跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡郁青
研究生(外文):Yu-ChingTsai
論文名稱:微/奈米鐵粉水熱產氫之研究
論文名稱(外文):Hydrothermal generation of hydrogen gas by micron- and nano-iron powders
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:98
中文關鍵詞:微/奈米鐵水熱法產氫
外文關鍵詞:micron-/nano-ironpalladiumhydrothermalhydrogen generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關微/奈米鐵粉水熱產氫之研究,探討反應溫度、鐵粉含量、鐵粉粒徑以及觸媒添加量對產氫速率之影響。首先利用市售鐵粉與水反應,發現所產出之氣體冷凝後經氣相層析儀證實為高純度氫氣,且其產氫速率隨反應溫度與鐵粉含量增加而上升,隨鐵粉粒徑增大而下降。又奈米鐵粉產氫速率遠大於微米鐵粉,微米鐵粉在反應溫度低於100℃幾乎觀察不到氫氣的生成,而奈米鐵粉在反應溫度90℃依舊有大量氫氣產生,但奈米鐵粉反應長時間易有燒結現象發生,使反應不完全。其次使用置換反應在微米鐵粉上沉積鈀觸媒,三種不同粒徑之微米鐵粉隨著鈀觸媒沉積量的增加,產氫速率隨之增加,沉積鈀觸媒後45μm鐵粉其產氫效果優於3μm鐵粉,推測係因45μm鐵粉為扁平狀,且其表面有許多深淺不一的裂痕,有助於鐵粉表面積的增加與鈀觸媒的沉積,進而提升與水反應產氫的效能所致。沉積鈀觸媒後的45μm鐵粉,其產氫轉化率可從12.6%提升至98.7%,且三種不同粒徑之微米級鐵粉沉積鈀觸媒後其轉化率均可達80%以上,顯示鈀具有非常良好的催化效果,適用於沉積在各種粒徑及形態之鐵粉上。本研究所發展之鐵粉水熱產氫製程具有成本低廉、產出之氫氣純度極高、製程簡單易於大量生產的優點,極具實用化潛力。
This thesis concerns the hydrothermal generation of hydrogen gas by micron- and nano-iron powders. Investigate the hydrogen generation rate affected by reaction temperature, iron amount, iron particle size and the amount of catalyst added. First, this research used commercially iron reacted with water, finding that the gas of experiment produced after condensation was confirmed to high purity hydrogen by GC, and the hydrogen generation rate increased with increasing reaction temperature and iron amount, decreasing with increasing the particle size of iron. And the hydrogen generation rate of nano-iron much faster than micron-iron.There could not observe hydrogen generation by micron-iron when reaction temperature lower than 100℃, but there were still produced numerous of hydrogen by nano-iron when reaction temperature at 90℃.The nano-iron tended to be sintered if reaction for long time. It will cause the reaction incomplete. Secondly, using replacement reaction deposited the palladium catalyst on the micron-iron. Three different sizes of micron-iron of the hydrogen generation rate increased with increasing the amount of palladium deposited. The hydrogen generation rate of 45μm iron was better than 3μm iron after deposited the palladium on the iron surface, presumably due to there had many varying depth of cracks on 45μm iron surface and the shape of 45μm iron similar to flat, this structure contributed to increase the surface area of iron and deposit the palladium catalyst, then promoted the efficacy of hydrogen generation from iron with water. The conversion of 45μm iron was from 12.6% promoted to 98.7% after deposited the palladium on the iron surface. The conversion of three different sizes of micron-iron could reach above 80% after deposited the palladium on the iron surface. Show the palladium had very good catalytic activity, could deposit on iron for any size and shape.
This study developed the process of hydrothermal generation of hydrogen gas by iron powders had the advantage include: low cost, the hydrogen of generation had high purity, process simple and easy to mass production, exist the potential of practical.

總目錄
中文摘要 I
英文摘要 II
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
符號 XI


第一章 緒論 1
1.1 奈米材料與奈米科技 1
1.1.1 前言 1
1.1.2 奈米材料的特性與應用 3
1.2 氫能 6
1.2.1 氫能簡介 6
1.2.2 產氫方法 8
1.2.3 氫的儲存 23
1.2.4 氫的應用 25
1.3 研究動機與內容 28
第二章 基礎理論 29
2.1 觸媒催化理論 29
2.1.1 觸媒簡介 29
2.1.2 觸媒之製備 31
2.1.3 催化反應之分類 35
第三章 實驗部分 39
3.1 藥品與儀器 39
3.1.1 藥品 39
3.1.2 儀器 40
3.1.3 材料 40
3.2 製備方式 41
3.2.1鐵粉前製處理 41
3.2.2 觸媒在鐵粉表面之沉積 41
3.3 特性分析 43
3.4 鐵粉水熱產氫之實驗方法 45
3.5 以表面沉積觸媒之鐵粉水熱產氫的方法 47
第四章 結果與討論 49
4.1 微/奈米鐵粉水熱法產氫 49
4.1.1 微/奈米鐵粉之基本物性 49
4.1.2 鐵粉水熱產氫 52
4.2 以表面沉積觸媒之鐵粉水熱產氫 59
4.2.1 沉積不同觸媒之鐵粉產氫速率比較 59
4.2.2 鈀/鐵之基本物性 61
4.2.3 鈀/鐵水熱產氫 70
4.2.3 氫氣鑑定 79
4.2.4 水熱產氫轉化率及氫氣生成莫耳數計算 80
4.2.5 文獻比較 84
第五章 結論 85
參考文獻 87
自述 98


表目錄
表1.1 奈米材料的特性所對應之應用範圍 5
表1.2 微、奈米鐵粉及雙金屬奈米鐵粉在室溫下產氫速率比較 16
表1.3 鐵粉(200 mesh)與水經由HS¯催化產氫轉化率比較 16
表1.4 常用的儲氫方法及其優缺點 24
表2.1 非均相觸媒之初步分類 30
表2.2 不同物質的氧化還原電位 33
表2.3 常見的置換反應 34
表4.1 沉積不同濃度鈀觸媒之3μm鐵粉EDS分析數據 66
表4.2 沉積不同濃度鈀觸媒之45μm鐵粉EDS分析數據 67
表4.3 沉積不同濃度鈀觸媒之60 mesh鐵粉EDS分析數據 68
表4.4 沉積不同濃度鈀觸媒之3μm鐵粉EDS分析數據與理論值比較 69
表4.5 沉積不同濃度鈀觸媒之45μm鐵粉EDS分析數據與理論值比較 69
表4.6 沉積不同濃度鈀觸媒之60mesh鐵粉EDS分析數據與理論值比較 69
表4.7 不同粒徑鐵粉沉積觸媒前後轉化率之比較 81
表4.8 利用XRD與AA計算之轉化率比較 82
表4.9 水熱反應後生成氫氣莫耳數比較 83
表4.10 相關文獻比較 84






圖目錄
圖1.1 奈米科技開發在不同領域之應用 2
圖1.2 粒子形態(0D-3D)與能量狀態之關係 4
圖1.3 粒子大小與原子在粒子內部及表面分佈比例之關係 4
圖1.4 氫是二次能源─氫與電的互換性 7
圖1.5 電解水製氫的過程示意圖 10
圖1.6 水熱分解時生成物與溫度的關係 10
圖1.7 Steam-Iron process氧化還原步驟流程圖 14
圖1.8 利用電化學方式還原氧化鐵之裝置圖 14
圖1.9 (a) 純鐵與水蒸氣反應產氫速率與反應溫度關係圖;(b) 鉬/鐵與水蒸氣反應產氫速率與反應溫度關係圖 15
圖1.10 生物質能在能量循環中的關係 20
圖1.11 生物質製氫方法 20
圖1.12 再生能源製氫與化石能源製氫之比較 21
圖1.13 燃料電池的動作原理與小型燃料電池 26
圖1.14 燃料電池與渦輪引擎的電能、熱能轉換效率 26
圖1.15 連接能源供給、產業間連動與社會體系的氫網路 27
圖2.1 反應中有無添加觸媒之活化能差別示意圖 30
圖2.2 非均相觸媒催化反應速率常數與反應溫度之關係示意圖 38
圖3.1 產氫裝置圖 46
圖4.1 不同粒徑鐵粉反應前SEM圖 50
圖4.2 100nm、3μm及45μm鐵粉反應前XRD分析圖譜 51
圖4.3 60mesh鐵粉反應前XRD分析圖譜 51
圖4.4 微米鐵粉(3μm)在不同鐵粉含量下產氫速率比較 53
圖4.5 不同反應溫度所產生的飽和蒸氣壓含量 54
圖4.6 微米鐵粉(3μm)在不同反應溫度下產氫速率比較 54
圖4.7 奈米鐵粉(100 nm)在不同反應溫度下產氫速率比較 55
圖4.8 奈米鐵粉(100 nm)在不同反應溫度下之XRD分析圖譜 55
圖4.9 不同粒徑鐵粉在相同反應條件下產氫速率比較 57
圖4.10 不同粒徑鐵粉水熱反應後之XRD分析圖譜 57
圖4.11 不同粒徑鐵粉水熱反應後SEM圖 58
圖4.12 沉積不同觸媒之微米鐵粉(3μm)產氫速率比較 60
圖4.13 鈀觸媒與鋅粒子反應之示意圖 60
圖4.14 沉積不同濃度鈀觸媒之3μm鐵粉反應前XRD分析圖譜 62
圖4.15 沉積不同濃度鈀觸媒之45μm鐵粉反應前XRD分析圖譜 62
圖4.16 沉積不同濃度鈀觸媒之60mesh鐵粉反應前XRD分析圖譜 63
圖4.17 SEM mapping分析圖 63
圖4.18 沉積2mM PdCl2之3μm鐵粉EDS分析圖譜 66
圖4.19 沉積鈀觸媒前後的3μm鐵粉反應前SEM圖 66
圖4.20 沉積2mM PdCl2之45μm鐵粉EDS分析圖譜 67
圖4.21 沉積鈀觸媒前後的45μm鐵粉反應前SEM圖 67
圖4.22 沉積2mM PdCl2之60 mesh鐵粉EDS分析圖譜 68
圖4.23 沉積鈀觸媒前後的60 mesh鐵粉反應前SEM圖 68
圖4.24 沉積不同濃度鈀觸媒的3μm鐵粉與單純3μm鐵粉水熱產氫速率 比較 71
圖4.25 沉積不同濃度鈀觸媒的3μm鐵粉反應後之XRD分析圖譜 71
圖4.26 沉積不同濃度鈀觸媒的3μm鐵粉產氫後SEM圖 72
圖4.27 沉積不同濃度鈀觸媒的45μm鐵粉與單純45μm鐵粉水熱產氫速率比較 74
圖4.28 沉積不同濃度鈀觸媒的45μm鐵粉反應後之XRD分析圖譜 74
圖4.29 沉積不同濃度鈀觸媒的45μm鐵粉產氫後SEM圖 75
圖4.30 沉積不同濃度鈀觸媒的60 mesh鐵粉與單純60 mesh鐵粉水熱產 氫速率比較 77
圖4.31 沉積不同濃度鈀觸媒的60 mesh鐵粉反應後之XRD分析圖譜 77
圖4.32 沉積不同濃度鈀觸媒的60 mesh鐵粉產氫後SEM圖 78
圖4.33 水熱反應產生之氣體經由氣相層析儀分析之結果 79


1.南區奈米科技K-12教育發展中心, 奈米科技-基礎、應用與實作, 高立, 臺北, (2005).
2.R.P. Feynman, A lecture in engineering and science, In California Institute of Technology (1959).
3.江宜蓁, 以有機金屬法合成具磁性奈米粒子與光學特性之金屬複合奈米材料, 國立成功大學化學工程研究所博士論文,( 2008).
4.A.L. Porter, J. Youtie, How interdisciplinary is nanotechnology?, J. Nanopart. Res., 11, 1023-1041. (2009)
5.Website: http://sunnywin.begonia.tw/chi/nanometer_1/.
6.C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects, J. Mater. Chem., 11, 2887-2894. (2001)
7.蘇品書, 超微粒子材料技術, 復漢, 臺南, (1989).
8.莊萬發, 超微粒子理論應用, 復漢, 臺南, (1995).
9.Website: http://www.materialsnet.com.tw/DocView.aspx?id=8247.
10.工研院工業材料研究所, 材料奈米科技專刊, 經濟部技術處, 臺北, (2001).
11.徐國財、張立德, 奈米複合材料, 五南, 臺北, (2004).
12.尹邦耀, 奈米時代, 五南, 臺北, (2002).
13.毛宗強, 氫能-21世紀的綠色能源, 新文京, 臺北, (2008).
14.M. Rydén, M. Arjmand, Continuous hydrogen production via the steam–iron reaction by chemical looping in a circulating fluidized-bed reactor, Int. J. Hydrogen Energy, 37, 4843-4854. (2012)
15.A.K. Singh, M. Yadav, K. Aranishi, Q. Xu, Temperature-induced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine, Int. J. Hydrogen Energy, 37, 18915-18919. (2012)
16.Y. Zhao, Z. Ning, J. Tian, H. Wang, X. Liang, S. Nie, Y. Yu, X. Li, Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties, J. Power Sources, 207, 120-126. (2012)
17.S. Duman, S. Özkar, Hydrogen generation from the dehydrogenation of ammonia–borane in the presence of ruthenium(III) acetylacetonate forming a homogeneous catalyst, Int. J. Hydrogen Energy, 38, 180-187. (2013)
18.市川勝, 圖解氫能源, 世茂, 新北市, (2009).
19.K. Brooks, M. Devarakonda, S. Rassat, J. Holladay, Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications, J.Fuel Cell Sci. Technol., 8, 061021. (2011)
20.M.D. Paster, R.K. Ahluwalia, G. Berry, A. Elgowainy, S. Lasher, K. McKenney, M. Gardiner, Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions, Int. J. Hydrogen Energy, 36, 14534-14551. (2011)
21.A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91, 157-172. (2004)
22.S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species, J. Catal., 228, 66-74. (2004)
23.M. Thaler, V. Hacker, Storage and separation of hydrogen with the metal steam process, Int. J. Hydrogen Energy, 37, 2800-2806. (2012)
24.I. Vishnevetsky, A. Berman, M. Epstein, Features of solar thermochemical redox cycles for hydrogen production from water as a function of reactants’ main characteristics, Int. J. Hydrogen Energy, 36, 2817-2830. (2011)
25.C.D. Bohn, J.P. Cleeton, C.R. Müller, S.Y. Chuang, S.A. Scott, J.S. Dennis, Stabilizing Iron Oxide Used in Cycles of Reduction and Oxidation for Hydrogen Production, Energy Fuels, 24, 4025-4033. (2010)
26.A. Singh, F. Raqom, J. Klausner, J. Petrasch, Production of hydrogen via an Iron/Iron oxide looping cycle: Thermodynamic modeling and experimental validation, Int. J. Hydrogen Energy, 37, 7442-7450. (2012)
27.M. Thaler, V. Hacker, M. Anilkumar, J. Albering, J. Besenhard, H. Schrottner, M. Schmied, Investigations of cycle behaviour of the contact mass in the RESC process for hydrogen production, Int. J. Hydrogen Energy, 31, 2025-2031. (2006)
28.P.A. Lessing, Materials for hydrogen generation via water electrolysis, J. Mater. Sci., 42, 3477-3487. (2007)
29.D.L. Stojić, M.P. Marčeta, S.P. Sovilj, Š.S. Miljanić, Hydrogen generation from water electrolysis—possibilities of energy saving, J. Power Sources, 118, 315-319. (2003)
30.P.K. Dubey, A.S.K. Sinha, S. Talapatra, N. Koratkar, P.M. Ajayan, O.N. Srivastava, Hydrogen generation by water electrolysis using carbon nanotube anode, Int. J. Hydrogen Energy, 35, 3945-3950. (2010)
31.S. Usui, S. Kikawa, N. Kobayashi, J. Yamamoto, Y. Ban, K. Matsumoto, Comparison of Forward and Reverse Reactions in Hydrogen Generation between GaN, InGaN, Nanocrystalline TiO2 and Pt Electrodes during Water Electrolysis, Jpn. J. Appl. Phys., 47, 8793-8795. (2008)
32.N. Shimizu, S. Hotta, T. Sekiya, O. Oda, A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply, J. Appl. Electrochem., 36, 419-423. (2005)
33.電子工業部第十設計研究院, 氫氣生產與純化(水電解製氫), 黑龍江科學技術出版社, 哈爾濱, (1983).
34.F. Lapicque, J. Lédé, J. Villermaux, Production of hydrogen by direct thermal decomposition of water, Int. J. Hydrogen Energy, 8, 675-679. (1983)
35.S. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29, 1451-1458. (2004)
36.M.A. Rosen, Advances in hydrogen production by thermochemical water decomposition: A review, Energy, 35, 1068-1076. (2010)
37.L. Xiao, S.Y. Wu, Y.R. Li, Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions, Renewable Energy, 41, 1-12. (2012)
38.Q.L. Meng, C.I. Lee, H. Kaneko, Y. Tamaura, Solar thermochemical process for hydrogen production via two-step water splitting cycle based on Ce1−xPrxO2−δ redox reaction, Thermochim. Acta, 532, 134-138. (2012)
39.A. Ozbilen, I. Dincer, M.A. Rosen, Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu–Cl cycles, J. Cleaner Prod., 33, 202-216. (2012)
40.R. Liberatore, A. Ceroli, M. Lanchi, A. Spadoni, P. Tarquini, Experimental vapour–liquid equilibrium data of HI–H2O–I2 mixtures for hydrogen production by Sulphur–Iodine thermochemical cycle, Int. J. Hydrogen Energy, 33, 4283-4290. (2008)
41.R. Liberatore, M. Lanchi, G. Caputo, C. Felici, A. Giaconia, S. Sau, P. Tarquini, Hydrogen production by flue gas through sulfur–iodine thermochemical process: Economic and energy evaluation, Int. J. Hydrogen Energy, 37, 8939-8953. (2012)
42.P. Zhang, S.Z. Chen, L.J. Wang, T.Y. Yao, J.M. Xu, Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodine–sulfur process, Int. J. Hydrogen Energy, 35, 10166-10172. (2010)
43.S. Abanades, P. Charvin, F. Lemont, G. Flamant, Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen, Int. J. Hydrogen Energy, 33, 6021-6030. (2008)
44.V. Rosenband, A. Gany, Application of activated aluminum powder for generation of hydrogen from water, Int. J. Hydrogen Energy, 35, 10898-10904. (2010)
45.M. Watanabe, Chemical reactions in cracks of aluminum crystals: Generation of hydrogen from water, J. Phys. Chem. Solids, 71, 1251-1258. (2010)
46.K. Mahmoodi, B. Alinejad, Enhancement of hydrogen generation rate in reaction of aluminum with water, Int. J. Hydrogen Energy, 35, 5227-5232. (2010)
47.D.P. Gregory, J.B. Pangborn, Hydrogen Energy, Annu. Rev. Energy, 1, 279-310. (1976)
48.V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, K. Kordesch, Hydrogen production by steam–iron process, J. Power Sources, 86, 531-535. (2000)
49.K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power Sources, 122, 111-121. (2003)
50.K.H. Seong, J.S. Lee, Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides, Mater. Sci. Forum, 534, 137-140. (2007)
51.K.F. Chen, S. Li, W.X. Zhang, Renewable hydrogen generation by bimetallic zero valent iron nanoparticles, Chem. Eng. J., 170, 562-567. (2011)
52.Y. Wang, F. Jin, X. Zeng, G. Yao, Z. Jing, A novel method for producing hydrogen from water with Fe enhanced by HS− under mild hydrothermal conditions, Int. J. Hydrogen Energy, 38, 760-768. (2012)
53.C.Y. Park, T.H. Lee, S.E. Dorris, U. Balachandran, Hydrogen production from fossil and renewable sources using an oxygen transport membrane, Int. J. Hydrogen Energy, 35, 4103-4110. (2010)
54.J. Dufour, D.P. Serrano, J.L. Gálvez, J. Moreno, A. González, Hydrogen Production from Fossil Fuels: Life Cycle Assessment of Technologies with Low Greenhouse Gas Emissions, Energy Fuels, 25, 2194-2202. (2011)
55.C.C. Cormos, Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems, Int. J. Hydrogen Energy, 36, 5960-5971. (2011)
56.J. Dufour, D.P. Serrano, J.L. Gálvez, A. González, E. Soria, J.L.G. Fierro, Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources, Int. J. Hydrogen Energy, 37, 1173-1183. (2012)
57.A. Smoliński, Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification, Energy Convers. Manage., 52, 37-45. (2011)
58.C.R. Müller, C.D. Bohn, Q. Song, S.A. Scott, J.S. Dennis, The production of separate streams of pure hydrogen and carbon dioxide from coal via an iron-oxide redox cycle, Chem. Eng. J., 166, 1052-1060. (2011)
59.K. Stańczyk, K. Kapusta, M. Wiatowski, J. Świądrowski, A. Smoliński, J. Rogut, A. Kotyrba, Experimental simulation of hard coal underground gasification for hydrogen production, Fuel, 91, 40-50. (2012)
60.L. Zeng, F. He, F. Li, L.S. Fan, Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation, Energy Fuels, 26, 3680-3690. (2012)
61.K. Kumabe, H. Moritomi, W. Ito, S. Kambara, T. Minowa, K. Sakanishi, Material balances of major and trace elements in hydrogen production process from coal with CO2 recovery, Fuel, 107, 40-46. (2013)
62.S.K. Saxena, V. Droz, S. Kumar, A modified method for production of hydrogen from methane, Int. J. Energy Research, 36, 1133-1138. (2012)
63.N. Demir, Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles, Int. J. Hydrogen Energy, 38, 853-860. ( 2013)
64.K. Oshima, T. Shinagawa, M. Haraguchi, Y. Sekine, Low temperature hydrogen production by catalytic steam reforming of methane in an electric field, Int. J. Hydrogen Energy, 38, 3003-3011. (2013)
65.W.H. Chen, Y.C. Cheng, C.I. Hung, Entropy generation from hydrogen production of catalytic partial oxidation of methane with excess enthalpy recovery, Int. J. Hydrogen Energy, 37, 14167-14177. (2012)
66.A. Motamed Dashliborun, S. Fatemi, A. Taheri Najafabadi, Hydrogen production through partial oxidation of methane in a new reactor configuration, Int. J. Hydrogen Energy, 38, 1901-1909. (2013)
67.A.M. Amin, E. Croiset, Z. Malaibari, W. Epling, Hydrogen production by methane cracking using Ni-supported catalysts in a fluidized bed, Int. J. Hydrogen Energy, 37, 10690-10701. (2012)
68.A. Abánades, C. Rubbia, D. Salmieri, Technological challenges for industrial development of hydrogen production based on methane cracking, Energy, 46, 359-363. (2012)
69.L. Wei, Y.S. Tan, Y.Z. Han, J.T. Zhao, J. Wu, D. Zhang, Hydrogen production by methane cracking over different coal chars, Fuel, 90, 3473-3479. (2011)
70.J. Kim, Y. Sohn, M. Kang, New fan blade-like core-shell Sb2TixSy photocatalytic nanorod for hydrogen production from methanol/water photolysis, Int. J. Hydrogen Energy, 38, 2136-2143. (2013)
71.S. Tuomi, A.S. Aarnio, P. Kanninen, T. Kallio, Hydrogen production by methanol–water solution electrolysis with an alkaline membrane cell, J. Power Sources, 229, 32-35. (2013)
72.P.J. Lindner, R.S. Besser, Hydrogen production by methanol reforming in a non-thermal atmospheric pressure microplasma reactor, Int. J. Hydrogen Energy, 37, 13338-13349. (2012)
73.R. Chein, Y.C. Chen, J.N. Chung, Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production, Appl. Energy, 102, 1022-1034. (2013)
74.X. Du, Y. Shen, L. Yang, Y. Shi, Y. Yang, Experiments on hydrogen production from methanol steam reforming in the microchannel reactor, Int. J. Hydrogen Energy, 37, 12271-12280. (2012)
75.Y.M. Yun, K.W. Jung, D-H. Kim, Y.K. Oh, H.S. Shin, Microalgal biomass as a feedstock for bio-hydrogen production, Int. J. Hydrogen Energy, 37, 15533-15539. (2012)
76.P. Kuchonthara, B. Puttasawat, P. Piumsomboon, L. Mekasut, T. Vitidsant, Catalytic steam reforming of biomass-derived tar for hydrogen production with K2CO3/NiO/γ-Al2O3 catalyst, Korean J. Chem. Eng., 29, 1525-1530. (2012)
77.A. Bhattacharya, A. Datta, Modeling of hydrogen production process from biomass using oxygen blown gasification, Int. J. Hydrogen Energy, 37, 18782-18790. (2012)
78.李建政、任南琪, 生物製氫技術的研究與發展, 能源工程, 2, 6. (2001)
79.魏琪、孫啟玲、張興宇, 關於生物制氫, 微生物學雜誌, 6, 17. (2002)
80.D.C. Zhong, K. Aranishi, A.K. Singh, U.B. Demirci, Q. Xu, The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage, Chem. Commun., 48, 11945-11947. (2012)
81.S.K. Singh, Y. Iizuka, Q. Xu, Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage, Int. J. Hydrogen Energy, 36, 11794-11801. (2011)
82.S.K. Singh, Q. Xu, Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine, Chem. Commun. , 46, 6545-6547. (2010)
83.C.H. Liu, B.H. Chen, C.L. Hsueh, J.R. Ku, M.S. Jeng, F. Tsau, Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts, Int. J. Hydrogen Energy, 34, 2153-2163. (2009)
84.X. Shen, M. Dai, M. Gao, B. Zhao, W. Ding, Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride, Chin. J. Catal., 34, 979-985. (2013)
85.F. Qiu, L. Li, G. Liu, Y. Wang, Y. Wang, C. An, Y. Xu, C. Xu, Y. Wang, L. Jiao, H. Yuan, In situ synthesized Fe–Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 38, 3241-3249. (2013)
86.M. Rakap, S. Özkar, Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy, 35, 1305-1312. (2010)
87.W. Hui, S. Takenaka, K. Otsuka, Hydrogen storage properties of modified fumed-Fe-dust generated from a revolving furnace at a steel industry, Int. J. Hydrogen Energy, 31, 1732-1746. (2006)
88.胡子龍, 儲氫材料, 化學工業出版社, 北京, (2002).
89.R. Fernandes, N. Patel, A. Paris, L. Calliari, A. Miotello, Improved H2 production rate by hydrolysis of Ammonia Borane using quaternary alloy catalysts, Int. J. Hydrogen Energy, 38, 3313-3322. (2013)
90.胡興中, 觸媒原理與應用, 高立, 台北, (1991).
91.吳榮宗, 工業觸媒概論, 黎明, 新竹, (1989).
92.G. Milazzo, S. Caroli, V.K. Sharma, Tables of Standard Electrode Potentials, (1978).
93.G.B. Marin, F. Kapteijn, J.A. Moulijn, Catalytic Reaction Engineering, Catalysis:an Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, Elsevier, 251-306. (1993)
94.S. Mukhopadhyay, G. Rothenberg, H. Wiener, Y. Sasson, Solid–solid palladium-catalysed water reduction with zinc: mechanisms of hydrogen generation and direct hydrogen transfer reactions, New J. Chem., 24, 305-308. (2000)
95.M. Pudukudy, Z. Yaakob, B. Narayanan, R. Ramakrishnan, S. Viswanathan, Hydrogen production from sea water using waste aluminium and calcium oxide, Int. J. Hydrogen Energy, 37, 7451-7456. (2012)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 羅秋雄、黃伯恩(1990)。水旱田耕作制度調整對地力維護之探討。臺灣農業,
2. 羅秋雄、黃伯恩(1990)。水旱田耕作制度調整對地力維護之探討。臺灣農業,
3. 羅秋雄、黃伯恩(1990)。水旱田耕作制度調整對地力維護之探討。臺灣農業,
4. 蔡昇甫(2006)。水田之功能與效益評估。農田水利,50(10):10-17。
5. 蔡昇甫(2006)。水田之功能與效益評估。農田水利,50(10):10-17。
6. 蔡昇甫(2006)。水田之功能與效益評估。農田水利,50(10):10-17。
7. 蔣慕琰(1995)。水田雜草概觀:種類、生態及防治。植物保護學會會刊,37:
8. 蔣慕琰(1995)。水田雜草概觀:種類、生態及防治。植物保護學會會刊,37:
9. 蔣慕琰(1995)。水田雜草概觀:種類、生態及防治。植物保護學會會刊,37:
10. 蔣慕琰、蔣永正(2007)。台灣農地雜草概況。農業世界雜誌,284:10-18。
11. 蔣慕琰、蔣永正(2007)。台灣農地雜草概況。農業世界雜誌,284:10-18。
12. 蔣慕琰、蔣永正(2007)。台灣農地雜草概況。農業世界雜誌,284:10-18。
13. 劉健哲、廖盈雁(2005)。休耕問題之探討。農業世界雜誌,259:94-100。
14. 劉健哲、廖盈雁(2005)。休耕問題之探討。農業世界雜誌,259:94-100。
15. 劉健哲、廖盈雁(2005)。休耕問題之探討。農業世界雜誌,259:94-100。