跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾彥迪
研究生(外文):Yan-DiTseng
論文名稱:以混摻室溫離子液體之模版高分子薄膜修飾電極進行對膽紅素之電流式感測
論文名稱(外文):Amperometric sensing of bilirubin via an imprinted polymer modified electrode doped with a room-temperature ionic liquid
指導教授:許梅娟許梅娟引用關係
指導教授(外文):Mei-Jywan Syu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:膽紅素分子模版高分子室溫離子液體電流式感測
外文關鍵詞:bilirubinmolecularly imprinted polymersroom-temperature ionic liquidamperometric sensing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膽紅素 (Bilirubin),為人體血紅蛋白代謝產物之一,大部分膽紅素來自於衰老紅血球中血紅素的分解代謝,而血紅素的濃度可反映肝功能是否異常。因此血清中膽紅素的濃度常是作為判斷肝臟疾病的重要生理指標。
本研究是以分子模印 (molecular imprinting) 技術,結合室溫離子液體 (room-temperature ionic liquid, RTIL),以發展具特異性吸附,且具有電化學感電性之膽紅素模版高分子薄膜,以此製備對膽紅素具專一性的電流式感測電極,並進行相關探討。
混摻室溫離子液體混摻之模版高分子 (room-temperature ionic liquid doped molecularly imprinting polymer, RTIL-MIP) 薄膜修飾電極之製備,乃是以膽紅素為模版分子,以單體methacrylic acid (MAA) 與交聯劑 ethylene glycol dimethylacrylate (EGDMA),搭配1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([BMIM][Tf2N]) 室溫離子液體,在 2,2-azo-bis-isobutyronitrile (AIBN) 起始劑 作用下,進行熱聚合,於金電極表面形成膽紅素模版高分子薄膜,經SEM影像觀察可知,薄膜厚度相當均勻;平均厚度約為1.98 ± 0.03 μm。經萃洗移除膽紅素,此高分子薄膜表面即可留下對膽紅素分子具辨識性之孔洞 (cavity)。因膽紅素在適當電位下,具有電化學反應活性,因此就可利用電流感測方式分析其濃度。
本研究亦探討膽紅素感測訊號與模印因子 (imprinting factor) 之關係及影響模印效果之變數。RTILs有助於提升模版高分子電極之感測訊號,且此電極在低濃度膽紅素範圍下 (0.2 ~ 1.0 mg/dL) 具有相當好的模印效果,模印因子可達5.52 ± 0.09,靈敏度為0.367 ± 0.019 μA/cm2/mg/dL。而RTIL-MIP電極在膽綠素共存下對膽紅素之選擇性約為2.13 ± 0.02。在干擾性測試中,儘管在小牛血清的環境下,仍可偵測出膽紅素,且靈敏度與未添加膽紅素時差異不大,證實本實驗所製備的RTIL-MIP電極具有抗血清干擾的能力。
Bilirubin is the metabolite of human hemoglobin. The concentration of bilirubin in serum is often regarded as an important physiological indicator of liver diseases.
The electrochemical sensing of bilirubin was developed the molecularly imprinted polymer film modified electrode doped with room-temperature ionic liquids (RTILs) is investigation of fabricated in this work for the specific binding and electrochemical properties.
For the preparation of the imprinted polymer, bilirubin was the template molecule, by using molecular imprinting methacrylic acid (MAA) and ethylene glycol dimethylacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. RTIL, 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([BMIM][TF2N]) for the synthesis of bilirubin imprinted polymer film by heated polymerization in the presence of the initiator 2,2-azo-bis-isobutyronitrile (AIBN). The scanning electron microscopic image show that the imprinted polymer film thus synthesized was rather uniform and the average thickness was approximate 1.98 ± 0.03 m。After extraction, a large portion of bilirubin templates was removed. Therefore, the polymer film would be left with cavity specific for the binding of bilirubin. Via which, the electrochemical detection of bilirubin could be possible to carry out.
In summary, RTILs may improve the signals of the MIP electrodes. The imprinting factor of 5.52 ± 0.09 and the sensitivity of 0.367 ± 0.019 μA/cm2/mg/dL cound be achieved at the low concentration range (0.2-1.0 mg/dL) from the RTIL-MIP electrode fabricated in this work. The selectivity of bilirubin against biliverdin is 2.13 ± 0.02. For interference test, bilirubin was further detected by the RTIL-MIP electrode in the presence of bovine calf serum (BCS) and the sensitivity was nearly the same as the background to background of water. Thus, it confirms the RTIL-MIP electrode may avoid the interference from serum. The results indicate the feasibility of using the RTIL-MIP electrode for the detection of bilirubin in serum.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
第一章 緒論 1
1-1生物化學感測器 1
1-1-1 生化接收元件 (Bioreceptor) 2
1-1-1-1 抗體-抗原 2
1-1-1-2 酵素 2
1-1-1-3 DNA 2
1-1-1-4 微生物 3
1-1-1-5 仿生物受體 3
1-1-2 訊號轉換器 (Transducer) 3
1-1-2-1 光學式感測器 3
1-1-2-2 質量式感測器 5
1-1-2-3 電化學式感測器 5
1-2 分子模版高分子 (Molecularly imprinted polymer, MIP) 10
1-2-1 發展歷史 10
1-2-2 製備流程 11
1-2-2-1 非共價鍵型 (Non-covalent bond) 12
1-2-2-2 共價鍵型 (Covalent bond) 12
1-2-2-3 半共價鍵型 (Cocktail) 12
1-2-2-4 金屬離子螯合型 (Metal ions chelation) 13
1-2-3 材料組成 13
1-2-3-1 模版分子 (Template) 13
1-2-3-2 功能性單體 (Functional monomer) 14
1-2-3-3 交聯劑 (Cross-linker) 14
1-2-3-4 溶劑 (Solvent) 14
1-3 膽紅素 (Bilirubin) 15
1-3-1 代謝過程 15
1-3-2 黃疸症狀 (Jaundice) 16
1-3-3 量測方法 16
1-3-4 電化學機制 18
1-4 室溫離子液體 (Room-temperature ionic liquids) 18
1-5 文獻回顧 19
1-6 研究動機 20
第二章 實驗方法與材料 21
2-1 膽紅素濃度之測定法 21
2-1-1 配製試劑 21
2-1-2 測定方法 21
2-2 混摻離子液體之模版高分子薄膜修飾電極製備流程 23
2-2-1 氧化鋁板之濺鍍 23
2-2-2 製備混摻室溫離子液體之模版高分子薄膜修飾電極 23
2-2-3 RTIL-MIP 電極與RTIL-NIP 電極之萃洗 23
2-3 膽紅素模版高分子薄膜修飾電極之電化學分析 24
2-3-1 定電位 I-t 電流式感測膽紅素 24
2-3-2 定電位 I-t 電流式感測不同膽紅素濃度範圍 26
2-3-3 循環伏安法對電極之電化學性質探討 26
2-3-4 電化學阻抗分析 27
2-3-5 選擇性測試 27
2-3-6 干擾性測試 27
2-3-7 重複使用性 27
2-3-8 保存性測試 28
2-4 膽紅素模版高分子薄膜修飾電極之表面分析 28
2-5 傅立葉紅外線光譜儀分析 (FT-IR) 28
2-6 實驗藥品 29
2-7 實驗儀器 30
第三章 結果與討論 31
3-1 膽紅素模版高分子材料 31
3-2 探討模版高分子材料組成之參數 32
3-2-1 電流式感測分析法 33
3-2-2 聚合溫度之影響 35
3-2-3 交聯劑之影響 35
3-2-4 離子液體之影響 35
3-2-5 聚合液體積之影響 36
3-3 模版高分子薄膜修飾電極之FT-IR圖譜分析 41
3-4 模版高分子薄膜修飾電極之SEM分析 43
3-5 探討模版高分子薄膜修飾電極之電化學性質 46
3-5-1 循環伏安法 46
3-5-2 線性掃描伏安法 49
3-5-3 阻抗分析 49
3-6 模版高分子薄膜修飾電極之效能探討 53
3-6-1 感測濃度範圍之探討 53
3-6-2 重複使用性測試 57
3-6-3 保存性測試 58
3-7 選擇性測試 59
3-8 干擾性測試 61
第四章 結論 65
參考文獻 66
[1]B. R. Eggins, Chemical Sensors and Biosensors, John Wiley, 2002
[2]T. Vo-Dinh, B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius J Anal Chem, 366, 540-551, 2000
[3]B. Lu, M. R. Smyth, R. O’Kennedy, Oriented immobilization of antibodies and its applications in immunoassays and immunosensors, Analyst, 121, 29R-32R, 1996
[4]M. J. Syu, Y. S. Chang, Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix, Biosens Bioelectron, 24, 2671-2677, 2009
[5]F. Davis, M.A. Hughes, A.R. Cossins, S.P. Higson, Single gene differentiation by DNA-modified carbon electrodes using an AC impedimetric approach. Anal Chem, 79, 1153-1157, 2007
[6]楊竣翔,以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之電子/質子傳導方式進行對膽紅素之電化學感測,國立成功大學化學工程學系碩士論文,2007
[7]邱琮傑,以分子模版材料製備之電極進行對膽紅素感測之探討,國立成功大學化學工程學系碩士論文,2006
[8]J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, N. Sugimoto, SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles, Anal Chem, 77, 4282-4285, 2005
[9]M.A. Cooper, Optical biosensors in drug discovery, Nat Rev Drug Discov, 1, 515-528, 2002
[10]K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecul, 4,1100-1120, 2003
[11]B.R. Eggins, ISFET, Theory and Practice, IEEE Sensor Conference, Toronto, 2003
[12]B.H. van der Schoot, P. Bergveld, ISFET Based Enzyme Sensors, Biosensors, 3, 161-186, 1987
[13]Douglas A. Skoog, F. James Holler, R. Stanley, Principles of Instrumental Analysis, 5th Ed., 1997
[14]H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chimi Acta, 594, 175-183, 2007
[15]T.T.N. Lien, M. Chikae, Y. Ukita, Y. Takamura, Labelless impedance immunosensor based on polypyrrole-pyrolecarborxylic acid copolymer for hCG detection, Talanta, 85, 2576-2580, 2011
[16] D.C. Apodaca, R.B. Pernites, R. Ponnapati, F.R. Del Mundo, R.C. Advincula, Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A, Macromolecules, 44, 6669-6682, 2011
[17] L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem Soc Rev, 40, 2922-2942, 2011
[18] C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O'Mahony and M. J. Whitcombe, J. Mol. Recognit., Review: molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J Mol Recognit, 19, 106-180, 2006
[19] J.O. Mahony, K. Nolan, M.R. Smyth, B. Mizaikoff, Molecularly imprinted polymers-
potential and challenges in analytical chemistry, Anal Chimi Acta, 534, 31-39, 2005
[20] Z.H. Meng, J.F. Wang, L.G. Zhou, Q.H. Wang, D.Q. Zhu, High performance cocktail functional monomer for making molecule imprinting polymer, Anal Sci, 15, 141-144, 1999
[21] K. Noworyta, W. Kutner, C.A. Wijesinghe, S.G. Srour, F. D’Souza, Nicotine, cotinine and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors, Anal Chem, 84, 2154-2163, 2012
[22] A.G. Mayes, M.J. Whitcombe, Synthetic strategies for the generation of molecularly imprinted organic polymers, Adv Drug Delivery Rev, 57, 1742-1778, 2005
[23] M. Riskin, Y. Ben-Amram, R. Tel-Vered, V. Chegel, J. Almog, I. Willner, Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate, Anal Chem, 83, 3082-3088, 2011
[24] M. Riskin, R. Tel-Vered, T. Bourenko, E. Granot, I. Willner, imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions, J Am Chem Soc, 130, 9726-9733, 2008
[25] K. Karim, F. Breton, R. Rouillon, E.V. Piletska, A. Guerreiro, I. Chianella, S.A. Piletsky, How to find effective functional monomers for effective molecularly imprinted polymers ? , Adv Drug Delivery Rev, 57, 1795-1808, 2005
[26] G. Guan, S. Wang, H. Zhou, K. Zhang, R. Liu, Q. Mei, S. Wang, Z. Zhang, Molecularly imprinted polypyrrole nanonecklaces for detection of herbicide through molecular recognition-amplifying current response, Anal Chimi Acta, 702, 239-246, 2011
[27] H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal Chimi Acta, 542, 83-89, 2005
[28] C. L. Choong, J. S. Bendall, W. I. Milne, Carbon nanotube array: A new MIP platform, Biosens and Bioelectron, 25, 652-656, 2009
[29] T. Dorner, B. Knipp, D.A. Lightner, Heteronuclear NOE analysis of bilirubin solution conformation and intramolecular hydrogen bonding, Tetrahedron, 53, 8, 2697-2716, 1997
[30] D.A. Lightner, A.F. McDonagh, Molecular mechanisms of phototherapy for neonatal jaundice, Acco Chem Research, 17, 417-424, 1984
[31] A.F. McDonagh, Turning green to gold, Natu Struc Biology, 8, 3, 198-200, 2001
[32] L. Gilmore, C.J. Garvey, Investigation of jaundice, Medicine, 30, 11-13, 2002
[33] P. Kannan, H. Chen, V.T. W. Lee, D.H. Kim, Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol–gel film modified electrode, Talanta, 86, 400-407, 2011
[34] A.G. Cherlan, S.J. Soldin, J.G. Hill, Automated jendrassik-grof method for measurement of bilirubin in serum with the greiner selective analyzer, and comparison with the method involving diazotized 2,4-dichioroaniline, Clin Chem, 27, 5, 748-752, 1981
[35] J.D. Van Norman and R. Szentirmay, Chemistry of bilirubin and biliverdin in N,N-dimethylformamide, Anal Chem, 46, 11, 1456-1464, 1974
[36] CH. Slifstein, M. Ariel, The electrochemistry of bilirubin in dimethylsulfoxide, Electroanalyt Chem Interja Electrochem, 48, 447-463, 1973
[37] F. Moussa, G. KaDoute, C. Herrenknecht, P. Levillain, F. Trivin, Electrochemical oxidation of bilirubin and biliverdin in dimethylsulfoxide, Anal Chem, 60, 1179-1185, 1988
[38] D. Wei, A. Ivaska, Applications of ionic liquids in electrochemical sensors, Anal Chimi Acta, 607, 126–135, 2008
[39] J. Lua, F. Yan, J. Texterc, Advanced applications of ionic liquids in polymer science, Progress in Polymer Science, 34, 431-448, 2009
[40] M.J.A. Shiddiky, A.A.J. Torriero, Application of ionic liquids in electrochemical sensing systems, Biosens Bioelectron, 26,1775-1787, 2011
[41] M. Opallo, A. Lesniewski, A review on electrodes modified with ionic liquids, J Electro Chem, 656, 2-16, 2011
[42] H.F. Wang, Y.Z. Zhu, X.P. Yan, R.Y. Gao, J.Y. Zheng, A room temperature ionic liquid (RTIL)-mediated, non-hydrolytic sol–gel methodology to prepare molecularly imprinted, silica-based hybrid monoliths for chiral separation, Adv Mat, 18, 3266-3270, 2006
[43] C. He, Y. Long, J. Pan, K. Li, F. Liu, Moleculrly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone, Talanta, 74, 1126-1131, 2008
[44] X. Luo, R. Dong, S. Luo, Y. Zhan, X. Tu, L. Yang, Preparation of water-compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer, J Appl Poly Sci, 2884-2890, 2013
[45] M. Tian, W. Bi, K. H. Row, Molecular imprinting in ionic liquid-modified porous polymer for recognitive separation of three tanshinones from Salvia miltiorrhiza Bunge, Anal Bioanal Chem, 399, 2495-2502, 2011
[46] M.J. Syu, T.C. Chiu, C.Y. Lai, Y.S. Chang, Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film, Biosens Bioelectron, 22 , 550-557, 2006
[47] 石家銘,以分子模版 poly(AMPS-co-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測,國立成功大學化學工程學系碩士論文,2008
[48] 吳岸樺,膽紅素模版高分子薄膜之製備及在感測上之應用與探討,國立成功大學化學工程學系碩士論文,2004
[49] R. Brodersen, Bilirubin solubility and interaction with albumin and phospholipid, J Bio Chem, 254, 7, 2364-2369, 1979
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳錦章、邱富宏(2001)。網路學習環境建構的新理念:融入後設認知策略與認知工具的網路學習環境建置的概念。教學科技與媒體,58,2-12。
2. 陳錦章、邱富宏(2001)。網路學習環境建構的新理念:融入後設認知策略與認知工具的網路學習環境建置的概念。教學科技與媒體,58,2-12。
3. 陳伯璋(1999a):九年一貫新課程綱要修訂的背景及內涵。教育研究資訊,7(1),1-13頁。
4. 陳伯璋(1999a):九年一貫新課程綱要修訂的背景及內涵。教育研究資訊,7(1),1-13頁。
5. 張國恩(2002)。從學習科技的發展看資訊融入教學的內涵。發表於「台北縣九十學年度在職教師資訊培訓研討會」。台北縣:台北縣教育資訊中心。
6. 張國恩(2002)。從學習科技的發展看資訊融入教學的內涵。發表於「台北縣九十學年度在職教師資訊培訓研討會」。台北縣:台北縣教育資訊中心。
7. 魏惠娟(2002)。建構學習型組織的概念架構及其在學校的實踐。商管科技季刊。第三卷,第四期,P319-355。
8. 魏惠娟(2002)。建構學習型組織的概念架構及其在學校的實踐。商管科技季刊。第三卷,第四期,P319-355。
9. 蔡進雄(2003)。學校領導的新思維:建立教師學習社群。技術及職業教育雙月刊,78,42-46。
10. 蔡進雄(2003)。學校領導的新思維:建立教師學習社群。技術及職業教育雙月刊,78,42-46。
11. 潘淑華(2010)。發表教學法在體育教學的應用。學校體育,120(10)。
12. 潘淑華(2010)。發表教學法在體育教學的應用。學校體育,120(10)。
13. 葉連祺(2004)。教育行政-SWOT分析。教育研究月刊,124,135-136。
14. 葉連祺(2004)。教育行政-SWOT分析。教育研究月刊,124,135-136。
15. 游家政(2000)。學校課程的統整及其教學。課程與教學。3(1),19-38。