(3.236.222.124) 您好!臺灣時間:2021/05/08 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄒寶萱
研究生(外文):Bao-SyuanZou
論文名稱:考慮疏散行為之車道調撥最佳化問題
論文名稱(外文):The Contraflow Optimization Problem: A Behavioral Model for Evacuation
指導教授:林東盈林東盈引用關係
指導教授(外文):Dung-Ying Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:交通管理學系碩博士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:57
中文關鍵詞:疏散動態交通指派行為模式細胞傳輸模型細胞自動機模型禁忌搜尋法
外文關鍵詞:EvacuationDynamic Traffic AssignmentBehavioral ModelCell Transmission ModelCellular Automata ModelTabu Search
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於氣候變遷造成許多災害,在過去幾十年許多研究致力於疏散之規劃。疏散為一常見之災害有效緊急應變措施,但過去大部分研究中並未考慮到人們在疏散時的行為特性會對疏散時所做的決策造成影響,尤其在疏散時恐慌的情緒會造成疏散者做出非理性的決定,因此本論文整合細胞自動機模型與細胞傳輸模型以完整表達疏散之行為特性與疏散之交通動態過程。此外,本論文以整合之模型為基礎亦針對常見之疏散規劃策略「車道調撥」做進一步之研究。本論文為一非線性混合整數規劃問題,若以傳統之數學規劃演算法求解會有實行上之難度,故本研究結合禁忌搜尋法與蟻群演算法作為求解本問題之最佳化啟發式演算法。本研究之求解架構應用實際大規模疏散網路於數值分析以探討其適用性與表現,研究證明為使疏散規劃更加準確以及更具有效率應考慮疏散者之行為。
Evacuation is widely used as an effective emergency response and mitigation strategy, and a well-defined and manageable plan is a prerequisite for the successful implementation of a large-scale urban or regional evacuation. While there is a considerable amount of research on evacuation, most of the existing studies do not consider the behavior of evacuees which could affect the evacuation process, despite the fact that people may panic and make irrational decisions in such situations. To incorporate this critical feature in evacuation planning, we integrate the cellular automata (CA) model with the cell transmission model (CTM) to better capture evacuees’ behavior and traffic dynamics during the evacuation process. Further, we investigate one of the common evacuation planning strategies, lane reversal (or contraflow), based on the integrated CA and CTM model. The resulting problem is a non-linear mixed integer program, which faces significant challenges when solved with conventional mathematical programming algorithms. Therefore, a tabu search solution approach that embeds an ant colony optimization heuristic is developed to address this issue. The proposed solution framework is empirically applied to a real network to investigate the applicability and performance of the proposed methodology in large-scale evacuation networks. The results show that an evacuation plan should take evacuees’ behavior into account, so that it can be more accurate and effective.
Table of Contents i
Table of Tables iii
Table of Figures iv
1. Introduction 1
1.1 Motivation 1
1.2 Purpose 1
1.3 Assumptions 2
1.4 Research Process 2
2. Literature Review 4
2.1 Dynamic Traffic Model 4
2.2 Traffic Behavioral Model 6
2.3 Lane Reversal 9
2.4 Summary 10
3. Mathematical Formulation 11
3.1 Problem Description 11
3.2 Assumption 12
3.3 Model Formulation 13
4. Solution Method 22
4.1 ACO Heuristic 22
4.2 Tabu Search for Lane Reversal Optimization 26
4.3 Implementation Issues 31
5. Empirical Studies 33
5.1. Parameter Calibration 33
5.2. 6-cell CTM Network 34
5.3. 68-cell CTM Network 37
5.4. Illustrative Network 40
5.5. Realistic Network - Hualien Network 44
5.5.1 Sensitivity Analysis of the Level of Demand 46
5.5.2 Sensitivity Analysis of Demand Profile 46
5.5.3 Comparison of Evacuation Performance Before and After Lane Reversal 48
5.5.4 Staged Evacuation 50
6. Conclusions and Future Research 53
References 54
1.Caudill, R.J. and Kuo, N.M. (1983), Development of An Interactive Planning Model for Contraflow Lane Evaluation, Transportation Research Record, No. 906, pp.47-54.
2.Central Weather Bureau (2012), http://www.cwb.gov.tw/eng/index.htm.
3.Chang, E. J. (2004), Time-Varying Intermodal Person Trip Assignment, Ph.D. Dissertation, Northwestern University.
4.Chowdhury, D., Guttal, V., Nishinari, K., and Schadschneider, A. (2002), A Cellular-automata Model of Flow in Ant-trails: Non-monotonic Variation of Speed with Density, Journal of Physics A: Mathematical and General, Vol. 35, No. 41, pp. 573-577.
5.Daganzo, C. F. (1994), “The Cell Transmission Model: A Dynamic Representation of Highway Traffic Consistent with the Hydrodynamic Theory, Transportation Research Part B, Vol. 28B, No.4, pp. 269-287.
6.Daganzo, C. F. (1995), “The Cell Transmission Model, Part II: Network Traffic, Transportation Research Part B, Vol. 29B, No. 2, pp. 79-93.
7.Dorigo, M. (1992), Optimization, Learning and Natural Algorithms, Ph.D. Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.
8.Dorigoa, M. and Blum, C. (2005), Ant Colony Optimization Theory: A Survey, Theoretical Computer Science, Vol. 344, Issues 2-3, pp. 243-278.
9.Glickman, T.S. (1970), Optimal Periodic Control of Reversible Traffic Operations. Ph.D. Thesis, Department of Civil Engineering, Johns Hopkins University, Baltimore, MD.
10.Glover, F. (1990), Tabu Search: A Tutorial, Interfaces, Vol. 20, No. 4, pp. 74-94.
11.Hemphill, J. and Surti, V.H. (1974), A Feasibility Study of A Reversible-Lane Facility for A Denver Street Corridor, Transportation Research Record, No. 514, pp.29-32.
12.Janson, B. N. (1995), Network Design Effects of Dynamic Traffic Assignment. Journal of Transportation Engineering, Vol. 121, No. 1, pp. 1-13.
13.Kim, S. and Shekhar, S. (2005), Contraflow Network Reconfiguration for Evaluation Planning: A Summary of Results, Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 250–259.
14.Kim, S., Shekhar, S. and Min, M. (2008), Contraflow Transportation Network Reconfiguration for Evacuation Route Planning, IEEE Transactions on Knowledge and Data Engineering, Vol. 20, Issue 8, pp. 1115-1129.
15.Kirchner A. and Schadschneider, A. (2002), Simulation of Evacuation Processes Using a Bionics-inspired Cellular Automaton Model for Pedestrian Dynamics, Physica A, Vol. 312, pp. 260–276.
16.Li, Y., Waller, S.T. and Ziliaskopoulos, T. (2003), A Decomposition Scheme for System Optimal Dynamic Traffic Assignment Models. Transportation Research Record, Vol. 3, No. 4, pp. 441-455.
17.Lighthill, M.J. and Whitham, J.B. (1955), “On Kinematic Waves II: A Theory of Traffic Flow on Long Crowded roads, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 229, No. 1178, pp. 317-345.
18.Lin, D.-Y., Karoonsoontawong, A. and Waller, S.T. (2011), A Dantzig-Wolfe Decomposition Based Heuristic Scheme for Bi-level Dynamic Network Design Problem, Networks and Spatial Economics, Vol. 11, No. 1, pp. 101-126.
19.MacDorman, L.C. (1965), Case Study in Sensitivity of Highway Economic Factors, Highway Research Record, Issue 100, pp.2-19.
20.Murtagh, B. and Saunders, M. (1998), MINOS 5.5 User’s Guide, Stanford University.
21.Pelechano, N. and Malkawi, A. (2008), Evacuation Simulation Models: Challenges in Modeling High Rise Building Evacuation with Cellular Automata Approaches, Automation in Construction, Vol. 17, Issue 4, pp. 377-385.
22.Richards, P.I. (1956), Shockwaves on the Highway, Operations Research, Vol. 4, No. 1, pp. 42-51.
23.Sbayti, H. and Mahmassani, H.S. (2006), Optimal Scheduling of Evacuation Operations, Transportation Research Record: Journal of the Transportation Research Board, Vol. 1964, pp. 238-246.
24.Sheu J.B. (2007), An Emergency Logistics Distribution Approach for Quick Response to Urgent Relief Demand in Disasters, Transportation Research Part E, Vol. 43, Issue 6, pp.687-709.
25.Song W.G., Yu Y.F., Wang B.H., and Fan W.C. (2006), Evacuation Behaviors at Exit in CA Model with Force Essentials: A Comparison with Social Force Model, Physica A, Vol. 371, Issue 2, pp. 658–666.
26.Tuydes, H. and Ziliaskopoulos A. (2006), Tabu-based Heuristic Approach for Optimization of Network Evacuation Contraflow, Transportation Research Record: Journal of the Transportation Research Board, Vol. 1964, pp.157-168.
27.Ukkusuri, S.V. and Waller, S.T. (2008), Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions, Networks and Spatial Economics, Vol. 8, No. 4, pp. 383-406.
28.Urbina, E. and Wolshon B. (2003), National Review of Hurricane Evacuation Plans and Policies: A Comparison and Contrast of State Practices, Transportation Research Part A, Vol. 37, Issue 3, pp.257-275.
29.Waller, S. T. (2000), Optimization and Control of Stochastic Dynamic Transportation Systems: Formulations, Solution Methodologies, and Computational Experience. Ph.D. Dissertation, Northwestern University.
30.Wolfram, S. (1984), Cellular Automata as Models of Complexity, Nature 311, pp. 419–424.
31.Xie, C. and Turnquist, M.A. (2009), Integrated Evacuation Network Optimization and Emergency Vehicle Assignment, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2091, pp.79-90.
32.Xie, C., Lin, D.-Y. and Waller, S.T. (2010), A Dynamic Evacuation Network Optimization Problem with Lane Reversal and Crossing Elimination Strategies, Transportation Research: Part E., Vol. 46, Issue 3, pp. 295-316.
33.Yang, L.Z., Zhao, D.L., Li, J. and Fang, T.Y. (2005), Simulation of the Kin Behavior in Building Occupant Evacuation Based on Cellular Automaton, Building and Environment, Vol. 40, Issue 3, pp. 411–415.
34.Zhao, D., Yang, L. and Li, J. (2008), Occupants’ Behavior of Going with the Crowd Based on Cellular Automata Occupant Evacuation Model, Physica A, Vol. 387, Issue 14, pp. 3708-3718.
35.Ziliaskopoulos, A. K. (2000), A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem. Transportation Science, Vol. 34, No. 1, pp. 37-49.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔