跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐姱君
研究生(外文):Kua-ChunOu
論文名稱:探討tRNA豐富度對於蛋白質表現量的效應
論文名稱(外文):The Effects of tRNA Abundance on Protein Expression
指導教授:賴明德賴明德引用關係
指導教授(外文):Ming-Derg Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:tRNA基因重複數密碼使用率轉譯效率
外文關鍵詞:tRNA gene copy numbercodon usagetranslation efficacy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
治療性的蛋白質藥物在製造上需要被大量生產且最終折疊成具有生物活性的形式。蛋白質合成過程的關鍵因子包括mRNA 5’端的結構,核糖體密度與tRNA豐富度;而在其中tRNA豐富度仍不是完全清楚。在轉譯期間,同義密碼對應到tRNA同功受體的機率並不同,可轉譯出相同胺基酸,此現象稱為密碼子使用偏好,而這種使用偏好在不同物種間有顯著的差異。過去文獻已經顯示tRNA豐富度與密碼使用率或tRNA基因重複數有關連性;然而,這些研究結果並無一致性而且取決於物種個體。因此,我們想要探討在中華倉鼠細胞株內,tRNA基因重複數,密碼使用率與tRNA豐富度在蛋白質表現效率上的影響。首先,我們建立三個不同介白素-2基因,即具有不同mRNA序列,皆可轉譯出相同胺基酸序列。第一個根據tRNA基因重複數少與密碼使用率高的密碼做改變,另一個以tRNA基因重複數多與密碼使用率低的做修改,最後一個根據tRNA基因重複數多且密碼使用率高的密碼做修飾。我們以酵素連結免疫法分析於培養液中被分泌的介白素-2,比較改變tRNA基因重複數與密碼使用率後的蛋白質表現量。將介白素-2修飾為tRNA基因重複數少與密碼使用率高者表現量較更改為tRNA基因重複數多與密碼使用率高者低,但是其表現量又比改變為tRNA基因重複數多與密碼使用率低者高。除了介白素-2更改為tRNA基因複製數多且密碼使用率高者外,其他組之介白素相比於野生型皆無明顯改變。利用外送丙胺酸、纈草胺酸、羥丁胺酸tRNA的方式提高tRNA的表現量後,發現介白素-2的蛋白表現量沒有顯著差異。接下來,我們以次世代定序系統測定中華倉鼠細胞株的tRNA,透過CLC Genomics Workbench軟體分析,結果顯示細胞內所含的tRNA近似於密碼使用率。綜合以上的結果,tRNA密碼使用,而非基因重複數,可能直接影響到tRNA豐富度於哺乳類動物細胞中。
Therapeutic protein drugs need to be produced in large amount in their biological active form. Key factors in protein synthesis include the 5’ end structure of mRNA, ribosomal density and tRNA abundance; in addition, tRNA abundance remains poorly understood. During translation, synonymous codons adapted to tRNA isoacceptors are translated into the same amino acid with different frequencies, a phenomenon termed codon-usage bias which is dramatically different among species. Previous reports have revealed the possible correlation between tRNA abundance and tRNA gene copy number or codon usage; however, the results are inconsistent and depended on the organisms. Therefore, we want to study the effects of tRNA gene copy number, codon usage and tRNA abundance on protein expression efficiency in Chinese hamster ovary (CHO) cells. First, we created three interleukin-2 (IL-2) genes containing the same amino acid sequence but with different codons (different mRNA sequences). One is modified according to low tRNA gene copy number and high codon usage, another is changed based on high tRNA gene copy number and low codon usage, and the other is altered to codon with high tRNA gene copy number and high codon usage. To compare expression level of codon usage- and gene copy number-changed IL-2, we determined the amount of secreted IL-2 in medium with enzyme-linked immunosorbent assay. IL-2 with low tRNA gene copy number and high codon usage was expressed at lower level than IL-2 with altered high tRNA gene copy number and codon usage, but it expressed higher level of IL-2 than that with changed to high tRNA gene copy number and low codon usage. Except for the group of IL-2 with high tRNA gene copy number and high codon usage, no dramatic changes of IL-2 expression in other groups were observed compared to wild type. Enhancing tRNA expression, by transfection of tRNA for valine, alanine, and threonine, did not lead to significant change in IL-2 protein expression. Next, we investigated tRNA content in CHO cells by next generation sequencing and used CLC Genomics Workbench software for analysis. The results demonstrated that tRNA abundance is depended on codon usage as a proxy in CHO cells. Taken together, selection of codon usage, rather than tRNA gene copy number, may directly affect tRNA abundance in mammalian cells.
目錄
緒論
一、蛋白質藥物的發展 1
二、影響蛋白質合成的因素 4
三、tRNA豐富度的探討 6
四、研究目標與策略 9

材料與方法
一、細胞培養 (Cell culture) 10
二、質體製備 (Plasmid preparation) 15
三、質體構築 (Plasmid construction) 19
四、染色體DNA萃取 (Genomic DNA extraction) 24
五、反轉錄聚合酶鏈鎖反應 (RT-PCR) 26
六、聚合酶鏈鎖反應 (PCR) 29
七、西方點墨法 (Western blot) 30
八、酵素連結免疫吸附法 (Enzyme-linked immunosorbent assay; ELISA) 38
九、次世代定序分析 (Next generation sequencing analysis) 40

實驗結果
一、根據密碼使用率與tRNA基因重複數介白素-2的改變密碼是否影響其蛋白質表現量 42
二、過量表現特定tRNA是否會影響介白素-2的蛋白質表現量 43
三、tRNA豐富度實際在中國倉鼠細胞株的分佈 43

討論 45
結論 49
參考文獻 50
附表 62
附圖 72
附註
附註一、中國倉鼠細胞株的密碼使用率 (codon usage) 83
附註二、中國倉鼠細胞株於染色體上的tRN A重複數 84

表目錄
表一、質體建築PCR反應引子 62
表二、反轉錄聚合酶鏈鎖 (RT-PCR)反應引子 63
表三、即時定量聚合酶鏈鎖反應 (real-time PCR)反應引子 64
表四、介白素-2 (LH) 所更改的密碼與對應反密碼 65
表五、介白素-2 (HL) 所更改的密碼與對應反密碼 66
表六、介白素-2 (HH)所更改的密碼與對應反密碼 67
表七、三組介白素-2實際更改比例 68
表八、三組介白素-2密碼更改後的序列 69
表九、次世代定序分析結果與資料庫的對照表 70

圖目錄
Figure 1. 建築分泌型的EGFP於pIRES載體 72
Figure 2. 根據單獨密碼使用率高或tRNA基因重複數改變介白素-2的密碼並不會影響其蛋白質表現量 74
Figure 3. 過度表現tRNA並不會影響介白素-2的蛋白質表現量 77
Figure 4. 中國倉鼠細胞的tRNA豐富度相近於密碼使用率 80
Arava, Y., F.E. Boas, P.O. Brown, and D. Herschlag. 2005. Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res. 33:2421-2432.
Bödecker, B., R. Newcomb, P. Yuan, A. Braufman, and W. Kelsey. 1994. Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation. Animal cell technology, products of today, prospects for tomorrow:580-590.
Barnes, L.M., C.M. Bentley, and A.J. Dickson. 2000. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology. 32:109-123.
Begley, U., M. Dyavaiah, A. Patil, J.P. Rooney, D. DiRenzo, C.M. Young, D.S. Conklin, R.S. Zitomer, and T.J. Begley. 2007. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell. 28:860-870.
Berg, O.G., and C.G. Kurland. 1997. Growth rate-optimised tRNA abundance and codon usage. J Mol Biol. 270:544-550.
Butler, M. 2005. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol. 68:283-291.
Butler, M. 2006. Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology. 50:57-76.
Cannarozzi, G., N.N. Schraudolph, M. Faty, P. von Rohr, M.T. Friberg, A.C. Roth, P. Gonnet, G. Gonnet, and Y. Barral. 2010. A role for codon order in translation dynamics. Cell. 141:355-367.
Castillo-Davis, C.I., and D.L. Hartl. 2002. Genome evolution and developmental constraint in Caenorhabditis elegans. Mol Biol Evol. 19:728-735.
Chan, C.T., M. Dyavaiah, M.S. DeMott, K. Taghizadeh, P.C. Dedon, and T.J. Begley. 2010. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6:e1001247.
Chan, P.P., and T.M. Lowe. 2009. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37:D93-97.
Chen, J., M. Lin, N. Li, L. Lin, and F. She. 2012. Therapeutic vaccination with Salmonella-delivered codon-optimized outer inflammatory protein DNA vaccine enhances protection in Helicobacter pylori infected mice. Vaccine. 30:5310-5315.
de Smit, M.H., and J. van Duin. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A. 87:7668-7672.
de Smit, M.H., and J. van Duin. 2003. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol. 331:737-743.
Dittmar, K.A., J.M. Goodenbour, and T. Pan. 2006. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2:e221.
Dittmar, K.A., M.A. Sorensen, J. Elf, M. Ehrenberg, and T. Pan. 2005. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 6:151-157.
Dong, H., L.A. Kirsebom, and L. Nilsson. 1996a. Growth rate regulation of 4.5 S RNA and M1 RNA the catalytic subunit of Escherichia coli RNase P. J Mol Biol. 261:303-308.
Dong, H., L. Nilsson, and C.G. Kurland. 1996b. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol. 260:649-663.
Duret, L. 2000. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16:287-289.
Duret, L. 2002. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev. 12:640-649.
Dutcher, J. 2002. Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park). 16:4-10.
Elf, J., D. Nilsson, T. Tenson, and M. Ehrenberg. 2003. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science. 300:1718-1722.
Emilsson, V., and C.G. Kurland. 1990. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J. 9:4359-4366.
Fisher, R.I., S.A. Rosenberg, and G. Fyfe. 2000. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 6 Suppl 1:S55-57.
Fonseca, M.M., S. Rocha, and D. Posada. 2012. Base-pairing versatility determines wobble sites in tRNA anticodons of vertebrate mitogenomes. PLoS One. 7:e36605.
Fraser, H.B., A.E. Hirsh, D.P. Wall, and M.B. Eisen. 2004. Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci U S A. 101:9033-9038.
Fredrick, K., and M. Ibba. 2010. How the sequence of a gene can tune its translation. Cell. 141:227-229.
Fuglsang, A. 2003. Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif. 31:247-249.
Gao, W., A. Rzewski, H. Sun, P.D. Robbins, and A. Gambotto. 2004. UpGene: Application of a web-based DNA codon optimization algorithm. Biotechnol Prog. 20:443-448.
Gasser, F., P. Mulsant, and M. Gillois. 1985. Long-term multiplication of the Chinese hamster ovary (CHO) cell line in a serum-free medium. In Vitro Cell Dev Biol. 21:588-592.
Gaucher, E.A., M.M. Miyamoto, and S.A. Benner. 2001. Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. Proc Natl Acad Sci U S A. 98:548-552.
Gerber, A.P., and W. Keller. 1999. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. 286:1146-1149.
Ghaemmaghami, S., W.K. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. O'Shea, and J.S. Weissman. 2003. Global analysis of protein expression in yeast. Nature. 425:737-741.
Gillis, S., M.M. Ferm, W. Ou, and K.A. Smith. 1978. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 120:2027-2032.
Goetz, R.M., and A. Fuglsang. 2005. Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from Escherichia coli. Biochem Biophys Res Commun. 327:4-7.
Goodenbour, J.M., and T. Pan. 2006. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 34:6137-6146.
Gouy, M., and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10:7055-7074.
Gu, W., T. Zhou, and C.O. Wilke. 2010. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol. 6:e1000664.
Gustafsson, C., S. Govindarajan, and J. Minshull. 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22:346-353.
Horn, D. 2008. Codon usage suggests that translational selection has a major impact on protein expression in trypanosomatids. BMC Genomics. 9:2.
Hossler, P., S.F. Khattak, and Z.J. Li. 2009. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 19:936-949.
Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 146:1-21.
Ikemura, T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 2:13-34.
Ingolia, N.T., S. Ghaemmaghami, J.R. Newman, and J.S. Weissman. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 324:218-223.
Jayapal, K.P., K.F. Wlaschin, W. Hu, and M.G. Yap. 2007. Recombinant protein therapeutics from CHO cells-20 years and counting. Chemical Engineering Progress. 103:40.
Kanaya, S., Y. Yamada, M. Kinouchi, Y. Kudo, and T. Ikemura. 2001. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol. 53:290-298.
Kanaya, S., Y. Yamada, Y. Kudo, and T. Ikemura. 1999. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene. 238:143-155.
Kasakura, S., and L. Lowenstein. 1965. A factor stimulating DNA synthesis derived from the medium of leukocyte cultures. Nature. 208:794-795.
Kaufmann, H., X. Mazur, M. Fussenegger, and J.E. Bailey. 1999. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng. 63:573-582.
Kertesz, M., Y. Wan, E. Mazor, J.L. Rinn, R.C. Nutter, H.Y. Chang, and E. Segal. 2010. Genome-wide measurement of RNA secondary structure in yeast. Nature. 467:103-107.
Kim, C.H., Y. Oh, and T.H. Lee. 1997. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene. 199:293-301.
Kim, J.Y., Y.G. Kim, and G.M. Lee. 2012. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 93:917-930.
Kubo, M., and T. Imanaka. 1989. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis. J Bacteriol. 171:4080-4082.
Kudla, G., A.W. Murray, D. Tollervey, and J.B. Plotkin. 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science. 324:255-258.
Li, M., E. Kao, X. Gao, H. Sandig, K. Limmer, M. Pavon-Eternod, T.E. Jones, S. Landry, T. Pan, M.D. Weitzman, and M. David. 2012. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 491:125-128.
Lin, K., Y. Kuang, J.S. Joseph, and P.R. Kolatkar. 2002. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res. 30:2599-2607.
Lithwick, G., and H. Margalit. 2005. Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res. 33:1051-1057.
Margolin, K., M.B. Atkins, J.P. Dutcher, M.S. Ernstoff, J.W. Smith, 2nd, J.I. Clark, J. Baar, J. Sosman, J. Weber, C. Lathia, J. Brunetti, F. Cihon, and B. Schwartz. 2007. Phase I trial of BAY 50-4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin Cancer Res. 13:3312-3319.
Moore, A., J. Mercer, G. Dutina, C.J. Donahue, K.D. Bauer, J.P. Mather, T. Etcheverry, and T. Ryll. 1997. Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultues. Cytotechnology. 23:47-54.
Nakamura, Y., T. Gojobori, and T. Ikemura. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28:292.
Nasvall, S.J., P. Chen, and G.R. Bjork. 2004. The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. RNA. 10:1662-1673.
Parmley, J.L., and M.A. Huynen. 2009. Clustering of codons with rare cognate tRNAs in human genes suggests an extra level of expression regulation. PLoS Genet. 5:e1000548.
Pavon-Eternod, M., S. Gomes, R. Geslain, Q. Dai, M.R. Rosner, and T. Pan. 2009. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37:7268-7280.
Pavon-Eternod, M., S. Gomes, M.R. Rosner, and T. Pan. 2013. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA. 19:461-466.
Percudani, R., A. Pavesi, and S. Ottonello. 1997. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol. 268:322-330.
Petrushenko, Z.M., T.V. Budkevich, V.F. Shalak, B.S. Negrutskii, and A.V. El'skaya. 2002. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. Eur J Biochem. 269:4811-4818.
Plotkin, J.B., and G. Kudla. 2011. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 12:32-42.
Puigbo, P., E. Guzman, A. Romeu, and S. Garcia-Vallve. 2007. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35:W126-131.
Robinson, M., R. Lilley, S. Little, J.S. Emtage, G. Yarranton, P. Stephens, A. Millican, M. Eaton, and G. Humphreys. 1984. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 12:6663-6671.
Satapathy, S.S., M. Dutta, A.K. Buragohain, and S.K. Ray. 2012. Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria. J Mol Evol. 75:34-42.
Smith, K.A., K.J. Gilbride, and M.F. Favata. 1980. Lymphocyte activating factor promotes T-cell growth factor production by cloned murine lymphoma cells. Nature. 287:853-855.
Sorensen, M.A., C.G. Kurland, and S. Pedersen. 1989. Codon usage determines translation rate in Escherichia coli. J Mol Biol. 207:365-377.
Stapulionis, R., and M.P. Deutscher. 1995. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 92:7158-7161.
Studer, S.M., and S. Joseph. 2006. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell. 22:105-115.
Taniguchi, T., H. Matsui, T. Fujita, C. Takaoka, N. Kashima, R. Yoshimoto, and J. Hamuro. 1983. Structure and expression of a cloned cDNA for human interleukin-2. Nature. 302:305-310.
Tjio, J.H., and T.T. Puck. 1958. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med. 108:259-268.
Tuller, T., A. Carmi, K. Vestsigian, S. Navon, Y. Dorfan, J. Zaborske, T. Pan, O. Dahan, I. Furman, and Y. Pilpel. 2010. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 141:344-354.
Urlaub, G., and L.A. Chasin. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 77:4216-4220.
Varenne, S., J. Buc, R. Lloubes, and C. Lazdunski. 1984. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol. 180:549-576.
Watkins, N.E., Jr., and J. SantaLucia, Jr. 2005. Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res. 33:6258-6267.
Welch, M., S. Govindarajan, J.E. Ness, A. Villalobos, A. Gurney, J. Minshull, and C. Gustafsson. 2009. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One. 4:e7002.
Wlaschin, K.F., and W.S. Hu. 2007. Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J Biotechnol. 131:168-176.
Wurm, F., and A. Bernard. 1999. Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol. 10:156-159.
Wurm, F.M. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 22:1393-1398.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文