Surface Engineering with Cationic Graft Copolymers. Journal of the American Chemical Society; 131: 18228-+ (2009).
36Incani V, Lin X, Lavasanifar A, Uludag H. Relationship between the Extent of Lipid Substitution on Poly(L-lysine) and the DNA Delivery Efficiency. Acs Applied Materials & Interfaces; 1: 841-848 (2009).
37Abbasi M, Uludag H, Incani V, Olson C, Lin X, Clements BA, et al. Palmitic acid-modified poly-L-lysine for non-viral delivery of plasmid DNA to skin fibroblasts. Biomacromolecules; 8: 1059-1063 (2007).
38Abbasi M, Uludag H, Incani V, Hsu CYM, Jeffery A. Further investigation of lipid-substituted poly(L-Lysine) polymers for transfection of human skin fibroblasts. Biomacromolecules; 9: 1618-1630 (2008).
39Leuchs H, Geiger W. A new synthesis of serine. Berichte Der Deutschen Chemischen Gesellschaft; 39: 2644-2649 (1906).
40Leuchs H, Manasse W. The isomerism of carboethoxy-glycylglycine ester. Berichte Der Deutschen Chemischen Gesellschaft; 40: 3235-3249 (1907).
41Leuchs H, Geiger W. Concerning the anhydride on alpha-amino-N-carbonic acids and that of alpha-amino acids. Berichte Der Deutschen Chemischen Gesellschaft; 41: 1721-1726 (1908).
42Daly WH, Poche D. THE PREPARATION OF N-CARBOXYANHYDRIDES OF ALPHA-AMINO-ACIDS USING BIS(TRICHLOROMETHYL)CARBONATE. Tetrahedron Letters; 29: 5859-5862 (1988).
43Poche DS, Moore MJ, Bowles JL. An unconventional method for purifying the N-carboxyanhydride derivatives of gamma-alkyl-L-glutamates. Synthetic Communications; 29: 843-854 (1999).
44Poche DS, Daly WH, Russo PS. SYNTHESIS AND SOME SOLUTION PROPERTIES OF POLY(GAMMA-STEARYL ALPHA,L-GLUTAMATE). Macromolecules; 28: 6745-6753 (1995).
45Deming TJ. Living polymerization of alpha-amino acid-N-carboxyanhydrides. Journal of Polymer Science Part a-Polymer Chemistry; 38: 3011-3018 (2000).
46Deming TJ. Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Advanced Drug Delivery Reviews; 54: 1145-1155 (2002).
47Triftaridou AI, Checot F, Iliopoulos I. Poly(N,N-dimethylacrylamide)-block-Poly(L-lysine) Hybrid Block Copolymers: Synthesis and Aqueous Solution Characterization. Macromolecular Chemistry and Physics; 211: 768-777 (2010).
48Huang C-J, Chang F-C. Polypeptide diblock copolymers: Syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine. Macromolecules; 41: 7041-7052 (2008).
49Sun J, Deng C, Chen X, Yu H, Tian H, Sun J, et al. Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence. Biomacromolecules; 8: 1013-1017 (2007).
50Chittchang M, Salamat-Miller N, Alur HH, Vander Velde DG, Mitra AK, Johnston TP. POLY(L-lysine) as a model drug macromolecule with which to investigate secondary structure and microporous membrane transport, part 2: diffusion studies. Journal of Pharmacy and Pharmacology; 54: 1497-1505 (2002).
51Muller M, Buchet R, Fringeli UP. 2D-FTIR ATR spectroscopy of thermo-induced periodic secondary structural changes of poly-(L)-lysine: A cross-correlation analysis of phase-resolved temperature modulation spectra. Journal of Physical Chemistry; 100: 10810-10825 (1996).
52Chou PY, Scheraga HA. CALORIMETRIC MEASUREMENT OF ENTHALPY CHANGE IN ISOTHERMAL HELIX-COIL TRANSITION OF POLY-L-LYSINE IN AQUEOUS SOLUTION. Biopolymers; 10: 657-& (1971).
53Dzwolak W, Smirnovas V. A conformational alpha-helix to beta-sheet transition accompanies racemic self-assembly of polylysine: an FT-IR spectroscopic study. Biophysical Chemistry; 115: 49-54 (2005).
54Satake I, Yang JT. EFFECT OF CHAIN-LENGTH AND CONCENTRATION OF ANIONIC SURFACTANTS ON CONFORMATIONAL TRANSITIONS OF POLY(L-ORNITHINE) AND POLY(L-LYSINE) IN AQUEOUS-SOLUTION. Biochemical and Biophysical Research Communications; 54: 930-936 (1973).
55Satake I, Yang JT. INTERACTION OF SODIUM DECYL SULFATE WITH POLY(L-ORNITHINE) AND POLY(L-LYSINE) IN AQUEOUS-SOLUTION. Biopolymers; 15: 2263-2275 (1976).
56Hammes GG, Schuller.Se. STRUCTURE OF MACROMOLECULAR AGGREGATES .2. CONSTRUCTION OF MODEL MEMBRANES FROM PHOSPHOLIPIDS AND POLYPEPTIDES. Biochemistry; 9: 2555-& (1970).
57Moriyama R, Choi SW, Shimada N, Kano A, Maruyama A. Abundant graft chains do not influence coil-to-helix but alpha-to-beta transition of polylysine backbone, resulting in thermoreversible beta-to-alpha transition. Reactive & Functional Polymers; 67: 1381-1387 (2007).
58Fukushima K, Muraoka Y, Inoue T, Shimozawa R. CONFORMATIONAL STUDY OF POLY(L-LYSINE) INTERACTING WITH ACIDIC PHOSPHOLIPID-VESICLES. Biophysical Chemistry; 34: 83-90 (1989).
59Hermel H, Miller R. EFFECT OF THE SECONDARY STRUCTURE OF POLY-L-LYSINE ON THE ADSORPTION AT THE WATER DODECANE INTERFACE. Colloid and Polymer Science; 273: 387-391 (1995).
60Wang YL, Chang YC. Synthesis and conformational transition of surface-tethered polypeptide: Poly(L-lysine). Macromolecules; 36: 6511-6518 (2003).
61Gebhardt KE, Ahn S, Venkatachalam G, Savin DA. Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. Journal of Colloid and Interface Science; 317: 70-76 (2008).
62Constancis A, Meyrueix R, Bryson N, Huille S, Grosselin JM, Gulik-Krzywicki T, et al. Macromolecular colloids of diblock poly(amino acids) that bind insulin. Journal of Colloid and Interface Science; 217: 357-368 (1999).
63Rodriguez-Hernandez J, Lecommandoux S. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. Journal of the American Chemical Society; 127: 2026-2027 (2005).
64Gebhardt KE, Ahn S, Venkatachalam G, Savin DA. Rod-sphere transition in polybutadiene-poly(L-lysine) block copolymer assemblies. Langmuir; 23: 2851-2856 (2007).
65Rao J, Luo Z, Ge Z, Liu H, Liu S. Schizophrenic micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules; 8: 3871-3878 (2007).
66Lin J, Zhu J, Chen T, Lin S, Cai C, Zhang L, et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials; 30: 108-117 (2009).
67Sun J, Shi Q, Chen X, Guo J, Jing X. Self-assembly of a hydrophobic polypeptide containing a short hydrophilic middle segment: Vesicles to large compound micelles. Macromolecular Chemistry and Physics; 209: 1129-1136 (2008).
68Israelachvili J. THE SCIENCE AND APPLICATIONS OF EMULSIONS - AN OVERVIEW. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 91: 1-8 (1994).
69Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. Journal of Biomedical Materials Research Part A; 83A: 806-812 (2007).
70Hirano S, Ohe Y, Ono H. SELECTIVE N-ACYLATION OF CHITOSAN. Carbohydrate Research; 47: 315-320 (1976).
71Kim T-H, Jiang H-L, Jere D, Park I-K, Cho M-H, Nah J-W, et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Progress in Polymer Science; 32: 726-753 (2007).
72Liu T-Y, Chen S-Y, Lin Y-gL, Liu D-M. Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: Water-retention ability and drug encapsulation. Langmuir; 22: 9740-9745 (2006).
73Liu T-Y, Lin Y-L. Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomaterialia; 6: 1423-1429 (2010).
74Liu K-H, Chen S-Y, Liu D-M, Liu T-Y. Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier. Macromolecules; 41: 6511-6516 (2008).
75Liu K-H, Chen B-R, Chen S-Y, Liu D-M. Self-Assembly Behavior and Doxorubicin-Loading Capacity of Acylated Carboxymethyl Chitosans. Journal of Physical Chemistry B; 113: 11800-11807 (2009).
76Jiang G-B, Quan D, Liao K, Wang H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydrate Polymers; 66: 514-520 (2006).
77Wang W, McConaghy AM, Tetley L, Uchegbu IF. Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles. Langmuir; 17: 631-636 (2001).
78Jiang G-B, Quan D, Liao K, Wang H. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Molecular Pharmaceutics; 3: 152-160 (2006).
79Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research; 23: 363-398 (2003).
80Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. European Journal of Cancer; 41: 1955-1968 (2005).
81Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. Journal of Natural Products; 70: 143-146 (2007).
82Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ. SCAVENGING EFFECT OF EXTRACTS OF GREEN TEA AND NATURAL ANTIOXIDANTS ON ACTIVE OXYGEN RADICALS. Cell Biophysics; 14: 175-185 (1989).
83Choi H, Chun Y-S, Kim S-W, Kim M-S, Park J-W. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: A mechanism of tumor growth inhibition. Molecular Pharmacology; 70: 1664-1671 (2006).
84Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology; 71: 1397-1421 (2006).
85Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; 595: 453-470 (2007).
86Bergamaschi MM, Steinhorst Alcantara GK, Rodrigues Valerio DA, Costa Queiroz RH. Curcumin could prevent methemoglobinemia induced by dapsone in rats. Food and Chemical Toxicology; 49: 1638-1641 (2011).
87Sookram C, Tan M, Daya R, Heffernan S, Mishra RK. Curcumin Prevents Haloperidol-Induced Development of Abnormal Oro-Facial Movements: Possible Implications of Bcl-XL in its Mechanism of Action. Synapse; 65: 788-794 (2011).
88Charoensuk L, Pinlaor P, Prakobwong S, Hiraku Y, Laothong U, Ruangjirachuporn W, et al. Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters. International Journal for Parasitology; 41: 615-626 (2011).
89Roy M, Sinha D, Mukherjee S, Biswas J. Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India. European Journal of Cancer Prevention; 20: 123-131 (2011).
90Shishodia S, Sethi G, Aggarwal BB. Curcumin: Getting back to the roots. In: Kotwal GJ, Lahiri DK, editors. Natural Products and Molecular Therapy2005. p. 206-217.
91Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anti-Cancer Drugs; 8: 470-481 (1997).
92Hanif R, Qiao L, Shiff SJ, Rigas B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. Journal of Laboratory and Clinical Medicine; 130: 576-584 (1997).
93Kuo ML, Huang TS, Lin JK. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochimica Et Biophysica Acta-Molecular Basis of Disease; 1317: 95-100 (1996).
94Piwocka K, Zablocki K, Wieckowski MR, Skierski J, Feiga I, Szopa J, et al. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Experimental Cell Research; 249: 299-307 (1999).
95Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis; 15: 1867-1876 (1997).
96Tonnesen HH, Karlsen J. STUDIES ON CURCUMIN AND CURCUMINOIDS .6. KINETICS OF CURCUMIN DEGRADATION IN AQUEOUS-SOLUTION. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung; 180: 402-404 (1985).
97Huang S BC. Pharmacological and clinical properties of curcumin. Botanics: Targets and Therapy; 1: 5-18 (2011).
98Chang Y, Hsu CS, Wei HJ, Chen SC, Liang HC, Lai PH, et al. Cell-free xenogenic vascular grafts fixed with glutaraldehyde or genipin: In vitro and in vivo studies. Journal of Biotechnology; 120: 207-219 (2005).
99Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. Journal of Biomedical Materials Research; 47: 116-126 (1999).
100Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). Journal of Biomedical Materials Research; 55: 538-546 (2001).
101Mi FL, Sung HW, Shyu SS. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. Journal of Polymer Science Part a-Polymer Chemistry; 38: 2804-2814 (2000).
102Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules; 5: 162-168 (2004).
103Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials; 23: 181-191 (2002).
104Mi FL, Shyu SS, Peng CK. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science Part a-Polymer Chemistry; 43: 1985-2000 (2005).
105Narain R, Armes SP. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules; 4: 1746-1758 (2003).
106Liu Y, Cao X, Luo M, Le Z, Xu W. Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. Journal of Colloid and Interface Science; 329: 244-252 (2009).
107Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. MICELLES BASED ON AB BLOCK COPOLYMERS OF POLY(ETHYLENE OXIDE) AND POLY(BETA-BENZYL L-ASPARTATE). Langmuir; 9: 945-949 (1993).
108Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA, Mura JL, et al. POLYMER MICELLE FORMATION .3. POLY(STYRENE-ETHYLENE OXIDE) BLOCK COPOLYMER MICELLE FORMATION IN WATER - A FLUORESCENCE PROBE STUDY. Macromolecules; 24: 1033-1040 (1991).
109Greenfie.N, Fasman GD. COMPUTED CIRCULAR DICHROISM SPECTRA FOR EVALUATION OF PROTEIN CONFORMATION. Biochemistry; 8: 4108-& (1969).
110Harada A, Cammas S, Kataoka K. Stabilized alpha-helix structure of poly(L-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules; 29: 6183-6188 (1996).
111Gaspard J, Silas JA, Shantz DF, Jan J-S. Supramolecular assembly of lysine-b-glycine block copolypeptides at different solution conditions. Supramolecular Chemistry; 22: 178-185 (2010).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 製備嵌段共聚胺酸與雙醣修飾聚胺酸及礦化之自組裝高分子載體應用於藥物傳輸
2. 醣聚胺酸高分子之合成、自組裝與應用
3. 殼層以及核層交聯聚電解質複合粒子應用於藥物載體
4. 醣與硫辛酸修飾聚賴胺酸與聚丙烯酸自組裝之還原及酸鹼應答複合高分子
5. 利用聚麩胺酸和聚甲基丙烯酸N,N-二乙氨基乙酯形成的聚電解質間複合粒子及其金奈米粒子成核反應和二氧化矽礦化作用
6. 利用逐層組裝之聚氨酸合成金/二氧化矽奈米管以及聚賴氨酸及聚酪氨酸之團聯共聚氨酸之自組裝
7. 合成與性質鑑定由修飾過的聚天門冬氨酸衍生物構成的可環境應答微胞和聚陰離子奈米微胞
8. 聚賴胺酸與酪胺酸無規性共聚胺酸:自組裝與其奈米載體及包覆體應用
9. 賴胺酸與酪胺酸嵌段共聚物及其經雙糖修飾之嵌段共聚物:分子自組裝與藥物傳輸
10. 酸鹼敏感型聚胺基酸水膠:特性探討及仿生多孔性複合材料之合成
11. 聚賴胺酸之接枝研究:合成、自組裝及其為載體之應用
12. 利用酪胺酸與改質酪胺酸形成之新型界面活性劑控制金奈米粒子的型態與大小
13. 利用金屬離子-聚電解質自組裝粒子為模板製備交聯之聚胺酸高分子中空奈米球及二氧化矽/聚胺酸高分子複合奈米殼
14. 啤酒釀造酵母生物質吸附染劑與鉛之效果及機制
15. 薑黃素與去甲基薑黃素對大白鼠水晶體蛋白活體外抗紫外線之研究
 
系統版面圖檔 系統版面圖檔