跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡俊吉
研究生(外文):Chun-ChiTsai
論文名稱:奈米銀/鈦酸鍶複合薄膜之光催化特性研究
論文名稱(外文):Study on photocatalytic properties of nano-Ag/SrTiO3 composite
指導教授:陳燕華陳燕華引用關係
指導教授(外文):Yen-Hua Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:鈦酸鍶薄膜奈米銀射頻磁控濺鍍光催化
外文關鍵詞:SrTiO3 thin filmAg-nanoparticleRF magnetron sputteringphotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控濺鍍系統於矽基板上沉積鈦酸鍶(SrTiO3)薄膜與奈米銀/鈦酸鍶複合薄膜。複合薄膜包含Ag (25nm) / SrTiO3、Ag (20nm) / SrTiO3、Ag (22nm) / SrTiO3、Ag film / SrTiO3等4個樣品;複合薄膜中所含之銀含量多寡依序為Ag (25nm) / SrTiO3< Ag (20nm) / SrTiO3< Ag (22nm) / SrTiO3< Ag film / SrTiO3 (由SEM可得知)。由X光繞射儀分析得知製備出的鈦酸鍶薄膜是屬於立方晶系結構,複合薄膜內之SrTiO3亦皆屬於立方晶系。當複合薄膜中的銀粒子增加,SrTiO3的(110)晶面會往低角度偏移,且Ag (22nm) / SrTiO3與Ag film / SrTiO3複合薄膜中之銀為離子狀態的Ag+,此結果會造成鈦酸鍶晶格之扭曲變形。由光學曲率量測得知,隨著銀含量的增加其薄膜應力也隨著增加,此結果與XRD圖譜中(110)晶面之偏移趨勢相呼應。固態紫外光-可見光光譜數據指出:加入銀可使薄膜之能階變小,但複合薄膜間之能隙相差不大。光催化的結果證實:鈦酸鍶薄膜具有不錯的光分解亞甲基藍染劑之效果,複合薄膜之光催化效果則欠佳。複合薄膜光催化效率不彰的原因可能是因為銀奈米粒子並沒有達到最適當的比例,造成電荷轉移上之困難或不能有效分離電子電洞對;或因為樣品中之銀離子進入SrTiO3之晶格中造成內部之晶格缺陷,使得可參與光催化反應之電子數量變少,故光催化效率下降。
In this study, SrTiO3 and nano-Ag/SrTiO3 thin films are deposited on Si substrates by RF magnetron sputtering system. The composite thin films include Ag(25nm)/SrTiO3, Ag(20nm)/SrTiO3, Ag(22nm)/SrTiO3, and Ag film/SrTiO3. The amount of Ag nanoparticles in the SrTiO3 film is Ag(25nm)/SrTiO3<Ag(20nm)/SrTiO3<Ag(22nm)/SrTiO3<Ag film/SrTiO3 (from SEM observation). X-ray diffraction analysis shows the SrTiO3 film has a cubic crystalline structure, so do the composite thin films. However, the (110) diffraction peak shifts toward lower angles with the increasing amount of Ag nanoparticles. Moreover, the XPS results show that Ag+ existed in the SrTiO3 lattice for samples of Ag(22nm)/SrTiO3 and Ag film/SrTiO3. This phenomenon will cause lattice distortion and induce stress in the film, which is corresponding to the XRD results. The information of UV-visible spectroscopy indicates the band gap becomes smaller with adding nanoparticles in the SrTiO3 film, but the band gap is nearly the same for all the composite films. The photocatalytic result shows that SrTiO3 thin film has a good photocatalytic decomposition for methylene blue, however, it is a little bad for composite films. The reason of worse photocatalytic efficiency for composite films may be an inappropriate density distribution of Ag nanoparticles. This would be difficult for charge transfer, or electron-hole pairs can not be separated effectively during photocatalytic process. One more reason may be due to the lattice defect which is resulted from Ag+ ions entering the SrTiO3 structure. This would make the defects become trap-centers to capture electrons. And then a decrease of electron numbers will be occurred for photocatalytic reaction, therefore, the photocatalytic efficiency becomes worse.
中文摘要............................I
Abstract..........................II
致謝...............................III
目錄...............................IV
圖目錄..............................VIII
表目錄..............................XI
1 第一章 緒論 1
1.1 前言 1
1.2 實驗目的 2
2 第二章 文獻回顧 6
2.1 材料簡介 6
2.1.1 鈦酸鍶 7
2.1.2 銀 7
2.1.3 亞甲基藍 8
2.2 光催化原理 10
2.3 添加物對半導體之影響 12
2.3.1 添加金屬 12
2.3.2 複合型半導體薄膜 14
2.4 光催化動力反應模式 15
2.5 影響光催化之參數 17
2.6 薄膜沉積 18
2.6.1 薄膜沉積機制 19
2.6.2 薄膜形成之機制 22
2.7 濺鍍理論 23
2.7.1 射頻濺鍍 24
2.7.2 磁控濺鍍 25
3 第三章 實驗方法 27
3.1 實驗流程 27
3.1.1 實驗材料 28
3.1.2 實驗設備 29
3.2 靶材製作 30
3.3 基板清洗 34
3.4 薄膜製程 35
3.5 儀器分析 36
3.5.1 X光繞射儀 36
3.5.2 原子力顯微鏡 37
3.5.3 場發射型掃瞄式電子顯微鏡 38
3.5.4 X光光電子能譜儀 39
3.5.5 固態紫外光-可見光光譜儀 40
3.5.6 光學曲率量測儀 40
3.5.7 液態紫外光-可見光光譜儀 42
4 第四章 結果與討論 44
4.1 SrTiO3單層薄膜 44
4.1.1 X光繞射儀分析結果 44
4.1.2 場發射型掃瞄式電子顯微鏡分析結果 46
4.1.3 固態紫外光-可見光光譜儀分析結果 48
4.2 奈米銀 49
4.2.1 X光繞射儀分析結果 50
4.2.2 原子力顯微鏡分析結果 50
4.2.3 場發射型掃瞄式電子顯微鏡分析結果 53
4.2.4 X光光電子能譜儀分析結果 55
4.3 nano-Ag/SrTiO3複合薄膜 55
4.3.1 X光繞射儀分析結果 56
4.3.2 場發射型掃描式電子顯微鏡分析結果 58
4.3.3 X光光電子能譜儀分析結果 60
4.3.4 固態紫外光-可見光光譜儀分析結果 61
4.4 光學曲率量測儀分析結果 64
4.5 光催化降解M.B.之分析 66
4.6 與前人文獻之比較 68
5 第五章 結論 70
6 參考文獻 72


[1] 林有銘,專題報導:功能性粉末奈米光觸媒,科學發展,第408期,第1~8頁,2006。

[2] 陳郁文,97年度『綠色奈米技術之開發及應用-奈米金屬改質光觸媒於水中污染物及揮發性有機物控制之研究』期末審查,中央大學/奈米觸媒研究中心,第9~20頁,2009。

[3] 鄭亦彣,液相非熱電漿備製含氮二氧化鈦降解偶氮染料並結合陶瓷膜回收光觸媒之研究,台北科技大學環境工程與管理研究所碩士論文,2009。

[4] 呂冠霖,高濃度COD廢水氧化處理技術輔導成果說明,環保技術輔導計畫,第1~19頁,2003。

[5] 高思懷、孫亞瑋,Fenton法與活性碳配合於石化廢水處理之研究,第二十四屆廢水處理技術研討會,第245~252頁,1999。

[6] 游惠宋,薄膜生物處理技術於廢水處理之應用,中工高雄會刊,第2期,第17卷,第1~7頁,2009。

[7] 賴信穎,二氧化鈦添加氫氧基磷灰石對水中污染物光分解之效應,成功大學化工系碩士論文,2007。

[8] 吳皇麒,奈米二氧化鈦光降解甲苯、苯、己烷之應用,成功大學化學系碩士論文,2004。

[9] 周志明、張俊祥、李宗翰、林書丞、連興隆,奈米樹狀高分子磁性複合金屬吸附貴重金屬之研究,第二十一屆中華民國環境工程學會,雲林,2009。

[10] 陳姿宇,以氧化水熱法製備奈米結構之二氧化鈦薄膜,大同大學材料系碩士論文,2008。

[11] Mozia, S., ‘Photocatalytic membrane reactors (PMRs) in water and wastewater treatment - A review’, Separation and Purification Technology, 73, 71-91, 2010.

[12] Gaya, U.I., A. Abdullah, ‘Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems’, Journal of Photo-chemistry and Photobiology C: Photochemistry Reviews, 9, 1-12, 2008.

[13] Rajeshwar, K., M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer ‘Hetero- geneous photocatalytic treatment of organic dyes in air and aqueous media’, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 171-192, 2008.

[14] Li, Y., S. Yao, L. Xue, Y. Yan, ‘Sol–gel combustion synthesis of nanocrystalline LaMnO3 powders and photocatalystic properties’, Journal of Materials Science, 44, 4455-4459, 2009.

[15] Li, Y., S. Yao, W. Wen, L. Xue, Y. Yan, ‘Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3’, Journal of Alloys and Compounds, 491, 560-564, 2009.

[16] Lu, X., J. Xie, H. Shu, J. Liu, C. Yin, J. Lin, ‘Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity’, Materials Science and Engineering B, 138, 289-292, 2007.

[17] 邱源祥、陳開煌、鄭建民、李偉齊,Bi3.75La0.25Ti3O12鐵電薄膜之研究,台灣真空學會2011年度會員大會暨論文發表會,清華大學,2011。

[18] 楊偉仁,磁控濺鍍沉積TiO2光觸媒薄膜之研究,龍華科技大學工程技術研究所碩士論文,2009。

[19] 郭柏成,應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究,中山大學環境工程研究所碩士論文,2010。

[20] Cardona, M., ‘Optical properties and band structure of SrTiO3 and BaTiO3’, Physical Review Letters, 140, 651-655, 1965.

[21] Choi, Y., K. Choi , H. Lee , H. Lee , J. Kang , H. Kim, ‘Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost- efficient inverted organic solar cells’, Solar Energy Materials and Solar Cells, 95, 1615-1623, 2011.

[22] Jeong, J.A., H.K. Kim, ‘Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk- Heterojunction organic solar cells’, Solar Energy Materials and Solar Cells, 93, 1801-1809, 2009.

[23] Jeong, J.A., Y.S. Park, H.K. Kim, ‘Comparison of electrical, optical, structural, and interface properties of IZO–Ag–IZO and IZO–Au–IZO multilayer electrodes for organic photovoltaics’, Journal of Applied Physics, 107, 023111, 2010.

[24] Ishii, T., H. Kato, A. Kudo, ‘H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation’, Journal of Photochemistry and Photobiology A: Chemistry, 163, 181-186, 2004.

[25] Qin, Y., G. Wang, Y. Wang, ‘Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen’, Catalysis Communications, 8, 926-930, 2007.

[26] Konta, R., T. Ishii, H. Kato, A. Kudo, ‘Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation’, Journal of Physical Chemistry B, 108, 8992-8995, 2007.

[27] Puangpetch, T., S. Chavadej, T. Sreethawong, ‘Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photo- catalyst: Effects of molecular structure and chemical properties of hole scavengers’, Energy Conversion and Management, 52, 2256-2261, 2011.

[28] Liu, J., Y. Sun, Z. Li , S. Li, J. Zhao, ‘Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag-SrTiO3 nanotube arrays’, international journal of hydrogen energy, 36, 5811-5816, 2011.

[29] Zielin, B., E. Borowiak-Palen, R.J. Kalenczuk, ‘Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors’, international journal of hydrogen energy, 33, 1797-1802, 2008.

[30] Wang, G.Y., Y. Qin, J. Cheng, Y.J. Wang, ‘Influence of Zn doping on the photocatalytic property of SrTiO3’, Journal of fuel chemistry and technology, 38, 502-507, 2010.

[31] Zheng, Z., B. Huang, X. Qin, X. Zhang, Ying Dai, ‘Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity’, Journal of Colloid and Interface Science, 358, 68-72, 2011.

[32] Dong, W., X. Li, J. Yu, W. Guo, B. Li, L. Tan, C. Li,J. Shi, G. Wang, ‘Porous SrTiO3 spheres with enhanced photocatalytic performance’, Materials Letters, 67, 131-134, 2012 .

[33] Xian, T., H. Yang, J.F. Dai, Z.Q. Wei, J.Y. Ma, W.J. Feng, ‘Photocatalytic properties of SrTiO3 nanoparticles prepared by a polyacrylamide gel route’, Materials Letters, 65, 3254-3257, 2011.

[34] Chen, L., S. Zhang, L. Wang, D. Xue, S. Yin, ‘Preparation and photocatalytic properties of strontium titanate powders via sol–gel process’, Journal of Crystal Growth, 311, 746-748, 2009.

[35] Sulaeman, U., S. Yin, T. Sato, ‘Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles’, Applied Catalysis B: Environmental, 105, 206-210, 2011.

[36] Wang, N., D. Kong, H. He, ‘Solvothermal synthesis of strontium titanate nanocrystallines from metatitanic acid and photocatalytic activities’, Powder Technology, 207, 470-473, 2011.

[37] Sun, Y., J. Liu, Z. Li, ‘Design of highly ordered Ag–SrTiO3 nanotube arrays for photocatalytic degradation of methyl orange’, Journal of Solid State Chemistry, 184, 1924-1930, 2011.

[38] 詹丁山、劉如熹,自旋電子學之基石:簡介磁電阻與半金屬材料之發展與應用,化學,第1期,第66卷,第37~47頁,2008。

[39] 鄭天炫,添加劑對CaCu3Ti4O12陶瓷特性之影響,大同大學材料系碩士論文,2008。

[40] 賴勇成,鈦酸鉛鈣焦電薄膜紅外線陣列式熱影像感測元件之製作研究及特性分析,台灣海洋大學電機系碩士論文,2005。

[41] 蔡立仁、林哲宇,以溶膠凝膠法製備PZT壓電薄膜於噴墨技術之應用,工程科技與教育學刊,第3期,第6卷,第273~283頁,2009。

[42] 李威翰,火花電漿燒結製備含釔之鈦酸鍶陶瓷及其熱電性質之研究,成功大學材料系碩士論文,2010。

[43] Jaffe, B., W.R. Cook, H. Jaffe, ‘Piezoelectric Ceramics’, Academic Press Inc., London, 1971.

[44] 李婭莉、薛秦芳,寶石學基礎教程,地質出版社,北京,1995。

[45] 陳宏昌,以溶膠凝膠法製備BaxSr1-xTiO3與Bax-ySr1-xLayTiO3之相變結構與電性研究,東華大學材料系碩士論文,2004。

[46] Cardona, M., ‘Optical properties and Band structure of SrTiO3 and BaTiO3’, Physical Review Letters, 140, 651-655, 1965.

[47] 張家豪,以有機前導物法製備SrTiO3粉末,成功大學資源系碩士論文,2004。

[48] 彭御賢、楊志豪、李清華、陳冠廷、湯柏炘,以化學還原法合成微米級銅銀複合粉之研究,科學與工程技術期刊,第4期,第7卷,第45~57頁,2011。

[49] 鍾宜珍,金屬化合物薄膜濺鍍製程暨應用研究,清華大學材料系碩士論文,2001。

[50] 董騰元,氧化銀電池,高瞻自然科學教學資源平台,2008。

[51] 石明正、陳俊翰、詹淑琴、郭宗儒、傅世雄、吳亞馨,稻穀吸附有機污染物METHYLENE BLUE的實驗研究,台灣環境資源永續發展之研討會,第178~188頁,2007。

[52] 鄭千芳,以溶膠凝膠法製備複合奈米Ag/TiO2光觸媒之研究,雲林科技大學化工系碩士論文,2005。

[53] 林俊年,觀賞魚疾病診斷與防治,觀賞魚雜誌社,台北,2000。

[54] Houas, A., H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, ‘Photocatalytic degradation pathway of methylene blue in water’, Jean-Marie Herrmann Applied Catalysis B: Environmental, 31, 145-157, 2001.

[55] Choi, W., A. Termin, M.R. Hoffmann, ‘The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics’, Journal of Physical Chemistry, 98, 13669 -13679, 1994.

[56] Gratzel, M., ‘Photocatalysis Fundamentals and Applications’, Wiley -Interscience, New York, 1989.

[57] 翁千翔,光還原奈米金於二氧化鈦之電化學研究,中興大學化學系碩士論文,2009。

[58] 蔡金鈴,以氣相紅外光譜研究 Isopropyl Alcohol 在二氧化鈦光觸媒催化反應器之質傳行為、分解機制與反應動力,台北科技大學化學工程學系碩士論文,2004。

[59] 鄭玫玲,金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究,中央大學材料系碩士論文,2007。

[60] Serpone, N., ‘Relative photonic efficiencies and quantum yield in heterogeneous photocatalysis’, Journal of Photochemistry and Photobiology A: Chemistry, 104, 1-12, 1997.

[61] Serpone, N., D. Lawless, R. Khairutdinov, ‘Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size Quantization or direct transitions in this indirect semiconductor’, Journal of physical Chemistry, 99, 16646-16654, 1995.

[62] Zhang, Z., C-C. Wang, R. Zakaria, J. Y. Ying, ‘Role of particle size in nanocrystalline TiO2-based photocatalysts’, Journal of Physical Chemistry B, 102, 10871-10878, 1998.

[63] Serpone, N., D. Lawless, R. Khairutdinov, ‘Subnanmsecond relaxation dynamics in TiO2 colloidal sols (particle size RP-1.0-13.4nm). Relevance to heterogeneous photocatalysis’, Journal of Physical Chemistry, 99, 16655-16661, 1995.

[64] Sato, S., J.M. White, ‘Photodecomposition of water over Pt/TiO2 catalysts’, Chemical Physics Letters, 72, 83-86, 1980.

[65] 林秋薰、劉志緯,摻雜鉑金屬先後順序對TiO2奈米纖維光觸媒由乙醇產氫效率的影響,中國礦冶工程學會,台北,2009。

[66] 陳俊吉,金屬氧化物半導體在可見光分解水製氫之研究,成功大學化工系碩士論文,2005。

[67] 陳俊仁,銀修飾奈米二氧化鈦增強可見光吸收度之研究,成功大學化學系碩士論文,2005。

[68] Paola, A. D., E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, L. Palmisano, ‘Photocatalytic degrations of organic compound in aqueneous systems by transition metal doped polycrystalline TiO2’, Catalysis Today, 75, 87-93, 2002.

[69] Chen, L.C. and T. C. Chou, ‘Photodecolorization of methyl orange using silver ion modified TiO2 as photocatalyst’, Industrial and Engineering Chemistry Research, 33, 1436-1443, 1994.

[70] Kondo, M.M., W.F. Jardim, ‘Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst’, Water research, 25, 823-827, 1991.

[71] Vamathevan, V., R. Amal, D. Beydoum, G. Low, S. McEvoy, ‘Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles’, Journal of Photochemistry and Photobiology A: Chemistry, 148, 233-245, 2002.

[72] Chao, H.E., Y.U. Yun, H.U. Xingfang, A. Larbot, ‘Influence of silver doping on the photocatalytic activity of titania films’, Applied Surface Science, 200, 239-247, 2002.

[73] Chao, H.E., Y.U. Yun, H.U. Xingfang, A. Larbot, ‘Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder’, journal of the European Ceramics Society, 23, 1457-1464, 2003.

[74] Herrmann, J.M., ‘Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants’, Catalysis Today, 53, 115-129, 1999.

[75] Sauer, T., G.C. Neto, H.J. José, R.F.P.M. Moreira, ‘Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor’, Journal of Photochemistry and Photobiology A: Chemistry, 149, 147-154, 2002.

[76] Crittenden, J.C., J. Liu, D.W. Hand, D.L. Perram, ‘Photocatalytic oxidation of chlorinated hydrocarbons in water’, Water research, 31, 429-438, 1997.

[77] Ohring, M., ‘The Materials Science of Thin Films’, 2nd edition, Academic Press, San Diego, 1992.

[78] 莊達人,VLSI製造技術,高立圖書出版,新北市,1995。

[79] 陳家富,真空鍍膜基礎(二),中華民國鍍膜科技研討會暨國科會計畫研究成果發表會講義,2000。

[80] Wasa, K., S. Hayakawa, ‘Handbook of Sputter Deposition Technology’, noyes publication, New Jersey, 1992.

[81] 黃富財,以RF濺鍍法沉積鈮酸鋰薄膜之研究,中央大學光電科學研究所博士論文,2006。

[82] 蔡宗典,超薄ITO透明導電膜應用在觸控面板之研究,中央大學光電科學研究所碩士論文,2008。

[83] Vossen, J.L., W. Kern, ‘Thin Film Process, Academic Press’, New York, 1978.

[84] 戴椿河、黃宏勝、周有偉,工業材料雜誌,第213 期,第156~164頁,2004。

[85] 汪建民主編,材料分析,中國材料科學學會,台北市,2006。

[86] Schön, G.., ‘ESCA studies of Ag, Ag2O and AgO’, Acta Chemica Scandinavica, 27, 2623-2633, 1973.

[87] Klein, C., C.S. Hurlbut, ‘Manual of Mineralogy’, 20th edition, Wiley, New York, 1985.

[88] Hesse, R., Spectrum Processing, ‘Analysis and Presentation Soft-ware for Core Level Photoelectron Spectra’, Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig, 2006.

[89] Haacke, G., ‘New figure of merit for transparent conductors’, Journal of Applied Physics, 47, 4086-4089, 1976.

[90] Fan, J.C.C., F.J. Bachner, G.H. Foley, P.M. Zavracky, ‘Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation’, Applied Physics Letters, 25, 693-695, 1974.

[91] Serpone, N., ‘Is the band gap of pristine TiO2 narrowed by anion- and cation-Doping of titanium dioxide in second-generation photocatalysts’, Journal of Physical Chemistry B, 110, 24287-24293, 2006.

[92] Liu, H.S., X.Y. Fang, W.L. Song, Z.L. Hou, R. Lu, J. Yuan, M.S. Cao, ‘Modification of band gap of β-SiC by N-doping’, Chinese Physics Letters, 26, 067101, 2009.

[93] Stumm, P., D.A. Drabold, P.A. Fedders, ‘Defects, doping, and conduction mechanisms in nitrogen-doped tetrahedral amorphous carbon’, Journal of Applied Physics, 81, 1289-1295, 1997.

[94] Velko, V.P., G.A. Kotov, V.N. Smirnov, G.D. Shandybina, Ε.Β. Yakovlev, ‘Thermal stresses in a film–substrate structure exposed to pulsed laser heating’, Soviet Journal of Quantum Electronics, 11, 1338-1340, 1981.

[95] Louro, C., F. Teixeira-Dias, L.F. Menezes, A. Cavaleiro, ‘Effect of the substrate thermal expansion coefficient on the thermal residual stresses in W-Si-N sputtered films’, Key Engineering Materials, 230-232, 513-516, 2002.

[96] Tien, C.L., T.W. Lin, ‘Thermal expansion coefficient and thermo-mechanical properties of SiNx thin films prepared by plasma-enhanced chemical vapor deposition’, Applied Optics, 51, 7229-7235, 2012.

[97] Habka, N., J. Barjon, A. Lazea, K. Haenen, ‘Stress in (110)-textured phosphorus-doped polycrystalline diamond studied by Raman and cathodoluminescence spectroscopies’, Journal of Applied Physics, 107, 103531, 2010.

[98] Pletka, B.J., ‘Dislocation substructures in doped sapphire(α-Al2O3) deformed by basal slip’, Acta Metallurgica, 30, 147-156, 1982.

[99] Chowdhury, N.A., P. Srinivasan, D. Misra, ‘Trapping in deep defects under substrate hot electron stress in TiN/Hf-silicate based gate stacks’, Solid-State Electronics, 51, 80-88, 2007.

[100] 杜國瑞,以射頻磁控濺鍍法合成赤鐵礦薄膜與奈米銀/赤鐵礦複合薄膜之特性分析與光催化之研究,成大大學地科系碩士論文,2011。

[101] Zhu, J., W. Zheng, B. He, J. Zhang, M. Anpo, ‘Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water’, Journal of Molecular Catalysis A: Chemical, 216, 35-43, 2004.

[102] Wang, Z., C. Chen, F. Wu, B. Zou, M. Zhao, J. Wang, C. Feng, ‘Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals’, Journal of Hazardous Materials, 164, 615-620, 2009.

[103] Ohno, T., F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, ‘Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder’, Journal of Photochemistry and Photobiology A: Chemistry, 127, 107-110, 1999.

[104] Miyamura, A., K. Kaneda, Y. Sato, Y. Shigesato, ‘Effects of internal stress on photocatalytic properties of TiO2 films’, Thin Solid Films, 516, 4603-4608, 2008.

[105] Lochtefeld, A.J., M.R. Melloch, J.C.P. Chang, ‘The role of point defects and arsenic precipitates in carrier trapping and re-combination in low-temperature grown GaAs’, Applied Physics Letters, 69, 1465-1467, 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top