跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳君榮
研究生(外文):Chun-JungChen
論文名稱:臺灣北部金瓜石酸性礦山排水地區之硫酸氫氧氧化鐵沉澱作用與溪水及海水化學變化
論文名稱(外文):Precipitation of Iron Oxyhydroxysulfates and Variations of Stream and Seawater Chemistry in Areas Affected by Acid Mine Drainage, Chinkuashih, Northern Taiwan
指導教授:江威德江威德引用關係
指導教授(外文):Wei-Teh Jiang
學位類別:博士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:166
中文關鍵詞:金瓜石酸性礦山排水黃金瀑布濂洞灣四方硫酸纖鐵礦針鐵礦
外文關鍵詞:Chinkuashihacid mine drainageGolden FallsLiang-Dong Bayschwertmannitegoethitearsenic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:716
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
礦業發展過程中所產生之廢礦經風化作用可進一步衍生出酸性礦山排水(acid mine drainage; AMD),其所含高濃度有毒元素及後續形成之大量含水氧化鐵沉澱皆可能對環境生態及人體健康造成影響。瞭解AMD及其沉澱物之特性、危害性及再利用性有助於對其之預防與整治外,也有利於環境之永續發展。本研究以X光繞射、傅利葉轉換紅外線光譜、電子顯微鏡和感應藕合電漿放射光譜等方法分析金瓜石酸性礦山排水(pH = 2.8)及其與溪水(pH = 6.0)和海水(pH = 8.0)混染過程中之水化學特性以及所沉澱物質之礦物學特徵,以探討其中之元素遷移行為與微奈米硫酸氫氧氧化鐵物質沉澱作用之關係,並考量瀑布地形與季節變化之影響。
金瓜石黃金瀑布、濂洞溪下游河床和本山七坑坑口及其溝渠流徑之表層沉澱物以具刺蝟狀形貌之四方硫酸纖鐵礦(schwertmannite)球粒集合體為主要組成。酸性礦山排水中鐵和砷濃度由上游往下游相對其他金屬離子濃度大幅減少,顯示四方硫酸纖鐵礦為現地沉澱,並且具有顯著之砷吸收能力。酸性礦山排水受瀑布曝氣效應影響可加速其二價鐵氧化速率,使得瀑布段之二價鐵氧化速率及模式速率常數(0.5-2.0×10-7 mol L-1 sec-1和1.1-5.7×10-3 sec-1)及鐵(四方硫酸纖鐵礦)沉澱作用之速率及模式速率常數(1.5-7.3×10-7 mol L-1 sec-1和1.9-2.4×10-7 mol L-1 sec-1)較下游溪流段快或高出1至2個量級,並具有高砷吸收率(4.7-6.3×10-9 mol L-1 sec-1)。溪流段夏季之速率受溫度影響比冬季高出4至5倍,但瀑布段冬季之速率與夏季差異不大,可歸因於冬季水流量大時瀑布曝氣效應可增強鐵沉澱速率。
草酸銨溶樣分析結果顯示黃金瀑布表層四方硫酸纖鐵礦之平均化學式為Fe16O16(OH)11(SO4)2.5•16H2O,並含有2794 ppm砷、439 ppm鋁、115 ppm銅及23 ppm鉻。隨著沉澱深度增加,四方硫酸纖鐵礦先逐漸轉變成低結晶度針鐵礦,再轉變成較高結晶度針鐵礦。同時沉澱物整體之Al/Fe、Cr/Fe與S/Fe莫耳比值減少,As/Fe無顯著變化,Cu/Fe增加,顯示四方硫酸纖鐵礦轉變過程中,鋁、鉻與硫酸根被釋放至溶液中,砷可被保留,銅則被富集。低結晶度針鐵礦之形成對相轉變過程中元素之遷移及滯留行為有顯著影響。
四方硫酸纖鐵礦之沉澱可使金瓜石酸性礦山排水中砷及金屬濃度往下游衰減,但仍約有每年3235公噸鐵、737公噸鋁、191公噸銅及2.4公噸砷排放至濂洞灣中,並且在海水表層沉澱大量懸浮粒。入海口海水(酸鹼值小於4)所形成短柱狀懸浮奈米微粒,乃是四方硫酸纖鐵礦及少量針鐵礦所組成;而濂洞灣近岸海水(酸鹼值大於5.5)所形成球狀懸浮奈米微粒,屬非晶質水合氧化鐵、鋁,並含有微量四方硫酸纖鐵礦。隨著水體酸鹼值升高,海水懸浮粒之組成從相對富含砷、鉻、鉛、鐵及硫轉而相對富含鋁、矽、銅、鋅、錳、鎳、鈷及鎘。金瓜石酸性礦山排水之水體化學及沉澱物組成變化主要受控於(硫酸)氫氧氧化鐵、鋁物質沉澱與水體酸鹼值之改變,以及中和過程中金屬元素逐步於不同階段共沉澱或被吸附作用。這些過程可延緩或降低金瓜石地區酸性礦山排水對環境污染之影響,然而富含重金屬之海水懸浮粒的後續脫附、轉變或溶解作用值得追蹤和關注。

Acid mine drainage (AMD) often occurs as a result of weathering of mine wastes in mining areas. Migration of high concentrations of toxic elements and subsequent precipitation of hydrous iron oxides in AMD areas could pose great threats on environmental quality, ecosystem, and human health. Analyzing the characteristics and reactions of AMDs and their precipitates is fundamentally important for understanding geochemical reactions in such an environment. It can also provide parameters essential for contamination assessment and remediation crucial to environmental sustainability.
Variations of water chemistry and precipitate mineralogy during mixing of acid mine drainage (AMD) (pH = 2.8) with a creek (pH = 6.0) and seawater (pH = 8.0) were investigated by XRD, SEM, TEM, IR, ICP analysis to discuss the relationships between metal mobility and precipitation of micro-nanometric iron oxyhydroxysulfate minerals in the Chinkuashih AMD area in consideration of reaction kinetics, waterfall effects, and seasonal variations. In terms of Fe(II) oxidation and Fe(III) precipitation in the creek section, the summer rates were 4-5 times higher than the winter rates, largely attributed to a temperature effect. In contrast, the seasonal differences in rate and rate constant were small in the waterfall section due to waterfall aeration which enhanced the Fe precipitation rate when the flow rate was large in the winter.
Radiating aggregates of schwertmannite with an overall hedgehog morphology occurred as a principal constituent of the surface precipitates on the bedrocks of Golden Falls and downstream Lian-Dong Creek and a channel at the Penshan 7th adit. Remarkable downstream reduction of Fe and As concentrations with respect to other metals in the water suggested in-situ precipitation of schwertmannite associated with an arsenate sorption process. Under the influence of water aeration, the waterfall section showed up to 1-2 orders of magnitude faster rates and higher model rate constants of Fe(II) oxidation (6.1-6.7×10-6 mol L-1 sec-1and 2.7-2.9×10-2 sec-1) and Fe (schwertmannite) precipitation (1.7-2.1×10-6 mol L-1 sec-1and 3.5-4.1×10-7 mol L-1 sec-1) than the creek section, and had a high As sorption rate (4.7-6.3×10-9 mol L-1 sec-1).
The schwertmannite in the surface precipitate at Golden Falls had an chemical formula of Fe16O16(OH)11(SO4)2.5•16H2O, and contained 2794 ppm As, 439 ppm Al, 115 ppm Cu, and 23 ppm Cr on average. With increasing depth, a transformation from schwertmannite, poorly crystalline goethite, to better crystallized goethite was characterized. In addition, bulk analyses indicated decreases of Al/Fe, Cr/Fe and S/Fe molar ratios and an increase of Cu/Fe and with rather small variations in As/Fe as the sample depth increased. The data suggested that Al, Cr and sulfate were released, As was retained, and Cu was accumulated, and that the formation of poorly crystalline goethite had a strong effect on the mobility and attenuation of elements during the transformation.
Schwertmannite precipitation was the main cause for downstream attenuation of As and metal concentrations in the Chinkuashih AMD and creek waters. However, there were still about 3235 metric tons per year (t yr-1) of Fe, 737 t yr-1 Al, 191 t yr-1 Cu, and 2.4 t yr-1 As discharged into Lian-Dong Bay, which produced abundant suspended particulates in the surface seawater near the estuary. The estuarine suspended particulates formed at pH 〈 4 were short nanorods consisting of schwertmannite and subordinate goethite, and the inshore suspended particulates formed at pH 〉 5.5 were composed of non-crystalline hydrous iron and aluminum oxides (HFO and HAO) with a trace of schwertmannite, in a form of nanoballs. As the pH increased in the water, the suspended particulates were enriched in Al, Si, Cu, Zn, Mn, Ni, Co, and Cd relative to As, Cr, Pb, Fe, and S.
The water chemistry and precipitate constituents in areas affected by AMDs at Chinkuashih were mainly influenced by the formation of iron oxyhydroxysulfate minerals and HFO/HAO and sequential co-precipitation or adsorption of trace elements interrelated to changes in solution pH at various stages of water mixing and neutralization. These processes may have reduced and/or deferred environmental impacts made by the Chinkuashih AMDs. However, further investigations and continuous monitoring of the potential influences of desorption, transformation, and/or dissolution of the suspended particulates in Lian-Dong Bay are apparently important.
目錄
摘要 Ⅰ
Abstract Ⅲ
誌謝 Ⅵ
目錄 Ⅶ
表目錄 ⅩⅠ
圖目錄 ⅩⅡ
第一章、緒論 1
第二章、研究方法 6
2.1野外工作 6
2.1.1採樣 6
2.1.2二價鐵與硫酸根濃度之現地量測 7
2.1.3流速與流量 8
2.2水樣之化學組成 8
2.2.1感應耦合電漿光譜元素分析 8
2.2.2離子層析儀分析 9
2.3固樣之礦物學特徵 9
2.3.1X光繞射分析 9
2.3.2傅利葉轉換紅外線光譜分析 9
2.3.3掃瞄式電子顯微鏡分析 10
2.3.4穿透式電子顯微鏡分析 10
2.4 固樣溶樣成份分析 10
2.5 地化模擬計算 11
第三章、瀑布曝氣及季節性溫度變化對酸性礦山排水系統鐵和砷的衰減率之影響 13
3.1前言 13
3.2研究區域 14
3.3研究方法 17
3.3.1採樣及實地量測 17
3.3.2實驗室分析 17
3.3.3污染物量和反應率計算 17
3.4研究結果與討論 19
3.4.1酸性礦山排水源化學組成 19
3.4.2水化學成份隨下游之變化 22
3.4.3四方硫酸纖鐵礦之礦物學與形成 25
3.4.4反應速率 33
3.4.5速率常數計算 33
3.4.5.1二價鐵氧化速率 33
3.4.5.2四方硫酸纖鐵礦沉澱速率 34
3.4.5.3砷吸收 34
3.4.6二價鐵氧化動力學 34
3.4.7季節溫度和瀑布效果對四方硫酸纖鐵礦沉澱的影響 37
3.4.8四方硫酸纖鐵礦之砷移除作用 38
3.4.9沉澱/吸附量和溶解量 39
3.5結論 42
第四章、金瓜石酸性礦山排水地區四方硫酸纖鐵礦之沉澱及其轉變針鐵礦過程中
元素之分化作用 43
4.1前言 43
4.2研究方法 44
4.2.1採樣 44
4.2.2固樣分析 44
4.3結果 46
4.3.1水合氧化鐵沉澱之礦物學特徵 46
4.3.2沉澱物之化學組成 53
4.4討論 58
4.4.1四方硫酸纖鐵礦之形成及轉變 58
4.4.2四方硫酸纖鐵礦之砷與微量金屬吸附 61
4.4.3四方硫酸纖鐵礦轉變至針鐵礦過程中砷與金屬之遷移 68
4.5結論 71
第五章、海水與酸性礦山排水反應沉澱懸浮粒與海水成份之關係 72
5.1前言 72
5.2研究區域 75
5.3研究方法 75
5.3.1採樣與現場量測 75
5.3.2水樣與固樣分析 76
5.3.3實驗室礦山排水與海水混染實驗 76
5.3.4混染實驗模擬計算 76
5.4結果 77
5.4.1懸浮粒之礦物學特徵 77
5.4.1.1入海口海水懸浮粒 77
5.4.1.2濂洞灣近岸海水懸浮粒 88
5.4.2酸性礦山排水、濂洞溪及陰陽海之水化學特性 89
5.4.3實驗室酸性礦山排水與海水混染產物之礦物學特徵 91
5.4.4實驗室酸性礦山排水與海水混染過程之水化學變化 96
5.5討論 99
5.5.1海水懸浮粒之形成及變化 99
5.5.2懸浮粒之微量元素吸收與共沉澱作用 111
5.5.3懸浮粒之轉變對金屬遷移之影響 113
5.6結論 114
第六章、總結 115
附錄一、利用EXAFS及FTIR光譜探討砷酸根及硫酸根與四方硫酸纖鐵礦結構
之關係 117
1前言 117
2研究方法 119
2.1四方硫酸纖鐵礦之合成 119
2.2砷吸附實驗 119
2.3砷共沉澱實驗 119
2.4固樣與水樣分析 120
2.5同步輻射吸收光譜之延伸性X光吸收精細結構分析 120
3結果 123
3.1四方硫酸纖鐵礦之砷吸附 123
3.2含砷四方硫酸纖鐵礦與非晶質砷酸鐵 129
4討論 135
4.1四方硫酸纖鐵礦之砷吸收能力 135
4.2四方硫酸纖鐵礦之砷吸收機制 137
4.3砷酸根及硫酸根於四方硫酸纖鐵礦結構中之配置 141
5結論 143
參考文獻 144

表目錄
表3-1金瓜石礦區酸性礦山排水及其污染水體之化學特性 20
表3-2金瓜石酸性礦山排水及其污染水體之四方硫酸纖鐵礦及針鐵礦飽和指數 29
表3-3黃金瀑布及濂洞溪總鐵沉澱量及速率、二價鐵氧化速率以及砷與微量金屬移除速率 30
表3-4黃金瀑布段與濂洞溪段二價鐵氧化與四方硫酸纖鐵沉澱之模式速率常數及砷吸收之分配係數 31
表3-5文獻資料計算所得二價鐵氧化與四方硫酸纖鐵沉澱之模式速率常數及砷吸收之分配係數 32
表3-6金瓜石地區流入濂洞灣之污染物傳輸量與流入西班牙Huelva海灣之傳輸量及全球傳輸總量之比較 41
表4-1金瓜石水合氧化鐵沉澱物之化學組成及礦物比例 55
表4-2表層四方硫酸纖鐵礦之化學組成及化學式 56
表4-3金瓜石水合氧化鐵沉澱及其四方硫酸纖鐵礦組成所含元素對鐵之莫耳比值 57
表4-4金瓜石酸性礦山排水沉澱物中砷與微量金屬之濃度係數 65
表4-5金瓜石酸性礦山排水中元素之莫耳濃度及其主要物種之比例 66
表5-1海水懸浮粒之化學組成 87
表5-2金瓜石酸性礦山排水與濂洞灣海水之化學成份 90
表5-3實驗室酸性礦山排水與海水混染水體之水化學成份 97
表5-4濂洞灣海水化學成分對可能沉澱相之飽和指數 104
表5-5酸性礦山排水與海水混染之模擬水體對可能沉澱相之飽和指數 105
表5-6海水懸浮粒所含元素之濃度相對鐵濃度之莫耳比 108
表5-7懸浮粒子成分相對於其採樣點水化學成份計算所得之濃度係數 108
附表1-1砷吸附實驗中四方硫酸纖鐵礦之砷吸收邊緣EXAFS光譜擬合參數值 127
附表1-2砷共沉澱產物之鐵吸收邊緣EXAFS光譜擬合參數值 132
附表1-3砷共沉澱產物之砷吸收邊緣 EXAFS 光譜擬合參數值 134

圖目錄
圖3-1台灣北部金瓜石酸性礦山排水地區之位置圖及水樣採集位置 15
圖3-2台灣北部金瓜石酸性礦山排水地區之野外照片 16
圖3-3金瓜石黃金瀑布至濂洞灣入海口沿線水體化學之變化 24
圖3-4黃金瀑布和濂洞溪基岩表面富鐵沉澱物X光粉末繞射圖 25
圖3-5金瓜石酸性礦山排水沉澱物之二次電子影像及X光能量分散光譜 26
圖3-6四方纖鐵礦與四方硫酸纖鐵礦之結構 27
圖4-1台灣北部金瓜石酸性礦山排水地區之沉澱物及鄰近水體採樣位置圖 45
圖4-2金瓜石黃金瀑布景觀及採集之厚層富鐵沉澱殼 45
圖4-3黃金瀑布與濂洞溪富鐵沉澱物之X光粉末繞射圖 48
圖4-4採樣點G-1P沉澱物中針鐵礦(110)晶面繞射峰之半高寬隨深度之變化 49
圖4-5黃金瀑布與濂洞溪富鐵沉澱物之傅利葉紅外線吸收光譜 50
圖4-6採樣點G-1P不同深度富鐵沉澱物之二次電子影像 51
圖4-7四方硫酸纖鐵礦、針鐵礦及赤鐵礦之穿透式電子顯微鏡影像 51
圖4-8置於黃金瀑布頂層階地之陶瓷板上之四方硫酸纖鐵礦沉澱 52
圖4-9標本G-1P沉澱物之元素/鐵莫耳比及四方硫酸纖鐵礦比例隨深度之變化 67
圖5-1濂洞灣海水與酸性礦山排水混合反應形成大量黃色懸浮粒。 73
圖5-2金瓜石酸性礦山排水、濂洞灣海水及懸浮粒採樣位置圖 74
圖5-3濂洞灣海水懸浮物之X光粉末繞射圖 79
圖5-4入海口和濂洞灣近岸海水懸浮粒之傅利葉紅外線吸收光譜 80
圖5-5濂洞溪與海水混合所形成懸浮粒之二次電子影像 81
圖5-6本山七坑酸性礦山排水與海水混合所形成懸浮粒之二次電子影像 82
圖5-7濂洞溪與海水混合所形成懸浮粒之穿透式電子顯微影像、電子繞射圖及
X光能量分散光譜 83
圖5-8本山七坑酸性礦山排水與海水混合所形成懸浮粒穿透式電子顯微影像、
電子繞射圖及X光能量分散光譜 84
圖5-9本山七坑AMD入海口SR-1海水懸浮粒之穿透式電子顯微影像、STEM影像及其X光能量分散光譜所得之元素分佈圖 85
圖5-10濂洞灣近岸SR-3海水懸浮粒之穿透式電子顯微影像、STEM影像及其X光能量分散光譜所得之元素分佈圖 86
圖5-11實驗室AMD與海水混染產物之X光粉末繞射圖 92
圖5-12實驗室AMD與海水混染產物之傅利葉紅外線吸收光譜 93
圖5-13實驗室AMD與海水混染產物(pH 〈 5.5)之穿透式電子顯微影像、電子繞射圖及X光能量分散光譜 94
圖5-14實驗室AMD與海水混染產物(pH 〉 5.5)之穿透式電子顯微影像、電子繞射圖及X光能量分散光譜 95
圖5-15實驗室AMD與海水混染溶液元素移除率隨pH之變化 98
圖5-16酸性礦山排水環境鐵沉澱相之Eh-pH投圖 100
圖5-17 AMD與海水混染區域鐵沉澱相之Eh-pH投圖 101
圖5-18近岸海水環境鐵沉澱相之Eh-pH投圖 102
圖5-19濂洞灣海水環境鋁沉澱相之Eh-pH投圖 103
圖5-20表層沉澱物及海水懸浮粒對AMD中元素富集之能力 104
圖5-21 AMD所含元素之濃度係數隨pH之變化 110
附圖1-1砷氧四面體與(氫氧)氧化鐵礦物鐵氧八面體可能之鍵結型態 118
附圖1-2四方硫酸纖鐵礦之砷吸附量與硫酸根釋放量隨砷濃度之變化 124
附圖1-3合成四方硫酸纖鐵礦吸砷前後X光粉末繞射圖譜之比較 125
附圖1-4砷吸附實驗中四方硫酸纖鐵礦之砷吸收邊緣EXAFS光譜 126
附圖1-5砷吸附實驗中四方硫酸纖鐵礦及砷共沉澱實驗產物之傅利葉紅外線
吸收光譜隨砷含量之變化 128
附圖1-6砷共沉澱實驗產物之X光繞射圖譜 130
附圖1-7砷共沉澱實驗產物之鐵吸收邊緣EXAFS光譜 131
附圖1-8砷共沉澱實驗產物之砷吸收邊緣EXAFS光譜 133
附圖1-9四方硫酸纖鐵礦之結構及其砷吸附機制 136
附圖1-10硫酸根四面體鍵結型態及對稱性差異對傅利葉紅外線吸收光譜振動膜分離程度之影響 141

Abdus-Salam, N., Adekola, F.A., 2006. Comparative dissolution of natural goethite samples in HCl and HNO3. Journal of Applied Sciences and Environmental Management, 10, 11–17.
Accornero, M., Marini, L., Ottonello, G., Zuccolini, M.V., 2005. The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Applied Geochemistry, 20, 1368–1390.
Acero, P., Ayora, C., Torrentó, C., Nieto, J.–M., 2006. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica Et Cosmochimica Acta, 70, 4130–4139.
Achterberg, E. P., Herzl, V. M. C., Braungardt, C. B., and Millward, G. E, 2003. Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. Environmental Pollution, 121, 283–292.
Ahonen, L., Tuovinen, O.H., 1989. Microbiological oxidation of ferrous iron at low temperatures. Applied and Environmental Microbiology, 55, 312–316.
Anderson, P. R., and Benjamin, M. M., 1990. Surface and bulk characteristics of binary oxide suspensions. Environmental Science & Technology, 24, 692–698.
Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd ed. A.A. Balkema Publishers, Leiden, The Netherlands.
Asta, M.P., Cama, J., Martínez, M., Giménez, J., 2009. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965–972.
Asta, M.P., Ayora, C., Acero, P., Cama, J., 2010b. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain). Journal of Hazardous Materials, 177, 1102–1111.
Asta, M.P., Ayora, C., Román–Ross, G., Cama, J., Acero, P., Gault, A.G., Charnock, J.M., Bardelli, F., 2010a. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chemical Geology, 271, 1–12.
Asta, M.P., Cama, J., Martinez, M., Gimenez, J., 2009. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965–972.
Baker, B. J., and Banfield, J. F., 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139–152.
Balistrieri, L. S., Box, S. E., and Tonkin, J. W., 2003. Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d'Alene River basin. Environmental Science & Technology, 37, 4694–4701.
Balistrieri, L. S., Seal, R. R., Piatak, N. M., and Paul, B., 2007. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid–mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 22, 930–952.
Bazilevskaya, E., Archibald, D. D., Aryanpour, M., Kubicki, J. D., and Martinez, C. E., 2011. Aluminum coprecipitates with Fe (hydr)oxides: Does isomorphous substitution of Al3+ for Fe3+ in goethite occur?. Geochimica Et Cosmochimica Acta, 75, 4667–4683.
Ball, J.W., Nordstrom, D.K., 2001. User's manual for WATEQ4F with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geologival. Survey. Open–File Report, 91–183.
Berkowitz, J., Anderson, M. A., and Graham, R. C., 2005. Laboratory investigation of aluminum solubility and solid–phase properties following alum treatment of lake waters. Water Research, 39, 3918–3928.
Bigham, J. M. and Nordstrom, D. K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C. N., Jambor, J. L., and Nordstrom, D. K. (eds.), Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance. Mineralogical Society of America, Washington, D.C., Reviews in Mineralogy and Geochemistry, 40, 351–403.
Bigham, J. M., Schwertmann, U., Carlson, L., and Murad, E., 1990. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743–2758.
Bigham, J. M., Carlson, L. & Murad, E.,1994. Schwertmannite, a new iron oxyhydroxysulphate from PyhaÈsalmi, Finland and other localities. Mineralogical Magazine, 58, 641–648.
Bigham, J.M., Schwertmann, U., Pfab, G., 1996b. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 11, 845–849.
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., Wolf, M., 1996a. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica Et Cosmochimica Acta, 60, 2111–2121.
Bligh, M. W., and Waite, T. D., 2011. Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment. Geochimica Et Cosmochimica Acta, 75, 7741–7758.
Boily, J. F., Gassman, P. L., Peretyazhko, T., Szanyi, J., and Zachara, J. M., 2010, FTIR Spectral Components of Schwertmannite. Environmental Science & Technology, 44, 1185–1190.
Boumaza, A., Favaro, L., Ledion, J., Sattonnay, G., Brubach, J. B., Berthet, P., Huntz, A. M., Roy, P., and Tetot, R., 2009. Transition alumina phases induced by heat treatment of boehmite: An X–ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry, 182, 1171–1176.
Braungardt, C., Achterberg, E. P., Elbaz–Poulichet, F., and Morley, N. H., 2003. Metal geochemistry in a mine–polluted estuarine system in Spain. Applied Geochemistry, 18, 1757–1771.
Burgos, W.D., Borch, T., Troyer, L.D., Luan, F.B., Larson, L.N., Brown, J.F., Lambson, J., Shimizu, M., 2012. Schwertmannite and Fe oxides formed by biological low–pH Fe(II) oxidation versus abiotic neutralization: Impact on trace metal sequestration. Geochimica Et Cosmochimica Acta, 76, 29–44.
Burton, E. D., Bush, R. T., Johnston, S. G., Watling, K. M., Hocking, R. K., Sullivan, L. A., and Parker, G. K., 2009. Sorption of Arsenic(V) and Arsenic(III) to Schwertmannite. Environmental Science & Technology, 43, 9202–9207.
Burton, E.D., Bush, R.T., Sullivan, L.A., Mitchell, D.R.G., 2007. Reductive transformation of iron and sulfur in schwertmannite–rich accumulations associated with acidified coastal lowlands. Geochimica Et Cosmochimica Acta, 71, 4456–4473.
Byrne, R. H., 2002. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochemical Transactions, 3, 11–16.
Byrne, R. H., Kump, L. R., and Cantrell, K. J., 1988. The influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry, 25, 163–181.
Cambier, P., 1986. Infrared study of goethites of varying crystallinity and particle size: 1. Interpretation of OH and lattice vibration frequencies. Clay Minerals, 21, 191–200.
Cánovas, C.R., Olías, M., Nieto, J.–M., Sarmiento, A.M., Cerón, J.C., 2007. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Science of the Total Environment, 373, 363–382.
Caraballo, M. A., Rotting, T. S., Macias, F., Nieto, J. M., and Ayora, C., 2009. Field multi–step limestone and MgO passive system to treat acid mine drainage with high metal concentrations. Applied Geochemistry, 24, 2301–2311.
Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A., Wagner, F., 2002. Scavenging of as from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science & Technology, 36, 1712–1719.
Castilla, J. C., 1983. Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin, 14, 459–464.
Castilla, J. C. and Nealler, E., 1978. Marine environmental impact due to mining activities of El Salvador copper mine, Chile. Marine Pollution Bulletin, 9, 67–70.
Catalano, J. G., Park, C., Fenter, P., and Zhang, Z., 2008, Simultaneous inner– and outer–sphere arsenate adsorption on corundum and hematite. Geochimica Et Cosmochimica Acta, 72, 1986–2004.
Chapman, B. M., Jones, D. R., and Jung, R. F., 1983. Processes controlling metal–ion attenuation in acid–mine drainage streams. Geochimica Et Cosmochimica Acta, 47, 1957–1973.
Childs, C.W., Inoue, K., Mizota, C., 1998. Natural and anthropogenic schwertmannites from Towada–Hachimantai National Park, Honshu, Japan. Chemical Geology, 144, 81–86.
Colomban, P., 1989. Structure of oxide gels and glasses by infrared and Raman–scattering: 1. Alumina. Journal of Materials Science, 24, 3002–3010.
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Wiley–VCH Verlag GmbH & Co., Weinheim, Germany.
Da Silva, E. F., Patinha, C., Reis, P., Fonseca, E. C., Matos, J. X., Barrosinho, J., and Oliveira, J. M. S., 2006. Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environmental Geology, 50, 1001–1013.
Das, S., Hendry, M. J., and Essilfie–Dughan, J., 2011. Transformation of Two–Line Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature. Environmental Science & Technology, 45, 268–275.
Davison, W. Seed, G., 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochimica Et Cosmochimica Acta, 47, 67–79.
Diakonov, I., Khodakovsky, I., Schott, J., Sergeeva, E., 1994. Thermodynamic properties of iron oxides and hydroxides. 1. Surface and bulk thermodynamic properties of goethite (α–FeOOH) up to 500 K. European Journal of Mineralogy, 6, 967–983.
Dinelli, E., Tateo, F., 2002. Different types of fine–grained sediments associated with acid mine drainage in the Libiola Fe–Cu mine area (Ligurian Apennines). Applied Geochemistry, 17, 1081–1092.
Dold, B., 2003. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J. Geochem. Explor., 80, 55–68.
Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel, O., Lebrun, S., Elbaz–Poulichet, F., 2009. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)–rich acid mine water. Chemical Geology, 265, 432–441.
Fang, J.–N., Yu, B.–S., Chen, Y.–L., Song, S.–R., Lo, H.–J., Lin, I.–C., Liu, C.–M., Liu, Y.–J., 2003. Chemical composition and the origin of suspension particles in Liang–Dong Bay (Yin–Yang Sea), northern Taiwan. Journal of the Chinese Chemical Society, 50, 465–469.
Farquhar M. L., Charnock J. M., Livens F. R., and Vaughan D. J., 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X–ray absorption spectroscopy study. Environmental Science & Technology, 36, 1757–1762.
Fendorf, S., Eick, M. J., Grossl, P., and Sparks, D. L., 1997, Arsenate and chromate retention mechanisms on goethite .1. Surface structure. Environmental Science & Technology, 31, 315–320.
Fernandez–Martinez, A., Timon, V., Roman–Ross, G., Cuello, G. J., Daniels, J. E., and Ayora, C., 2010, The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. American Mineralogist, 95, 1312–1322.
Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., Ikeda, H., 2003. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18, 1267–1278.
Fukushi, K., Sato, T., Yanase, N., Minato, J., and Yamada, H., 2004. Arsenate sorption on schwertmannite. American Mineralogist, 89, 1728–1734.
Fukushi, K., and Sverjensky, D. A., 2007, A predictive model (ETLM) for arsenate adsorption and surface speciation on oxides consistent with spectroscopic and theoretical molecular evidence. Geochimica Et Cosmochimica Acta, 71, 3717–3745.
Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., Traina, S.J., 2004. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica Et Cosmochimica Acta, 68, 2119–2128.
Gaillardet, J., Viers, J., Dupré, B., 2003. Trace elements in river waters. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5, New York, Elsevier, 225–272.
Gazea, B., Adam, K., and Kontopoulos, A., 1996. A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 9, 23–42.
Geroni, J.N., Sapsford, D.J., 2011. Kinetics of iron (II) oxidation determined in the field. Applied Geochemistry, 26, 1452–1457.
Goldberg, S., and Johnston, C. T., 2001, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204–216.
Grimalt, J. O., Ferrer, M., and Macpherson, E., 1999, The mine tailing accident in Aznalcollar. Science of the Total Environment, 242, 3-11.
Grossl, P.R., Eick, M., Sparks, D.L., Goldberg, S., Ainsworth, C.C., 1997. Arsenate and chromate retention mechanisms on goethite .2. Kinetic evaluation using a pressure–jump relaxation technique. Environmental Science & Technology, 31, 321–326.
Guan, X. H., Wang, J. M., and Chusuei, C. C., 2008, Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. Journal of Hazardous Materials, 156, 178–185.
Gurzau, E. S., Baciu, C., Gurzau, A. E., Surdu, S., and Damian, G., 2012, Impact of the Tailings Impoundments on Groundwater Quality in Bozanta Area (Baia Mare - Nw Romania) and Human Exposure. Carpathian Journal of Earth and Environmental Sciences, 7, 231-240.
Hamilton, Q. U. I., Lamb, H. M., Hallett, C., and Proctor, J. A., 1999. Passive treatment systems for the remediation of acid mine drainage at Wheal Jane, Cornwall. Journal of the Chartered Institution of Water and Environmental Management, 13, 93–103.
Harrelson, C.C., Rawlins, C.L., Potyondy, J.P., 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Forest Range Experimental Station, General Technical. Report RM–245.
Hiemstra, T., and Van Riemsdijk, W. H., 1999, Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. Journal of Colloid and Interface Science, 210, 182–193.
Hochella, M. F., Moore, J. N., Golla, U., and Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: Metal–mineral association with implications for transport. Geochimica et Cosmochimica Acta, 63, 3395–3406.
Hockridge, J.G., Jones, F., Loan, M., Richmond, W.R., 2009. An electron microscopy study of the crystal growth of schwertmannite needles through oriented aggregation of goethite nanocrystals. Journal of Crystal Growth, 311, 3876–3882.
Hudson-Edwards, K. A., Schell, C., and Macklin, M. G., 1999, Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain, Applied Geochemistry, 14, 1015-1030.
Iler, R. K., 1973. Effect of Adsorbed Alumina on Solubility of Amorphous Silica in Water. Journal of Colloid and Interface Science, 43, 399–408.
Jia, Y. F., Xu, L. Y., Fang, Z., and Demopoulos, G. P., 2006, Observation of surface precipitation of arsenate on ferrihydrite. Environmental Science & Technology, 40, 3248–3253.
Jia, Y. F., Xu, L. Y., Wang, X., and Demopoulos, G. P., 2007, Infrared spectroscopic and X–ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica Et Cosmochimica Acta, 71, 1643–1654.
Johnson, D.B., 2003. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut., 3, 47–66.
Johnson, D.B., Hallberg, K.B., 2005. Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14.
Jönsson, J., Jönsson, J., Lövgren, L., 2006a. Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry, 21, 437–445.
Jönsson, J., Persson, P., Sjöberg, S., Lövgren, L., 2005. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 20, 179–191.
Jönsson, J., Sjöberg, S., Lövgren, L., 2006b. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Water Research, 40, 969–974.
Juang, R.S., Wu, W.L., 2002, Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. Journal of Colloid and Interface Science, 249, 22–29.
Kaegi, R., Voegelin, A., Folini, D., and Hug, S. J., 2010. Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)–precipitates formed in aerated Fe(II) and As(III) containing water. Geochimica et Cosmochimica Acta, 74, 5798–5816.
Kanungo, S. B., 1994a. Adsorption of cations on hydrous oxides of iron. I. Interfacial behavior of amorphous FeOOH and β–FeOOH (Akaganeite) in different electrolyte solutions. Journal of Colloid and Interface Science, 162, 86–92.
Kanungo, S. B., 1994b. Adsorption of cations on hydrous oxides of iron. II. Adsorption of Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as well as from a complex electrolyte solution resembling seawater in major ion content. Journal of Colloid and Interface Science, 162, 93–102.
Karthikeyan, K. G., Elliott, H. A., and Cannon, F. S., 1997. Adsorption and coprecipitation of copper with the hydrous oxides of iron and aluminum. Environmental Science & Technology, 31, 2721–2725.
Karthikeyan, K. G., Elliott, H. A., and Chorover, J., 1999. Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum. Journal of Colloid and Interface Science, 209, 72–78.
Kawano, M., Tomita, K., 2001. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist, 86, 1156–1165.
Kinnunen, P.H.M., Puhakka, J.A., 2004. High–rate ferric sulfate generation by a Leptospirillum ferriphilum–dominated biofilm and the role of jarosite in biomass retainment in a fluidized–bed reactor. Biotechnology and Bioengineering, 85, 697–705.
Kim, J. J. and Kim, S. J., 2003. Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science & Technology, 37, 2120–2126.
Kim, J. J. and Kim, S. J., 2004. Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghae coal mine, Korea. Science of the Total Environment, 325, 181–191.
Kirby, C.S. Brady, J.A.E., 1998. Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously–stirred tank reactor. Applied Geochemistry, 13, 509–520.
Kirby, C.S., Dennis, A., Kahler, A., 2009. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Applied Geochemistry, 24, 1175–1184.
Kirby, C.S., Thomas, H.M., Southam, G., Donald, R., 1999. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 14, 511–530.
Knorr, K.H., Blodau, C., 2007. Controls on schwertmannite transformation rates and products. Applied Geochemistry, 22, 2006–2015.
Kubicki, J. D., Kwon, K. D., Paul, K. W., and Sparks, D. L., 2007, Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. European Journal of Soil Science, 58, 932–944.
Kuma, K., Nakabayashi, S., Suzuki, Y., and Matsunaga, K., 1992. Dissolution Rate and Solubility of Colloidal Hydrous Ferric–Oxide in Seawater. Marine Chemistry, 38, 133–143.
Kumpulainen, S., Carlson, L., Raisanen, M.L., 2007. Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760–777.
Kumpulainen, S., Räisänen, M.L., von der Kammer, F., Hofmann, T., 2008. Ageing of synthetic and natural schwertmannites at pH 2–8. Clay Minerals., 43, 437–448.
Kvech, S., and Edwards, M., 2002. Solubility controls on aluminum in drinking water at relatively low and high pH. Water Research, 36, 4356–4368.
Lakshmipathiraj, P., Narasimhan, B. R., Prabhakar, S., and Raju, G. B., 2006, Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials, 136, 281–287.
Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, New Jersey.
Lee, G., Bigham, J. M., and Faure, G., 2002. Removal of trace metals by coprecipitation with Fe, Al and Mn from nature waters contaminated with acid mine drainage in the Ducktown Mining district, Tennessee. Applied Geochemistry, 17, 569–581.
Lee, J.S., Chon, H.T., 2006. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea. Journal of Geochemical Exploration, 88, 37–40.
Lee, M. R., Correa, J. A., and Zhang, H., 2002. Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into the coastal watrs of the Atacama region of northern Chile. Marine Pollution Bulletin, 44, 956–976.
Loan, M., Cowley, J. M., Hart, R., and Parkinson, G. M., 2004. Evidence on the structure of synthetic schwertmannite. American Mineralogist, 89, 1735–1742.
López–Archilla, A.I., Gérard, E., Moreira, D., López–García, P., 2004. Macrofilamentous microbial communities in the metal–rich and acidic River Tinto, Spain. FEMS Microbiology Letters, 235, 221–228.
Loring, J. S., Sandstrom, M. H., Noren, K., and Persson, P., 2009, Rethinking Arsenate Coordination at the Surface of Goethite. Chemistry–a European Journal, 15, 5063–5072.
Lovgren, L., Sjoberg, S., Schindler, P.W., 1990. Acid–base reactions and Al(III) complexation at the surface of goethite. Geochimica Et Cosmochimica Acta, 54, 1301–1306.
Lumsdon, D. G., Fraser, A. R., Russell, J. D., and Livesey, N. T., 1984, New Infrared Band Assignments for the Arsenate Ion Adsorbed on Synthetic Goethite (Alpha–Feooh). Journal of Soil Science, 35, 381–386.
Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., and Giuliano, V., 2012. Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochemistry, 47, 1633–1639.
Ma, Y. Q., and Lin, C. X., 2012, Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water. Journal of Hazardous Materials, 217, 238-245.

Majzlan, J., Alpers, C. N., Koch, C. B., McCleskey, R. B., Myneni, S. C. B., and Neil, J. M., 2011, Vibrational, X–ray absorption, and Mossbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284, 296–305.
Majzlan, J., and Myneni, S. C. B., 2005, Speciation of iron and sulfate in acid waters. Aqueous clusters to mineral precipitates. Environmental Science & Technology, 39, 188–194.
Majzlan, J., Navrotsky, A., Schwertmann, U. 2004. Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε–Fe2O3. Geochimica Et Cosmochimica Acta, 68, 1049–1059.
Manceau, A. and Combes, J. M., 1988. Structure of Mn and Fe oxides and oxyhydrooxides: a topological approach by EXAFS. Physics and Chemistry of Minerals, 15, 283–295.
Manceau A., 1995. The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)6 edges. Geochimica Et Cosmochimica Acta, 59, 3647–3653.
Marescotti, P., Carbone, C., Comodi, P., Frondini, F., and Lucchetti, G., 2012. Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–Cu–sulfide mine (Eastern Liguria, Italy). Applied Geochemistry, 27, 577–589.
Martinez, C. E., and McBride, M. B., 1998. Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides. Environmental Science & Technology, 32, 743–748.
Martinez, C. E., and McBride, M. B., 2000. Aging of coprecipitated Cu in alumina: Changes in structural location, chemical form, and solubility. Geochimica Et Cosmochimica Acta, 64, 1729–1736.
Mcbride, M. B., 1978, Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by Amorphous Alumina. Soil Science Society of America Journal, 42, 27–31.
McCarty, D.K., Moore, J.N., Marcus, W.A., 1998. Mineralogy and trace elements association in an acid mine drainage iron oxide precipitate; comparison of selective extraction. Applied Geochemistry, 13, 165–176.
Mckeague, J.A., Day, D.H., 1966. Dithionite– and oxalate–extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.
McKenzie, R.M., 1980. Adsorption of lead and other heavy–metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 61–73.
Millero, F. J., Woosley, R., Ditrolio, B., and Waters, J., 2009. Effect of ocean acidiication on the speciation of metals in seawater. Oceanography, 22, 72–85.
Mousavi, S.M., Yaghmaei, S., Jafari, A., 2007. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: Bioreactor experiments. Fuel, 86, 993–999.
Mousavi, S.M., Yaghmaei, S., Salimi, F., Jafari, A., 2006. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments. Fuel, 85, 2555–2560.
Müller, K., Ciminelli, V. S. T., Dantas, M. S. S., and Willscher, S., 2010, A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy–hydroxides by Raman spectroscopy. Water Research, 44, 5660–5672.
Mulligan, C. N., and Wang, S. L., 2008, Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International, 34, 867–879.
Munksgaard, N. C., and Parry, D. L., 2001. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Marine Chemistry, 75, 165–184.
Murad, E., Rojik, P., 2005. Iron mineralogy of mine–drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Minerals, 40, 427–440.
Myneni, S. C. B., Traina, S. J., Waychunas, G. A., and Logan, T. J., 1998, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral–water interfaces. Geochimica Et Cosmochimica Acta, 62, 3285–3300.
NEP/OCHA, 1996 The Marnduque Island mine disaster, Philippines. Summary Report, United Nations Environment Programme, Office for the Coordination of Humanitarian Affairs, 4 pp.
Nieto, J.M., Sarmiento, A.M., Olías, M., Canovas, C.R., Riba, I., Kalman, J., Delvalls, T.A., 2007. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33, 445–455.
Nordstrom, D. K., 2011. Mine Waters: Acidic to Circumneutral. Elements, 7, 393–398.
Nordstrom, D.K., 2003. Effects of microbiological and geochemical interactions in mine drainage. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Course, 31, 227–238.
Nordstrom, D. K. and Alpers, C. N., 1999. Geochemistry of acid mine waters. In: Plumlee, G. S. and Logsdon, M. J. (Eds.), The Environmental Geochemistry of Mineral Deposits. Society of Economic Geologists, Inc., Littleton, Colorado, Reviews in Economic Geology, 6A, 133–160.
Nurmi, P., Özkaya, B., Kaksonen, A.H., Tuovinen, O.H., Riekkola–Vanhanen, M.–L., Puhakka, J.A., 2009. Process for biological oxidation and control of dissolved iron in bioleach liquors. Process Biochemistry, 44, 1315–1322.
Ojumu, T.V., Hansford, G.S., Petersen, J., 2009. The kinetics of ferrous–iron oxidation by Leptospirillum ferriphilum in continuous culture: The effect of temperature. Biochemical Engineering Journal, 46, 161–168.
Okazaki, M., Takamidoh, K., and Yamane, I., 1986. Adsorption of heavy–metal cations on hydrated oxides and oxides of iron and aluminum with different crystallinities. Soil Science and Plant Nutrition, 32, 523–533.
Olias, M., Canovas, C. R., Nieto, J. M., and Sarmiento, A. M., 2006, Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Applied Geochemistry, 21, 1733-1749.
O’Reilly, S. E., Strawn, D. G., and Sparks, D. L., 2001. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Science Society of America Journal, 65, 67–77.
Parkhurst, D.L., Appelo, C.A.J., 1999. User’s Guide to PHREEQC (Version 2), a Computer Program for Speciation, Batch Reaction, One–Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Reports, 99-4259.
Peak, D., Ford, R. G., and Sparks, D. L., 1999, An in situ ATR–FTIR investigation of sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science, 218, 289–299.
Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D., 2009. Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169–178.
Potter, H. A. B., and Yong, R. N., 1999. Influence of iron/aluminium ratio on the retention of lead and copper by amorphous iron–aluminium oxides. Applied Clay Science, 14, 1–26.
Prietzel, J., Thieme, J., Herre, A., Salome, M., and Eichert, D., 2008. Differentiation between adsorbed and precipitated sulphate in soils and at micro–sites of soil aggregates by sulphur K–edge XANES. European Journal of Soil Science, 59, 730–743.
Randall S. R., Sherman D. M., Ragnarsdottir K. V., and Collins C. R., 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica Et Cosmochimica Acta, 63, 2971–2987.
Ramirez, M., Massolo, S., Frache, R., and Correa, J. A., 2005. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.
Ravel, B., and Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X–ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad., 12, 537–541.
Regenspurg, S. and Peiffer, S., 2005. Arsenate and chromate incorporation in schwertmannite. Applied Geochemistry, 20, 1226–1239.
Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and stability of schwertmannite in acidic mining lakes. Geochimica Et Cosmochimica Acta, 68, 1185–1197.
Robbins, E. I., Cravotta, C. A., Savela, C. E., and Nord, G. L., 1999. Hydrobiogeochemical interactions in 'anoxic' limestone drains for neutralization of acidic mine drainage. Fuel, 78, 259–270.
Robie, R.A., Hemingway, B.S., Fisher J.R., 1995. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. U.S. Geological Survey Bulletin, 1456.
Roekens, E. J. and Grieken, R. E., 1983. Kinetics of iron(II) oxidation in seawater of various pH. Marine Chemistry, 13, 195–202.
Rowe, O. F., Sanchez–Espana, J., Hallberg, K. B., and Johnson, D. B., 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal–rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 9, 1761–1771.
Saikia, B., Parthasarathy, G., Sarmah, N., 2008. Fourier transform infrared spectroscopic estimation of crystallinity in SiO(2) based rocks. Bulletin of Materials Science, 31, 775–779.
Sánchez España, J., López Pamo, E., Pastor, E. S., Andres, J. R., and Rubi, J., 2005. The natural attenuation of two acidic effluents in tharsis and La Zarza–Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environmental Geology, 49, 253–266.
Sánchez España, J., López Pamo, E., Santofimia, E., 2007. The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. Journal of Geochemical Exploration, 92, 120–132.
Sánchez España, J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., Barettino, D., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356.
Sánchez España, J., López Pamo, E., Santofimia, E., Andres, J.R., Rubi, J.A.M., 2006. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquatic Geochemistry, 12, 269–298.
Sánchez–España, J., Yusta, I., Diez–Ercilla, M., 2011. Schwertmannite and hydrobasaluminite: A re–evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Applied Geochemistry, 26, 1752–1774.
Schemel, L. E., Kimball, B. A., Runkel, R. L., and Cox, M. H., 2007. Formation of mixed Al–Fe colloidal sorbent and dissolved–colloidal partitioning of Cu and Zn in the Cement Creek – Animas River Confluence, Silverton, Colorado. Applied Geochemistry, 22, 1467–1484.
Schroth, A.W., Parnell, R.A., 2005. Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Applied Geochemistry, 20, 907–917.
Schwertmann, U. and Carlson, L., 2005. The pH–dependent transformation of schwertmannite to goethite at 25ºC. Clay Minerals, 40, 63–66.
Sherman, D. M., and Randall, S. R., 2003, Surface complexation of arsenie(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67, 4223–4230.
Sidenko, N.V., Sherriff, B.L., 2005. The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Applied Geochemistry, 20, 1180–1194.
Singer, P.C., Stumm, W., 1970. Acidic mine drainage: The rate–limiting step. Science, 167, 1121–1123.
Stachowicz, M., Hiemstra, T., and van Riemsdijk, W. H., 2006, Surface speciation of As(III) and As(V) in relation to charge distribution. Journal of Colloid and Interface Science, 302, 62–75.
Sullivan, L.A., Bush, R.T., 2004. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Marine and Freshwater Research, 55, 727–736.
Swedlund, P.J. and Webster, J.G., 2001. Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Environmental Science & Technology, 32, 1361–1368.
Swedlund, P.J., Webster, J. G., Miskelly, G.M., 2009. Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochimica Et Cosmochimica Acta., 73, 1548–1562.
Tan, L.P., Chen, C.H., Yu, B.S., 1993. Native gold of Taiwan. Central Geological Survey Special Publications, 7, 79–99.
Tonkin, J. W., Balistrieri, L. S., and Murray, J. W., 2002. Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environmental Science & Technology, 36, 484–492.
Tsai, L.L., Chen, C.S., Sun, L.C., 1991. Acid mine drainage in the Chinkuashih–Shuinantung area. Terrestrial, Atmospheric and Oceanic Sciences, 2, 297–316.
Turner, D. R., Whitfield, M., and Dickson, A. G., 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25C and 1 atm pressure. Geochimica et Cosmochimica Acta, 45, 855–881.
Turner, A., Millward, G. E., Bale, A. J., and Morris, A. W., 1993. Application of the K(D) concept to the study of trace–metal removal and desorption during estuarine mixing. Estuarine Coastal and Shelf Science, 36, 1–13.
Vanderweijden, C. H., Arnoldus, M. J. H. L., and Meurs, C. J., 1977. Desorption of metals from suspended material in Rhine Estuary. Netherlands Journal of Sea Research, 11, 130–145.
Vicente–Martorell, J.J., Galindo–Riano, D., Garcia–Vargas, M., Granado–Castro, M.D., 2008. Heavy metal speciation of estuarine sediments affected by acid mine drainage in the Tinto and Odiel estuary, Spain. Relationship to bioconcentration of fish tissues. Fresenius Environmental Bulletin, 17, 1744–1754.
Walton–Day, K., 2003. Passive and active treatment of mine drainage. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Course, 31, 335–359.
Waychunas, G. A., Rea, B. A., Fuller, C. C., and Davis, J. A., 1993, Surface–Chemistry of Ferrihydrite .1. Exafs Studies of the Geometry of Coprecipitated and Adsorbed Arsenate. Geochimica Et Cosmochimica Acta, 57, 2251–2269.
Waychunas, G. A., Davis, J. A., and Fuller, C. C., 1995a. Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re–evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochimica Et Cosmochimica Acta, 59, 3655–3661.
Waychunas, G.A., Xu, N., Fuller, N., Davis, J.A., and Bigham, J.M., 1995b. XAS study of AsO3– and SeO2– substituted schwertmannite. Physica B, 208/209, 481–483.
Waychunas, G. A., Fuller, C. C., Rea, B. A., and Davis, J. A., 1996. Wide angle X–ray scattering (WAXS) of “two–line ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica Et Cosmochimica Acta, 60, 1765–1781.
Webster, J.G., Swedlund, P.J., Webster, K.S., 1998. Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environmental Science & Technology, 32, 1361–1368.
Wood, T.A., Murray, K.R., Burgess, J.G., 2001. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine–drainage. Applied Microbiology and Biotechnology, 56, 560–565.
Xiong, H., Liao, Y., Zhou, L., 2008. Influence of chloride and sulfate on formation of Akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells. Environmental Science & Technology, 42, 8681–8686.
Yu, J.Y., Heo, B., Choi, I.K., Cho, J.P., Chang, H.W., 1999. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica Et Cosmochimica Acta, 63, 3407–3416.
白書禎、陳彩珠、梁松子(1990)台灣東北角濂洞灣附近沿岸海水中重金屬之分佈及形態。中華民國環境保護學會會誌,第13卷,第2期,第18–37頁。
余炳盛、方建能、陳耀麟、王詠絢(1998)從陰陽海問題談地質背景與工業污染之區分。鑛冶,第42卷,第2期,第41–50頁。
楊高宏、吳先琪 (2003)金瓜石礦水中亞鐵氧化行為之研究。國立台灣大學環境工程研究所碩士論文。共89頁。
楊肇岳、葉榮泰(1990)陰陽海成因之研究。中華民國環境保護學會會誌,第13卷,第1期,第1–7頁。
譚立平、魏稽生(1997)臺灣金屬經濟礦物。經濟部中央地質調查所,臺灣地質系列,10號,202頁。
譚柏雄(1990)臺灣東北部陰陽海的成因及其污染源之分析。中國地理學會會刊,第18期,第147–164頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top