(3.235.245.219) 您好!臺灣時間:2021/05/07 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊昇
研究生(外文):Chun-ShengWu
論文名稱:對染料敏化太陽能電池內以三苯胺結構為基礎的染料分子再微調之設計:理論的觀點
論文名稱(外文):The Design of Refined Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells: Theoretical Perspective
指導教授:王小萍
指導教授(外文):Shao-Pin Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:205
中文關鍵詞:染料敏化太陽能電池三苯胺天然鍵性軌域
外文關鍵詞:Dye-Sensitized Solar CellsTriphenylamineNatural bond orbital
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一次確立 DFT/B3LYP 計算對現今染料太陽能電池 (DSSCs)研究領域,包括含苯基的共軛化合物 (phenyl conjuration compounds) 、香豆素衍生物 (coumarin derivatives) 與三苯胺衍生物 (triphenylamine derivatives) 染料分子,是可以提供可靠的物理量。其中的三苯胺衍生物除了 HOMOs 能量較高的缺點之外,是具有潛力並且熱門的染料分子。經由利用化學取代以調整 π-type molecular orbitals (MOs) 之研究,傳統概念中氟的拉電子 (electron-withdrawing) 特性是不足以描述利用氟取代以穩定 π-type MOs 能量失敗的結果。另外,三氟甲基接受 π-type MOs電子 (π-accepting) 之特性,則是依照它的電負度而所預期得到的效果,卻不管其負超共軛 (negative hyperconjugation, NHC) 論點中已確立的 π-accepting 之性質。在此,將利用這兩種取代基來調整以三苯胺結構為基礎的染料分子其 HOMO/LUMO 能量。
MO 能量變化是由於取代基位置的不同所造成,有此可證氟也具有不穩定 MO 的效應 (MO-destabilization effects) 。當氟所在的碳,其對 MO 的貢獻越高時,就會就會造成 MO 能量下降的比較,或是較高的 MO 能量。而對於 HOMO 的影響是來的比 LUMO 還要顯著,這是因為 HOMO 能量上是比較接近氟的價殼層 p orbital,即 2p(F) 。而 p orbital 的推升 HOMO/LUMO 之效應可以利用 LCBO-MO 分析進行解釋,其分析則利用 Weinhold 的 NBO 方法對 DFT 波函數進行鍵結軌域 (bond orbital) 或是定域化 MOs (localized MOs) 分析可獲得。當氟化後,其氟的一中心鍵結軌域 2p(F) 有較高之貢獻值時,就會造成較高的 HOMO 或是 LUMO 軌域能量。這種 2p(F) 與 HOMO/LUMO 之間的交互作用造成的能量抬升,可視為 MO 的變化是伴隨著廣為人知的中介效應 (mesomeric effect,也稱作共振或是共軛效應)所造成的影響。
此外,三氟甲基的反鍵結 CF bond,即 *CF ,也會參與衍生物 HOMO/LUMO 的混成。 *CF 扮演 π-accepting 造成 HOMO/LUMO 能量的下降,這和 NHC 論點是一樣的,並且會與 2p(F) 所造成的推升效果相互抵消。上述經由 pi-framework 影響 MO 能量的雙重特性,是可以解釋用三氟甲基調整磷光顏色文獻中所提出 “純粹誘導效應” 之結論。還有,立體效應效應會造成異常於上述電子效應的 MOs 能量上升,這與實驗室另一項調整 Ir(III) 錯合物螢光能量之研究,是不謀而合的。

The DFT/B3LYP calculations have first been confirmed to provide reliable physical quantities published recently in the area of DSSC studies. The triphenylamine derivatives are promising and popular dyes except their high-lying HOMOs. Through the studies of adjusting the energies of pi-type molecular orbitals using chemical substitution, the conventional electron-withdrawing nature of fluoro suffers poor to failure results in view of lowering pi-type MOs. Conversely, the pi-accepting nature of a trifluoromethyl group gives results complying with expected effects based on its EN values despite of its pi-accepting nature well established by the negative hyperconjugation argument. The two substituents have been adapted for modifying the levels of HOMO/LUMO of the Triphenylamine-based dyes.
The MO-destabilization effects exerted by a fluoro have been verified through the site-dependent observation of MO-energy variations. As it is introduced at a carbon having more contribution to the MO wavefunction, the lowering extent gets smaller or would even lead to a higher MO energy. This is more pronounced for HOMO than for LUMO since the former is closer in energy to the valence p-orbital of fluorine, 2p(F). The pushing-up effect of p-orbital on HOMO/LUMO can be explained by analysis of LCBO-MO, in which the bond orbitals or localized MOs are extracted from the DFT wavefunctions by the Weinhold’s NBO method. Fluorination performed at a carbon having higher value of the one-center BO, 2p(F), results in a higher MO-energy of HOMO or LUMO. This destabilization described by the orbital interaction between 2p(F) and HOMO/LUMO can be viewed as the MO-variations accompanied by the well known mesomeric (also termed as resonance or conjugation) effect.
In addition to the CF anti-bonding, *CF, the 2p(F) BO of a trifluoromethyl group also contributes to HOMO/LUMO of the derivatives. The pi-accepting role played by *CF, which would press down HOMO/LUMO according to NHC argument, is offset by the 2p(F) destabilization effect. This dual nature, which affects MO-energies via pi-framework, explains the reported “purely inductive effect” found for color-tuning using trifluoromethyl group. As well as we have found for tuning phosphorescent energies of Ir(III) complexes, the steric effect would operate as the exceptional destabilization of MOs is found based on the above-stated electronic effects.

目錄
中文摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 太陽輻射 3
1.3 半導體材料 4
1.4 太陽能電池 7
1.4.1 太陽能電池原理 8
1.4.2 單晶矽太陽能電池 9
1.4.3 多晶矽太陽能電池 9
1.4.4 非晶矽太陽能電池 10
1.4.5 化合物半導體太陽能電池 11
1.5 染料敏化太陽能電池 (Dye-Sensitized Solar Cells, DSSCs) 11
1.5.1 染料敏化太陽能電池的組成與結構 13
1.5.2 染料敏化太陽能電池 (DSSCs) 的工作原理 17
1.5.3 染料敏化太陽能電池 (DSSCs) 的重要參數及光電轉換效率 20
1.5.4 提升染料敏化太陽能電池 (DSSCs) 整體效率的策略方法 23
1.5.5 染料的錨接基和半導體種類對電子注射效率的影響 27
1.6 取代基的 π 效應 31
第二章 實驗 34
2.1 預測染料分子的光電化學性質 34
2.1.1 染料分子的最佳化結構 34
2.1.2 染料分子的電子注射效率 35
2.1.3 半導體導帶能階和電解質 (碘離子/三碘錯合物) 能階 36
2.2 染料的化學結構修飾所造成的影響 36
2.2.1 染料結構修飾的準則 36
第三章 計算原理及方法 39
3.1 計算原理 (The Principle of The Calculation Methods) 39
3.1.1 (Hartree Fock theory method, HF) 理論方法 39
3.1.2 密度泛函理論 (Density function theory, DFT) 40
3.1.3 基底 42
3.1.4 分裂 (Split) 基底 43
3.1.5 極化函數 (Polarization function) 43
3.1.6 擴散函數 (Diffuse function) 44
3.1.7 天然鍵結軌域 (Nature bond orbital, NBO) 44
3.2 計算方法 (Calculation Method) 46
3.2.1 選用軟體- Gaussian 98 46
3.2.2 GaussView 46
3.2.3 計算指令 47
3.2.4 選用基底 47
第四章 結果與討論 48
4.1 第一系列-含有苯基 (Phenyl) 的染料分子55 48
4.2 第二系列-香豆素 (Coumarin) 衍生物的染料分子26 56
4.3 第三系列-加入噻吩 (Thiophene) 的香豆素 (Coumarin) 染料分子72 69
4.4 具三苯胺結構的染料分子 (Triphenylamine-Based Dyes) 72
4.5 染料分子 TPA1 的修飾策略與整體效率的比較 74
4.5.1 氟 (F) 原子單取代在 TPA1 後的效果與比較 76
4.5.2 三氟甲基 (CF3) 單取代在 TPA1 後的效果與比較 80
4.5.3 取代基雙取代和三取代後的 TPA1 分子之效果與比較 85
4.5.4 推電子基氨基 (NH2) 取代在 TPA1 分子之效果與比較 86
第五章 結論 87
參考文獻 189
附錄 200











表目錄
表4-1 分子 1-a 不同幾合結構的能量 169
表4-2 分子 1-b 不同幾合結構的能量 169
表4-3 分子 2-a 不同幾合結構的能量 169
表4-4 三苯胺最穩定結構的二面角 170
表4-5 分子 2-c 不同幾合結構的能量 170
表4-6 分子 3-a 不同幾合結構的能量 171
表4-7 分子 1-a 的LCBO-MO 分析 171
表4-8 含苯基 (Phenyl) 的各分子之光電化學性質 172
表4-9 分子 C343 不同幾合結構的能量 173
表4-10 分子 NKX-2398 不同幾何結構的能量 173
表4-11 分子 NKX-2388 不同幾何結構的能量 173
表4-12 分子 NKX-2384 不同幾何結構的能量 174
表4-13 分子 NKX-2311 不同幾何結構的能量 174
表4-14 分子 NKX-2510 不同幾何結構的能量 174
表4-15 分子 NKX-2586 不同幾何結構的能量 175
表4-16 分子 NKX-2393 不同幾何結構的能量 175
表4-17 分子 NKX-2388 的LCBO-MO 分析 176
表4-18 分子 NKX-2384 的LCBO-MO 分析 176
表4-19 分子 NKX-2388 的22號碳原子 LCAO-MO 分析 177
表4-20 香豆素 (Coumarin) 衍生物的染料分子之光電化學性質 178
表4-21 分子 NKX-2593 不同幾何結構的能量 179
表4-22 分子 NKX-2677 不同幾何結構的能量 179
表4-23 含有噻吩 (Thiophene) 的香豆素 (Coumarin) 染料分子之光電化學性質 180
表4-24 分子 TPA1 、 TPA2 、 TPA3 和 TPA4 不同幾何結構的能量 181
表4-25 四個以三苯胺結構為基礎的染料分子之光電化學性質 182
表4-26 分子 TPA1 的 LCAO-MO 分析原子對軌域的貢獻 183
表4-27 TPA1 在氟 (F) 和三氟甲基 (CF3) 取代後的計算結果總整理 184
表4-28 TPA1 在氟取代後的各分子之光電化學性質 185
表4-29 TPA1 在三氟甲基取代後的各分子之光電化學性質 186
表4-30 TPA1 在雙取代和三取代後的各分子之光電化學性質 187
表4-31 TPA1 在氨基 (NH2) 取代後的各分子之光電化學性質 188


圖目錄
圖1-1 世界基本能源需求的趨勢圖 89
圖1-2 過去十年全球石油需求量示意圖 89
圖1-3 國際原油價格及台灣95無鉛汽油月平均零售價格趨勢圖 90
圖1-4 全球化石燃料二氧化碳排放趨勢圖 90
圖1-5 近百年全球平均氣溫變化示意圖 91
圖1-6 世界可再生能源投資變化趨勢圖 91
圖1-7 太陽的有效溫度或黑體溫度圖 92
圖1-8 太陽光穿透大氣層可能受到的物質吸收示意圖 92
圖1-9 太氣質量的計算方法示意圖 93
圖1-10 太氣圈外(AM0)與地表上(AM1.5)太陽能量光譜圖 93
圖1-11 原子間距與能隙之理論關係圖 94
圖1-12 矽晶體結構 94
圖1-13 失去一個共價鍵的矽晶體結構 95
圖1-14 矽被一個五價原子取代後的晶格示意圖 95
圖1-15 矽被一個三價原子取代後的晶格示意圖 96
圖1-16 太陽能電池原理示意圖 96
圖1-17 單晶矽太陽能電池 97
圖1-18 多晶矽太陽能電池 97
圖1-19 非晶矽太陽能電池(可撓式) 98
圖1-20 釕金屬錯合物的結構 99
圖1-21 電子經由 MLCT 過程,自染料注入到 TiO2 層示意圖 100
圖1-22 Perylene 結構 100
圖1-23 Coumarin 結構 101
圖1-24 Merocyanine 結構 101
圖1-25 Indoline 結構 102
圖1-26 Cyanine 結構 102
圖1-27 Triphenylamine 結構 103
圖1-28 Polyethylene glycol (PEG) 結構 103
圖1-29 染料太陽能電池 (DSSCs) 的組成結構示意圖 104
圖1-30 染料太陽能電池 (DSSCs) 的工作原理示意圖 105
圖1-31 染料太陽能電池 (DSSCs) 之 I-V 曲線圖 106
圖1-32 Thiophene 之結構 106
圖1-33 Dithienothiophene 之結構 107
圖1-34 Phenylene vinylene 之結構 107
圖1-35 Deoxycholic acid (DCA) 結構 107
圖1-36 (4-tert-butyl-pyridine, TBP) 結構 108
圖1-37 Rhodanine 結構 108
圖1-38 羧酸根和二氧化鈦 (TiO2) 的鍵結模式 (M=金屬Ti) 109
圖1-39 取代基 F 的 π 效應示意圖 110
圖1-40 取代基 CF3 的 π 效應示意圖 111
圖1-41 取代基本身有 π 系統的 π 效應示意圖 112
圖2-1 激態染料分子的電子注射效率反應式示意圖 113
圖2-2 染料太陽能電池 (DSSCs) 的能階能量圖 113
圖4-1含苯基 (Phenyl) 的一系列分子化學結構 114
圖4-2 染料分子 1-a 的可能幾何結構 115
圖4-3 染料分子 1-b 的可能幾何結構 116
圖4-4 染料分子 2-a 的可能幾何結構 117
圖4-5 染料分子 2-b 的最穩定幾何結構 118
圖4-6 染料分子 2-c 的可能幾何結構 119
圖4-7 染料分子 3-a 的可能幾何結構 120
圖4-8 含苯基 (Phenyl) 的各分子之 HOMO、LUMO 能階圖 121
圖4-9 分子 1-a 的甲基 (Methyl group) 取代基效應示意圖 122
圖4-10 分子 1-b 的苯基 (Phenyl) 取代基效應以及能階的電子分佈圖 123
圖4-11 分子 1-b 的 HOMO 和 LUMO 電子分佈圖 124
圖4-12 乙烯基的取代基效應示意圖 125
圖4-13 分子丁二烯 (Butadiene) 的 HOMO 和 LUMO 電子分佈圖 126
圖4-14 含苯基 (Phenyl) 的各分子之 Uv-vis 吸收光譜圖 127
圖4-15 文獻中 1-a 、 2-a 、 2-b 的 IPCE 圖 128
圖4-16 文獻中含苯基 (Phenyl) 各分子的過渡吸收光譜圖 129
圖4-17 香豆素 (Coumarin) 衍生物的一系列染料分子之化學結構 130
圖4-18 染料分子 C343 的可能幾何結構 131
圖4-19 本文簡稱的 CA 結構 131
圖4-20 染料分子 NKX-2398 的可能幾何結構 132
圖4-21 染料分子 NKX-2388 的可能幾何結構 133
圖4-22 染料分子 NKX-2384 的可能幾何結構 134
圖4-23 染料分子 NKX-2311 的可能幾何結構 135
圖4-24 說明染料 NKX-2510 所用之分子示意圖 136
圖4-25 染料分子 NKX-2510 的可能幾何結構 136
圖4-26 染料分子 NKX-2586 的可能幾何結構 137
圖4-27 染料分子 NKX-2393 的可能幾何結構 138
圖4-28 五個分子 ( C343 、 NKX-2398 、 NKX-2388 、 NKX-2384 、 NKX-2311 ) 之 HOMO、LUMO 能階圖 139
圖4-29 NKX-2388 的氰基 (CN) 取代基效應示意圖 140
圖4-30 分子 NKX-2388 的 HOMO 和 LUMO 電子分佈圖 141
圖4-31 分子 NKX-2384 的三氟甲基 (CF3) 取代基效應示意圖 142
圖4-32 分子 NKX-2384 的 HOMO 和 LUMO 電子分佈圖 143
圖4-33 四個分子 ( NKX-2311 、 NKX-2510 、 NKX-2586 、 NKX-2393 ) 之 HOMO、LUMO 能階圖 144
圖4-34 五個分子 (C343 、 NKX-2398 、 NKX-2388 、 NKX-2311 、 NKX-2586) 之 Uv-vis 吸收光譜圖 145
圖4-35 文獻中一些分子的 IPCE 圖 (a) 146
圖4-36 四個分子 (NKX-2384 、 NKX-2311 、 NKX-2510 、 NKX-2393)之 Uv-vis 吸收光譜圖 147
圖4-37 文獻中一些分子的 IPCE 圖 (b) 148
圖4-38 含有噻吩 (Thiophene) 的香豆素 (Coumarin) 染料分子之化學結構 149
圖4-39 染料分子 NKX-2593 的可能幾何結構 150
圖4-40 染料分子 NKX-2677 的可能幾何結構 151
圖4-41 含有噻吩 (Thiophene) 的香豆素 (Coumarin) 染料分子之 HOMO、LUMO 能階圖 152
圖4-42 含有噻吩 (Thiophene) 的香豆素 (Coumarin) 染料分子之 Uv-vis 吸收光譜圖 153
圖4-43 Thienothiophene 的結構 154
圖4-44 Pyrrolopyrrole 的結構 154
圖4-45 以三苯胺結構為基礎的染料分子 155
圖4-46 四個以三苯胺結構 (TPA) 為基礎的分子之可能的幾何結構 156
圖4-47 TPA1 和 TPA2 兩個染料分子之 Uv-vis 吸收光譜圖 157
圖4-48 分子 TPA1 的 HOMO 和 LUMO 電子分佈圖 158
圖4-49 分子 TPA2 的 HOMO 和 LUMO 電子分佈圖 159
圖4-50 分子 TPA1 的結構及其對應的原子編號示意圖 160
圖4-51 氟 (F) 取代在 TPA1 後的新分子之 HOMO、LUMO 能階圖 161
圖4-52 氟 (F) 取代在 TPA1 上第一類碳的位置之電子分佈圖 162
圖4-53 氟 (F) 取代在 TPA1 上第三類碳的位置之電子分佈圖 163
圖4-54 邊界軌域能量和氟取代基 π 效應的關係示意圖 164
圖4-55 三氟甲基 (CF3) 取代在 TPA1 後的新分子之 HOMO、LUMO 能階圖 164
圖4-56 三氟甲基 (CF3) 取代在 TPA1 上第一類碳的位置之電子分佈圖 165
圖4-57 分子 2CF3 的最佳化結構圖 166
圖4-58 三氟甲基 (CF3) 取代在 TPA1 上第三類碳的位置之電子分佈圖 167
圖4-59 分子 1CF3 的最佳化結構圖 168
圖4-60 分子 48CF3 的最佳化結構圖 168

1.Woolfson, M., The origin and evolution of the solar system. Astron. & Geophys. 2000, 41 (1), 12-19.
2.Basu, S.; Antia, H. M., Helioseismology and solar abundances. Phys. Rep. 2008, 457 (5-6), 217-283.
3.Williams, D. R.. Sun Fact Sheet. NASA.
4.http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.
5.Oregan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740.
6.Gao, F. F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M. K.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M., A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem. Commun.. 2008 (23), 2635-2637.
7.Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123 (8), 1613-1624.
8.Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photoch. Photobio. A-Chem. 2004, 164 (1-3), 3-14.
9.Hagfeldt, A.; Gratzel, M., Molecular photovoltaics. Accounts Chem. Res. 2000, 33 (5), 269-277.
10.Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 1997, 101 (14), 2576-2582.
11.Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C. H.; Gratzel, M., Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 1999, 38 (26), 6298-6305.
12.Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J., Enhanced Spectral Sensitivity from Ruthenium(Ii) Polypyridyl Based Photovoltaic Devices. Inorg. Chem. 1994, 33 (25), 5741-5749.
13.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.
14.Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127 (48), 16835-16847.
15.Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun. 2003 (12), 1456-1457.
16.Nazeeruddin, M. K.; Pechy, P.; Gratzel, M., Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem. Commun. 1997 (18), 1705-1706.
17.Ogura, R. Y.; Nakane, S.; Morooka, M.; Orihashi, M.; Suzuki, Y.; Noda, K., High-performance dye-sensitized solar cell with a multiple dye system. Appl. Phys. Lett. 2009, 94 (7), 073308-1-073308-3.
18.Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 2002 (24), 2972-2973.
19.Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Gratzel, M., Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 2005, 127 (18), 6850-6856.
20.Hagfeldt, A.; Gratzel, M., Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95 (1), 49-68.
21.Ferrere, S.; Zaban, A.; Gregg, B. A., Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 1997, 101 (23), 4490-4493.
22.Ferrere, S.; Gregg, B. A., New perylenes for dye sensitization of TiO2. New J. Chem. 2002, 26 (9), 1155-1160.
23.Edvinsson, T.; Li, C.; Pschirer, N.; Schoneboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Mullen, K.; Hagfeldt, A., Intramolecular charge-transfer tuning of perylenes: Spectroscopic features and performance in Dye-sensitized solar cells. J. Phys. Chem. C 2007, 111 (42), 15137-15140.
24.Jayaweera, P. M.; Kumarasinghe, A. R.; Tennakone, K., Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/pI-/I-3 (or CuI)]. J. Photoch. Photobio. A-Chem. 1999, 126 (1-3), 111-115.
25.Sanchez-de-Armas, R.; San-Miguel, M. A.; Oviedo, J.; Sanz, J. F., Molecular modification of coumarin dyes for more efficient dye sensitized solar cells. J. Chem. Phys. 2012, 136 (19).
26.Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2003, 107 (2), 597-606.
27.Wang, Z. S.; Cui, Y.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Molecular Design of Coumarin Dyes for Stable and Efficient Organic Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112 (43), 17011-17017.
28.Wang, Z. S.; Cui, Y.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A., A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater. 2007, 19 (8), 1138-1141.
29.Sarhangi, O. M.; Hashemianzadeh, S. M.; Waskasi, M. M.; Harzandi, A. P., A high-light-harvesting-efficiency of NKX-2593 and NKX-2883 Coumarin dyes in a local electric field: Can a local electric field enhance dye sensitizer solar cells efficiently? J. Photoch. Photobio. A-Chem. 2011, 225 (1), 95-105.
30.Cave, R. J.; Castner, E. W., Time-dependent density functional theory investigation of the ground and excited states of coumarins 102, 152, 153, and 343. J. Phys. Chem. A 2002, 106 (50), 12117-12123.
31.Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J. Phys. Chem. B 2002, 106 (6), 1363-1371.
32.Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem Commun 2000 (13), 1173-1174.
33.Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Graetzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 2008 (41), 5194-5196.
34.Horiuchi, T.; Miura, H.; Uchida, S., Highly efficient metal-free organic dyes for dye-sensitized solar cells. J. Photoch. Photobio. A-Chem. 2004, 164 (1-3), 29-32.
35.Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126 (39), 12218-12219.
36.Ma, X. M.; Hua, J. L.; Wu, W. J.; Jin, Y. H.; Meng, F. S.; Zhan, W. H.; Tian, H., A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 2008, 64 (2), 345-350.
37.Ehret, A.; Stuhl, L.; Spitler, M. T., Variation of carboxylate-functionalized cyanine dyes to produce efficient spectral sensitization of nanocrystalline solar cells. Electrochim. Acta 2000, 45 (28), 4553-4557.
38.Meng, F. S.; Yao, Q. H.; Shen, J. G.; Li, F. L.; Huang, C. H.; Chen, K. C.; Tian, H., Novel cyanine dyes with multi-carboxyl groups and their sensitization on nanocrystalline TiO2 electrode. Synthetic Met. 2003, 137 (1-3), 1543-1544.
39.Wu, W. J.; Hua, J. L.; Jin, Y. H.; Zhan, W. H.; Tian, H., Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photoch. & Photobio. Sci. 2008, 7 (1), 63-68.
40.Tang, J.; Wu, W. J.; Hua, J. L.; Li, J.; Li, X.; Tian, H., Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells. Energy & Environ. Sci. 2009, 2 (9), 982-990.
41.Liang, M.; Xu, W.; Cai, F. S.; Chen, P. Q.; Peng, B.; Chen, J.; Li, Z. M., New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 2007, 111 (11), 4465-4472.
42.Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 2008, 112 (3), 874-880.
43.Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M., Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 2008, 112 (30), 11591-11599.
44.Tian, H. N.; Yang, X. C.; Chen, R. K.; Zhang, R.; Hagfeldt, A.; Sunt, L. C., Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J. Phys. Chem. C 2008, 112 (29), 11023-11033.
45.Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L. C.; Hagfeldt, A.; Gratzel, M.; Nazeeruddin, M. K., Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J. Am. Chem. Soc. 2008, 130 (19), 6259-6266.
46.Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y. C.; Ho, K. C., Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett. 2005, 7 (10), 1899-1902.
47.Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.; Westermark, K.; Rensmo, H.; Siegbahn, H., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photoch. Photobio. A-Chem. 2002, 148 (1-3), 57-64.
48.Saito, M.; Fujihara, S., Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environ. Sci. 2008, 1 (2), 280-283.
49.Prasittichai, C.; Hupp, J. T., Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition. J. Phys. Chem. Lett. 2010, 1 (10), 1611-1615.
50.Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Gratzel, M.; Gal, D.; Ruhle, S.; Cahen, D., Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states. J. Phys. Chem. B 2001, 105 (27), 6347-6352.
51.Sayama, K.; Sugihara, H.; Arakawa, H., Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 1998, 10 (12), 3825-3832.
52.Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006 (38), 4004-4006.
53.Sauvage, F.; Di Fonzo, F.; Bassi, A. L.; Casari, C. S.; Russo, V.; Divitini, G.; Ducati, C.; Bottani, C. E.; Comte, P.; Graetzel, M., Hierarchical TiO2 Photoanode for Dye-Sensitized Solar Cells. Nano. Lett. 2010, 10 (7), 2562-2567.
54.Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M., Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 2004, 108 (15), 4818-4822.
55.Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T. Q.; Yanagida, S., Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater. 2004, 16 (9), 1806-1812.
56.Tian, H. N.; Yang, X. C.; Chen, R. K.; Pan, Y. Z.; Li, L.; Hagfeldt, A.; Sun, L. C., Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 2007 (36), 3741-3743.
57.Kuciauskas, D.; Freund, M. S.; Gray, H. B.; Winkler, J. R.; Lewis, N. S., Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J. Phys. Chem. B 2001, 105 (2), 392-403.
58.Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M., An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130 (29), 9202-9203.
59.Song, W. J.; Brennaman, M. K.; Concepcion, J. J.; Jurss, J. W.; Hoertz, P. C.; Luo, H. L.; Chen, C. C.; Hanson, K.; Meyer, T. J., Interfacial Electron Transfer Dynamics for [Ru(bpy)(2)((4,4 '-PO3H2)(2)bpy)](2+) Sensitized TiO2 in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics. J. Phys. Chem. C 2011, 115 (14), 7081-7091.
60.Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Kaden, T. A.; Gratzel, M., Determination of pKa values of 4-phosphonato-2,2 ': 6 ',2 '-terpyridine and its ruthenium(II)-based photosensitizer by NMR, potentiometric, and spectrophotometric methods. Inorg. Chem. 2000, 39 (20), 4542-4547.
61.Wang, Z. S.; Li, F. Y.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q., Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B 2000, 104 (41), 9676-9682.
62.Wang, Z. S.; Li, F. Y.; Huang, C. H., Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B 2001, 105 (38), 9210-9217.
63.Yao, Q. H.; Shan, L.; Li, F. Y.; Yin, D. D.; Huang, C. H., An expanded conjugation photosensitizer with two different adsorbing groups for solar cells. New J. Chem. 2003, 27 (8), 1277-1283.
64.Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T. Q.; Nozik, A. J., Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4 '-dicarboxy-2,2 '-bipyridine)2(NCS)2] by infrared transient absorption. J. Phys. Chem. B 1998, 102 (34), 6455-6458.
65.Anderson, N. A.; Lian, T., Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordin. Chem. Rev. 2004, 248 (13-14), 1231-1246.
66.Hannappel, T.; Burfeindt, B.; Storck, W.; Willig, F., Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. J. Phys. Chem. B 1997, 101 (35), 6799-6802.
67.Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A., Electron injection and recombination in Ru(dcbpy)(2)(NCS)(2) sensitized nanostructured ZnO. J. Phys. Chem. B 2001, 105 (24), 5585-5588.
68.Ramakrishna, G.; Verma, S.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N., Interfacial electron transfer between the photoexcited porphyrin molecule and TiO2 nanoparticles: Effect of catecholate binding. J. Phys. Chem. B 2006, 110 (18), 9012-9021.
69.Crabtree, G. W.; Lewis, N. S., Solar energy conversion. Phys. Today 2007, 60 (3), 37-42.
70.Kalyanasundaram, K.; Gratzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordin. Chem. Rev. 1998, 177, 347-414.
71.Cahen, D.; Hodes, G.; Gratzel, M.; Guillemoles, J. F.; Riess, I., Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 2000, 104 (9), 2053-2059.
72.Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 2003, 27 (5), 783-785.
73.Thomas, K. R. J.; Hsu, Y. C.; Lin, J. T.; Lee, K. M.; Ho, K. C.; Lai, C. H.; Cheng, Y. M.; Chou, P. T., 2,3-disubstituted thiophene-based organic dyes for solar cells. Chem. Mater. 2008, 20 (5), 1830-1840.
74.Kwon, T. H.; Armel, V.; Nattestad, A.; MacFarlane, D. R.; Bach, U.; Lind, S. J.; Gordon, K. C.; Tang, W. H.; Jones, D. J.; Holmes, A. B., Dithienothiophene (DTT)-Based Dyes for Dye-Sensitized Solar Cells: Synthesis of 2,6-Dibromo-DTT. J. Org. Chem. 2011, 76 (10), 4088-4093.
75.Pastore, M.; Mosconi, E.; De Angelis, F.; Gratzel, M., A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues. J. Phys. Chem. C 2010, 114 (15), 7205-7212.
76.Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C., A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 2007 (46), 4887-4889.
77.Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun. 2001 (6), 569-570.
78.Haque, S. A.; Handa, S.; Peter, K.; Palomares, E.; Thelakkat, M.; Durrant, J. R., Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: Towards a quantitative structure-function relationship. Angew. Chem. Int. Edit. 2005, 44 (35), 5740-5744.
79.Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Gratzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant, J. R., Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: Free energy vs distance dependence. J. Am. Chem. Soc. 2004, 126 (16), 5225-5233.
80.Clifford, J. N.; Yahioglu, G.; Milgrom, L. R.; Durrant, J. R., Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chem. Commun. 2002 (12), 1260-1261.
81.Khazraji, A. C.; Hotchandani, S.; Das, S.; Kamat, P. V., Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J. Phys. Chem. B 1999, 103 (22), 4693-4700.
82.Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S., Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109 (32), 15476-15482.
83.Wang, Z. S.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H., Photophysical and (photo)electrochemical properties of a coutnarin dye. J. Phys. Chem. B 2005, 109 (9), 3907-3914.
84.Wang, Z. S.; Cui, Y.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. J. Phys. Chem. C 2007, 111 (19), 7224-7230.
85.Hara, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2003 (2), 252-253.
86.Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Arakawa, H., Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mater. 2005, 15 (2), 246-252.
87.Chen, Y. S.; Zeng, Z. H.; Li, C.; Wang, W. B.; Wang, X. S.; Zhang, B. W., Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J. Chem. 2005, 29 (6), 773-776.
88.Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.; Frank, A. J., Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement. J. Phys. Chem. B 2005, 109 (49), 23183-23189.
89.Ning, Z. J.; Zhang, Q.; Wu, W. J.; Pei, H. C.; Liu, B.; Tian, H., Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 2008, 73 (10), 3791-3797.
90.Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. C., A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem. Commun. 2006 (21), 2245-2247.
91.Hara, K.; Dan-Oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 2004, 20 (10), 4205-4210.
92.Greijer, H.; Lindgren, J.; Hagfeldt, A., Resonance Raman scattering of a dye-sensitized solar cell: Mechanism of thiocyanato ligand exchange. J. Phys. Chem. B 2001, 105 (27), 6314-6320.
93.Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol. Energ. Mat. Sol. C. 2003, 77 (1), 89-103.
94.She, C. X.; Guo, J. C.; Irle, S.; Morokuma, K.; Mohler, D. L.; Zabri, H.; Odobel, F.; Youm, K. T.; Liu, F.; Hupp, J. T.; Lian, T., Comparison of interfacial electron transfer through carboxylate and phosphonate anchoring Groups. J. Phys. Chem. A 2007, 111 (29), 6832-6842.
95.Wiberg, J.; Marinado, T.; Hagberg, D. P.; Sun, L. C.; Hagfeldt, A.; Albinsson, B., Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113 (9), 3881-3886.
96.Liu, W. H.; Wu, I. C.; Lai, C. H.; Lai, C. H.; Chou, P. T.; Li, Y. T.; Chen, C. L.; Hsu, Y. Y.; Chi, Y., Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem. Commun. 2008 (41), 5152-5154.
97.Singh, S. P.; Roy, M. S.; Thomas, K. R. J.; Balaiah, S.; Bhanuprakash, K.; Sharma, G. D., New Triphenylamine-Based Organic Dyes with Different Numbers of Anchoring Groups for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116 (9), 5941-5950.
98.Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H., Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode. J. Mater. Chem. 2003, 13 (5), 1048-1053.
99.Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 2003, 107 (34), 8981-8987.
100.Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S., Importance of Binding States between Photosensitizing Molecules and the TiO2 Surface for Efficiency in a Dye-Sensitized Solar-Cell. J. Electroanal. Chem. 1995, 396 (1-2), 27-34.
101.Martin, C.; Ziolek, M.; Marchena, M.; Douhal, A., Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials. J. Phys. Chem. C 2011, 115 (46), 23183-23191.
102.Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M., Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B 2003, 107 (11), 2570-2574.
103.Benko, G.; Myllyperkio, P.; Pan, J.; Yartsev, A. P.; Sundstrom, V., Photoinduced electron injection from Ru(dcbPY)2(NCS)2 to SnO2 and TiO2 nanocrystalline films. J. Am. Chem. Soc. 2003, 125 (5), 1118-1119.
104.Asbury, J. B.; Hao, E.; Wang, Y. Q.; Ghosh, H. N.; Lian, T. Q., Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J. Phys. Chem. B 2001, 105 (20), 4545-4557.
105.Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T. Q., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films. J. Phys. Chem. B 1999, 103 (16), 3110-3119.
106.蘇煒林, 以密度泛函理論研究Cyclometalated Phenylpyridine銥(III)錯合物分子軌域. 國立成功大學化學研究所博士論文 2011.
107.Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Edit. 2009, 48 (14), 2474-2499.
108.Nugent, W. A.; Harlow, R. L., Early Transition-Metal Alkoxide Complexes Bearing Homochiral Trialkanolamine Ligands. J. Am. Chem. Soc. 1994, 116 (14), 6142-6148.
109.Mcweeny, R.; Diercksen, G., Self-Consistent Perturbation Theory.II. Extension to Open Shells. J. Chem. Phys. 1968, 49 (11), 4852-4856.
110. Hohenberg, Pierre; Walter Kohn (1964). Inhomogeneous electron gas. Phys. Rev. B 136 (3B): B864–B871.
111.Becke, A. D., A new inhomogeneity parameter in density-functional theory. J. Chem. Phys. 1998, 109 (6), 2092-2098.
112.Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37 (2), 785-789.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔