Abdus-Salam, N., Adekola, F.A., 2006. Comparative dissolution of natural goethite samples in HCl and HNO3. Journal of Applied Sciences and Environmental Management, 10, 11–17.
Accornero, M., Marini, L., Ottonello, G., Zuccolini, M.V., 2005. The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Applied Geochemistry, 20, 1368–1390.
Acero, P., Ayora, C., Torrentó, C., Nieto, J.–M., 2006. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica Et Cosmochimica Acta, 70, 4130–4139.
Achterberg, E. P., Herzl, V. M. C., Braungardt, C. B., and Millward, G. E, 2003. Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. Environmental Pollution, 121, 283–292.
Ahonen, L., Tuovinen, O.H., 1989. Microbiological oxidation of ferrous iron at low temperatures. Applied and Environmental Microbiology, 55, 312–316.
Anderson, P. R., and Benjamin, M. M., 1990. Surface and bulk characteristics of binary oxide suspensions. Environmental Science & Technology, 24, 692–698.
Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd ed. A.A. Balkema Publishers, Leiden, The Netherlands.
Asta, M.P., Cama, J., Martínez, M., Giménez, J., 2009. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965–972.
Asta, M.P., Ayora, C., Acero, P., Cama, J., 2010b. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain). Journal of Hazardous Materials, 177, 1102–1111.
Asta, M.P., Ayora, C., Román–Ross, G., Cama, J., Acero, P., Gault, A.G., Charnock, J.M., Bardelli, F., 2010a. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chemical Geology, 271, 1–12.
Asta, M.P., Cama, J., Martinez, M., Gimenez, J., 2009. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965–972.
Baker, B. J., and Banfield, J. F., 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139–152.
Balistrieri, L. S., Box, S. E., and Tonkin, J. W., 2003. Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d'Alene River basin. Environmental Science & Technology, 37, 4694–4701.
Balistrieri, L. S., Seal, R. R., Piatak, N. M., and Paul, B., 2007. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid–mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 22, 930–952.
Bazilevskaya, E., Archibald, D. D., Aryanpour, M., Kubicki, J. D., and Martinez, C. E., 2011. Aluminum coprecipitates with Fe (hydr)oxides: Does isomorphous substitution of Al3+ for Fe3+ in goethite occur?. Geochimica Et Cosmochimica Acta, 75, 4667–4683.
Ball, J.W., Nordstrom, D.K., 2001. User's manual for WATEQ4F with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geologival. Survey. Open–File Report, 91–183.
Berkowitz, J., Anderson, M. A., and Graham, R. C., 2005. Laboratory investigation of aluminum solubility and solid–phase properties following alum treatment of lake waters. Water Research, 39, 3918–3928.
Bigham, J. M. and Nordstrom, D. K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C. N., Jambor, J. L., and Nordstrom, D. K. (eds.), Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance. Mineralogical Society of America, Washington, D.C., Reviews in Mineralogy and Geochemistry, 40, 351–403.
Bigham, J. M., Schwertmann, U., Carlson, L., and Murad, E., 1990. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743–2758.
Bigham, J. M., Carlson, L. & Murad, E.,1994. Schwertmannite, a new iron oxyhydroxysulphate from PyhaÈsalmi, Finland and other localities. Mineralogical Magazine, 58, 641–648.
Bigham, J.M., Schwertmann, U., Pfab, G., 1996b. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 11, 845–849.
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., Wolf, M., 1996a. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica Et Cosmochimica Acta, 60, 2111–2121.
Bligh, M. W., and Waite, T. D., 2011. Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment. Geochimica Et Cosmochimica Acta, 75, 7741–7758.
Boily, J. F., Gassman, P. L., Peretyazhko, T., Szanyi, J., and Zachara, J. M., 2010, FTIR Spectral Components of Schwertmannite. Environmental Science & Technology, 44, 1185–1190.
Boumaza, A., Favaro, L., Ledion, J., Sattonnay, G., Brubach, J. B., Berthet, P., Huntz, A. M., Roy, P., and Tetot, R., 2009. Transition alumina phases induced by heat treatment of boehmite: An X–ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry, 182, 1171–1176.
Braungardt, C., Achterberg, E. P., Elbaz–Poulichet, F., and Morley, N. H., 2003. Metal geochemistry in a mine–polluted estuarine system in Spain. Applied Geochemistry, 18, 1757–1771.
Burgos, W.D., Borch, T., Troyer, L.D., Luan, F.B., Larson, L.N., Brown, J.F., Lambson, J., Shimizu, M., 2012. Schwertmannite and Fe oxides formed by biological low–pH Fe(II) oxidation versus abiotic neutralization: Impact on trace metal sequestration. Geochimica Et Cosmochimica Acta, 76, 29–44.
Burton, E. D., Bush, R. T., Johnston, S. G., Watling, K. M., Hocking, R. K., Sullivan, L. A., and Parker, G. K., 2009. Sorption of Arsenic(V) and Arsenic(III) to Schwertmannite. Environmental Science & Technology, 43, 9202–9207.
Burton, E.D., Bush, R.T., Sullivan, L.A., Mitchell, D.R.G., 2007. Reductive transformation of iron and sulfur in schwertmannite–rich accumulations associated with acidified coastal lowlands. Geochimica Et Cosmochimica Acta, 71, 4456–4473.
Byrne, R. H., 2002. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochemical Transactions, 3, 11–16.
Byrne, R. H., Kump, L. R., and Cantrell, K. J., 1988. The influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry, 25, 163–181.
Cambier, P., 1986. Infrared study of goethites of varying crystallinity and particle size: 1. Interpretation of OH and lattice vibration frequencies. Clay Minerals, 21, 191–200.
Cánovas, C.R., Olías, M., Nieto, J.–M., Sarmiento, A.M., Cerón, J.C., 2007. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Science of the Total Environment, 373, 363–382.
Caraballo, M. A., Rotting, T. S., Macias, F., Nieto, J. M., and Ayora, C., 2009. Field multi–step limestone and MgO passive system to treat acid mine drainage with high metal concentrations. Applied Geochemistry, 24, 2301–2311.
Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A., Wagner, F., 2002. Scavenging of as from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science & Technology, 36, 1712–1719.
Castilla, J. C., 1983. Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin, 14, 459–464.
Castilla, J. C. and Nealler, E., 1978. Marine environmental impact due to mining activities of El Salvador copper mine, Chile. Marine Pollution Bulletin, 9, 67–70.
Catalano, J. G., Park, C., Fenter, P., and Zhang, Z., 2008, Simultaneous inner– and outer–sphere arsenate adsorption on corundum and hematite. Geochimica Et Cosmochimica Acta, 72, 1986–2004.
Chapman, B. M., Jones, D. R., and Jung, R. F., 1983. Processes controlling metal–ion attenuation in acid–mine drainage streams. Geochimica Et Cosmochimica Acta, 47, 1957–1973.
Childs, C.W., Inoue, K., Mizota, C., 1998. Natural and anthropogenic schwertmannites from Towada–Hachimantai National Park, Honshu, Japan. Chemical Geology, 144, 81–86.
Colomban, P., 1989. Structure of oxide gels and glasses by infrared and Raman–scattering: 1. Alumina. Journal of Materials Science, 24, 3002–3010.
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Wiley–VCH Verlag GmbH & Co., Weinheim, Germany.
Da Silva, E. F., Patinha, C., Reis, P., Fonseca, E. C., Matos, J. X., Barrosinho, J., and Oliveira, J. M. S., 2006. Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environmental Geology, 50, 1001–1013.
Das, S., Hendry, M. J., and Essilfie–Dughan, J., 2011. Transformation of Two–Line Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature. Environmental Science & Technology, 45, 268–275.
Davison, W. Seed, G., 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochimica Et Cosmochimica Acta, 47, 67–79.
Diakonov, I., Khodakovsky, I., Schott, J., Sergeeva, E., 1994. Thermodynamic properties of iron oxides and hydroxides. 1. Surface and bulk thermodynamic properties of goethite (α–FeOOH) up to 500 K. European Journal of Mineralogy, 6, 967–983.
Dinelli, E., Tateo, F., 2002. Different types of fine–grained sediments associated with acid mine drainage in the Libiola Fe–Cu mine area (Ligurian Apennines). Applied Geochemistry, 17, 1081–1092.
Dold, B., 2003. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J. Geochem. Explor., 80, 55–68.
Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel, O., Lebrun, S., Elbaz–Poulichet, F., 2009. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)–rich acid mine water. Chemical Geology, 265, 432–441.
Fang, J.–N., Yu, B.–S., Chen, Y.–L., Song, S.–R., Lo, H.–J., Lin, I.–C., Liu, C.–M., Liu, Y.–J., 2003. Chemical composition and the origin of suspension particles in Liang–Dong Bay (Yin–Yang Sea), northern Taiwan. Journal of the Chinese Chemical Society, 50, 465–469.
Farquhar M. L., Charnock J. M., Livens F. R., and Vaughan D. J., 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X–ray absorption spectroscopy study. Environmental Science & Technology, 36, 1757–1762.
Fendorf, S., Eick, M. J., Grossl, P., and Sparks, D. L., 1997, Arsenate and chromate retention mechanisms on goethite .1. Surface structure. Environmental Science & Technology, 31, 315–320.
Fernandez–Martinez, A., Timon, V., Roman–Ross, G., Cuello, G. J., Daniels, J. E., and Ayora, C., 2010, The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. American Mineralogist, 95, 1312–1322.
Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., Ikeda, H., 2003. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18, 1267–1278.
Fukushi, K., Sato, T., Yanase, N., Minato, J., and Yamada, H., 2004. Arsenate sorption on schwertmannite. American Mineralogist, 89, 1728–1734.
Fukushi, K., and Sverjensky, D. A., 2007, A predictive model (ETLM) for arsenate adsorption and surface speciation on oxides consistent with spectroscopic and theoretical molecular evidence. Geochimica Et Cosmochimica Acta, 71, 3717–3745.
Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., Traina, S.J., 2004. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica Et Cosmochimica Acta, 68, 2119–2128.
Gaillardet, J., Viers, J., Dupré, B., 2003. Trace elements in river waters. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5, New York, Elsevier, 225–272.
Gazea, B., Adam, K., and Kontopoulos, A., 1996. A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 9, 23–42.
Geroni, J.N., Sapsford, D.J., 2011. Kinetics of iron (II) oxidation determined in the field. Applied Geochemistry, 26, 1452–1457.
Goldberg, S., and Johnston, C. T., 2001, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204–216.
Grimalt, J. O., Ferrer, M., and Macpherson, E., 1999, The mine tailing accident in Aznalcollar. Science of the Total Environment, 242, 3-11.
Grossl, P.R., Eick, M., Sparks, D.L., Goldberg, S., Ainsworth, C.C., 1997. Arsenate and chromate retention mechanisms on goethite .2. Kinetic evaluation using a pressure–jump relaxation technique. Environmental Science & Technology, 31, 321–326.
Guan, X. H., Wang, J. M., and Chusuei, C. C., 2008, Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. Journal of Hazardous Materials, 156, 178–185.
Gurzau, E. S., Baciu, C., Gurzau, A. E., Surdu, S., and Damian, G., 2012, Impact of the Tailings Impoundments on Groundwater Quality in Bozanta Area (Baia Mare - Nw Romania) and Human Exposure. Carpathian Journal of Earth and Environmental Sciences, 7, 231-240.
Hamilton, Q. U. I., Lamb, H. M., Hallett, C., and Proctor, J. A., 1999. Passive treatment systems for the remediation of acid mine drainage at Wheal Jane, Cornwall. Journal of the Chartered Institution of Water and Environmental Management, 13, 93–103.
Harrelson, C.C., Rawlins, C.L., Potyondy, J.P., 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Forest Range Experimental Station, General Technical. Report RM–245.
Hiemstra, T., and Van Riemsdijk, W. H., 1999, Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. Journal of Colloid and Interface Science, 210, 182–193.
Hochella, M. F., Moore, J. N., Golla, U., and Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: Metal–mineral association with implications for transport. Geochimica et Cosmochimica Acta, 63, 3395–3406.
Hockridge, J.G., Jones, F., Loan, M., Richmond, W.R., 2009. An electron microscopy study of the crystal growth of schwertmannite needles through oriented aggregation of goethite nanocrystals. Journal of Crystal Growth, 311, 3876–3882.
Hudson-Edwards, K. A., Schell, C., and Macklin, M. G., 1999, Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain, Applied Geochemistry, 14, 1015-1030.
Iler, R. K., 1973. Effect of Adsorbed Alumina on Solubility of Amorphous Silica in Water. Journal of Colloid and Interface Science, 43, 399–408.
Jia, Y. F., Xu, L. Y., Fang, Z., and Demopoulos, G. P., 2006, Observation of surface precipitation of arsenate on ferrihydrite. Environmental Science & Technology, 40, 3248–3253.
Jia, Y. F., Xu, L. Y., Wang, X., and Demopoulos, G. P., 2007, Infrared spectroscopic and X–ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica Et Cosmochimica Acta, 71, 1643–1654.
Johnson, D.B., 2003. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut., 3, 47–66.
Johnson, D.B., Hallberg, K.B., 2005. Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14.
Jönsson, J., Jönsson, J., Lövgren, L., 2006a. Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry, 21, 437–445.
Jönsson, J., Persson, P., Sjöberg, S., Lövgren, L., 2005. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 20, 179–191.
Jönsson, J., Sjöberg, S., Lövgren, L., 2006b. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Water Research, 40, 969–974.
Juang, R.S., Wu, W.L., 2002, Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. Journal of Colloid and Interface Science, 249, 22–29.
Kaegi, R., Voegelin, A., Folini, D., and Hug, S. J., 2010. Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)–precipitates formed in aerated Fe(II) and As(III) containing water. Geochimica et Cosmochimica Acta, 74, 5798–5816.
Kanungo, S. B., 1994a. Adsorption of cations on hydrous oxides of iron. I. Interfacial behavior of amorphous FeOOH and β–FeOOH (Akaganeite) in different electrolyte solutions. Journal of Colloid and Interface Science, 162, 86–92.
Kanungo, S. B., 1994b. Adsorption of cations on hydrous oxides of iron. II. Adsorption of Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as well as from a complex electrolyte solution resembling seawater in major ion content. Journal of Colloid and Interface Science, 162, 93–102.
Karthikeyan, K. G., Elliott, H. A., and Cannon, F. S., 1997. Adsorption and coprecipitation of copper with the hydrous oxides of iron and aluminum. Environmental Science & Technology, 31, 2721–2725.
Karthikeyan, K. G., Elliott, H. A., and Chorover, J., 1999. Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum. Journal of Colloid and Interface Science, 209, 72–78.
Kawano, M., Tomita, K., 2001. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist, 86, 1156–1165.
Kinnunen, P.H.M., Puhakka, J.A., 2004. High–rate ferric sulfate generation by a Leptospirillum ferriphilum–dominated biofilm and the role of jarosite in biomass retainment in a fluidized–bed reactor. Biotechnology and Bioengineering, 85, 697–705.
Kim, J. J. and Kim, S. J., 2003. Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science & Technology, 37, 2120–2126.
Kim, J. J. and Kim, S. J., 2004. Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghae coal mine, Korea. Science of the Total Environment, 325, 181–191.
Kirby, C.S. Brady, J.A.E., 1998. Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously–stirred tank reactor. Applied Geochemistry, 13, 509–520.
Kirby, C.S., Dennis, A., Kahler, A., 2009. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Applied Geochemistry, 24, 1175–1184.
Kirby, C.S., Thomas, H.M., Southam, G., Donald, R., 1999. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 14, 511–530.
Knorr, K.H., Blodau, C., 2007. Controls on schwertmannite transformation rates and products. Applied Geochemistry, 22, 2006–2015.
Kubicki, J. D., Kwon, K. D., Paul, K. W., and Sparks, D. L., 2007, Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. European Journal of Soil Science, 58, 932–944.
Kuma, K., Nakabayashi, S., Suzuki, Y., and Matsunaga, K., 1992. Dissolution Rate and Solubility of Colloidal Hydrous Ferric–Oxide in Seawater. Marine Chemistry, 38, 133–143.
Kumpulainen, S., Carlson, L., Raisanen, M.L., 2007. Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760–777.
Kumpulainen, S., Räisänen, M.L., von der Kammer, F., Hofmann, T., 2008. Ageing of synthetic and natural schwertmannites at pH 2–8. Clay Minerals., 43, 437–448.
Kvech, S., and Edwards, M., 2002. Solubility controls on aluminum in drinking water at relatively low and high pH. Water Research, 36, 4356–4368.
Lakshmipathiraj, P., Narasimhan, B. R., Prabhakar, S., and Raju, G. B., 2006, Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials, 136, 281–287.
Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, New Jersey.
Lee, G., Bigham, J. M., and Faure, G., 2002. Removal of trace metals by coprecipitation with Fe, Al and Mn from nature waters contaminated with acid mine drainage in the Ducktown Mining district, Tennessee. Applied Geochemistry, 17, 569–581.
Lee, J.S., Chon, H.T., 2006. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea. Journal of Geochemical Exploration, 88, 37–40.
Lee, M. R., Correa, J. A., and Zhang, H., 2002. Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into the coastal watrs of the Atacama region of northern Chile. Marine Pollution Bulletin, 44, 956–976.
Loan, M., Cowley, J. M., Hart, R., and Parkinson, G. M., 2004. Evidence on the structure of synthetic schwertmannite. American Mineralogist, 89, 1735–1742.
López–Archilla, A.I., Gérard, E., Moreira, D., López–García, P., 2004. Macrofilamentous microbial communities in the metal–rich and acidic River Tinto, Spain. FEMS Microbiology Letters, 235, 221–228.
Loring, J. S., Sandstrom, M. H., Noren, K., and Persson, P., 2009, Rethinking Arsenate Coordination at the Surface of Goethite. Chemistry–a European Journal, 15, 5063–5072.
Lovgren, L., Sjoberg, S., Schindler, P.W., 1990. Acid–base reactions and Al(III) complexation at the surface of goethite. Geochimica Et Cosmochimica Acta, 54, 1301–1306.
Lumsdon, D. G., Fraser, A. R., Russell, J. D., and Livesey, N. T., 1984, New Infrared Band Assignments for the Arsenate Ion Adsorbed on Synthetic Goethite (Alpha–Feooh). Journal of Soil Science, 35, 381–386.
Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., and Giuliano, V., 2012. Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochemistry, 47, 1633–1639.
Ma, Y. Q., and Lin, C. X., 2012, Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water. Journal of Hazardous Materials, 217, 238-245.
Majzlan, J., Alpers, C. N., Koch, C. B., McCleskey, R. B., Myneni, S. C. B., and Neil, J. M., 2011, Vibrational, X–ray absorption, and Mossbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284, 296–305.
Majzlan, J., and Myneni, S. C. B., 2005, Speciation of iron and sulfate in acid waters. Aqueous clusters to mineral precipitates. Environmental Science & Technology, 39, 188–194.
Majzlan, J., Navrotsky, A., Schwertmann, U. 2004. Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε–Fe2O3. Geochimica Et Cosmochimica Acta, 68, 1049–1059.
Manceau, A. and Combes, J. M., 1988. Structure of Mn and Fe oxides and oxyhydrooxides: a topological approach by EXAFS. Physics and Chemistry of Minerals, 15, 283–295.
Manceau A., 1995. The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)6 edges. Geochimica Et Cosmochimica Acta, 59, 3647–3653.
Marescotti, P., Carbone, C., Comodi, P., Frondini, F., and Lucchetti, G., 2012. Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–Cu–sulfide mine (Eastern Liguria, Italy). Applied Geochemistry, 27, 577–589.
Martinez, C. E., and McBride, M. B., 1998. Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides. Environmental Science & Technology, 32, 743–748.
Martinez, C. E., and McBride, M. B., 2000. Aging of coprecipitated Cu in alumina: Changes in structural location, chemical form, and solubility. Geochimica Et Cosmochimica Acta, 64, 1729–1736.
Mcbride, M. B., 1978, Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by Amorphous Alumina. Soil Science Society of America Journal, 42, 27–31.
McCarty, D.K., Moore, J.N., Marcus, W.A., 1998. Mineralogy and trace elements association in an acid mine drainage iron oxide precipitate; comparison of selective extraction. Applied Geochemistry, 13, 165–176.
Mckeague, J.A., Day, D.H., 1966. Dithionite– and oxalate–extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.
McKenzie, R.M., 1980. Adsorption of lead and other heavy–metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 61–73.
Millero, F. J., Woosley, R., Ditrolio, B., and Waters, J., 2009. Effect of ocean acidiication on the speciation of metals in seawater. Oceanography, 22, 72–85.
Mousavi, S.M., Yaghmaei, S., Jafari, A., 2007. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: Bioreactor experiments. Fuel, 86, 993–999.
Mousavi, S.M., Yaghmaei, S., Salimi, F., Jafari, A., 2006. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments. Fuel, 85, 2555–2560.
Müller, K., Ciminelli, V. S. T., Dantas, M. S. S., and Willscher, S., 2010, A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy–hydroxides by Raman spectroscopy. Water Research, 44, 5660–5672.
Mulligan, C. N., and Wang, S. L., 2008, Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International, 34, 867–879.
Munksgaard, N. C., and Parry, D. L., 2001. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Marine Chemistry, 75, 165–184.
Murad, E., Rojik, P., 2005. Iron mineralogy of mine–drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Minerals, 40, 427–440.
Myneni, S. C. B., Traina, S. J., Waychunas, G. A., and Logan, T. J., 1998, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral–water interfaces. Geochimica Et Cosmochimica Acta, 62, 3285–3300.
NEP/OCHA, 1996 The Marnduque Island mine disaster, Philippines. Summary Report, United Nations Environment Programme, Office for the Coordination of Humanitarian Affairs, 4 pp.
Nieto, J.M., Sarmiento, A.M., Olías, M., Canovas, C.R., Riba, I., Kalman, J., Delvalls, T.A., 2007. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33, 445–455.
Nordstrom, D. K., 2011. Mine Waters: Acidic to Circumneutral. Elements, 7, 393–398.
Nordstrom, D.K., 2003. Effects of microbiological and geochemical interactions in mine drainage. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Course, 31, 227–238.
Nordstrom, D. K. and Alpers, C. N., 1999. Geochemistry of acid mine waters. In: Plumlee, G. S. and Logsdon, M. J. (Eds.), The Environmental Geochemistry of Mineral Deposits. Society of Economic Geologists, Inc., Littleton, Colorado, Reviews in Economic Geology, 6A, 133–160.
Nurmi, P., Özkaya, B., Kaksonen, A.H., Tuovinen, O.H., Riekkola–Vanhanen, M.–L., Puhakka, J.A., 2009. Process for biological oxidation and control of dissolved iron in bioleach liquors. Process Biochemistry, 44, 1315–1322.
Ojumu, T.V., Hansford, G.S., Petersen, J., 2009. The kinetics of ferrous–iron oxidation by Leptospirillum ferriphilum in continuous culture: The effect of temperature. Biochemical Engineering Journal, 46, 161–168.
Okazaki, M., Takamidoh, K., and Yamane, I., 1986. Adsorption of heavy–metal cations on hydrated oxides and oxides of iron and aluminum with different crystallinities. Soil Science and Plant Nutrition, 32, 523–533.
Olias, M., Canovas, C. R., Nieto, J. M., and Sarmiento, A. M., 2006, Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Applied Geochemistry, 21, 1733-1749.
O’Reilly, S. E., Strawn, D. G., and Sparks, D. L., 2001. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Science Society of America Journal, 65, 67–77.
Parkhurst, D.L., Appelo, C.A.J., 1999. User’s Guide to PHREEQC (Version 2), a Computer Program for Speciation, Batch Reaction, One–Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Reports, 99-4259.
Peak, D., Ford, R. G., and Sparks, D. L., 1999, An in situ ATR–FTIR investigation of sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science, 218, 289–299.
Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D., 2009. Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169–178.
Potter, H. A. B., and Yong, R. N., 1999. Influence of iron/aluminium ratio on the retention of lead and copper by amorphous iron–aluminium oxides. Applied Clay Science, 14, 1–26.
Prietzel, J., Thieme, J., Herre, A., Salome, M., and Eichert, D., 2008. Differentiation between adsorbed and precipitated sulphate in soils and at micro–sites of soil aggregates by sulphur K–edge XANES. European Journal of Soil Science, 59, 730–743.
Randall S. R., Sherman D. M., Ragnarsdottir K. V., and Collins C. R., 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica Et Cosmochimica Acta, 63, 2971–2987.
Ramirez, M., Massolo, S., Frache, R., and Correa, J. A., 2005. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.
Ravel, B., and Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X–ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad., 12, 537–541.
Regenspurg, S. and Peiffer, S., 2005. Arsenate and chromate incorporation in schwertmannite. Applied Geochemistry, 20, 1226–1239.
Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and stability of schwertmannite in acidic mining lakes. Geochimica Et Cosmochimica Acta, 68, 1185–1197.
Robbins, E. I., Cravotta, C. A., Savela, C. E., and Nord, G. L., 1999. Hydrobiogeochemical interactions in 'anoxic' limestone drains for neutralization of acidic mine drainage. Fuel, 78, 259–270.
Robie, R.A., Hemingway, B.S., Fisher J.R., 1995. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. U.S. Geological Survey Bulletin, 1456.
Roekens, E. J. and Grieken, R. E., 1983. Kinetics of iron(II) oxidation in seawater of various pH. Marine Chemistry, 13, 195–202.
Rowe, O. F., Sanchez–Espana, J., Hallberg, K. B., and Johnson, D. B., 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal–rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 9, 1761–1771.
Saikia, B., Parthasarathy, G., Sarmah, N., 2008. Fourier transform infrared spectroscopic estimation of crystallinity in SiO(2) based rocks. Bulletin of Materials Science, 31, 775–779.
Sánchez España, J., López Pamo, E., Pastor, E. S., Andres, J. R., and Rubi, J., 2005. The natural attenuation of two acidic effluents in tharsis and La Zarza–Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environmental Geology, 49, 253–266.
Sánchez España, J., López Pamo, E., Santofimia, E., 2007. The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. Journal of Geochemical Exploration, 92, 120–132.
Sánchez España, J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., Barettino, D., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356.
Sánchez España, J., López Pamo, E., Santofimia, E., Andres, J.R., Rubi, J.A.M., 2006. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquatic Geochemistry, 12, 269–298.
Sánchez–España, J., Yusta, I., Diez–Ercilla, M., 2011. Schwertmannite and hydrobasaluminite: A re–evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Applied Geochemistry, 26, 1752–1774.
Schemel, L. E., Kimball, B. A., Runkel, R. L., and Cox, M. H., 2007. Formation of mixed Al–Fe colloidal sorbent and dissolved–colloidal partitioning of Cu and Zn in the Cement Creek – Animas River Confluence, Silverton, Colorado. Applied Geochemistry, 22, 1467–1484.
Schroth, A.W., Parnell, R.A., 2005. Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Applied Geochemistry, 20, 907–917.
Schwertmann, U. and Carlson, L., 2005. The pH–dependent transformation of schwertmannite to goethite at 25ºC. Clay Minerals, 40, 63–66.
Sherman, D. M., and Randall, S. R., 2003, Surface complexation of arsenie(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67, 4223–4230.
Sidenko, N.V., Sherriff, B.L., 2005. The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Applied Geochemistry, 20, 1180–1194.
Singer, P.C., Stumm, W., 1970. Acidic mine drainage: The rate–limiting step. Science, 167, 1121–1123.
Stachowicz, M., Hiemstra, T., and van Riemsdijk, W. H., 2006, Surface speciation of As(III) and As(V) in relation to charge distribution. Journal of Colloid and Interface Science, 302, 62–75.
Sullivan, L.A., Bush, R.T., 2004. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Marine and Freshwater Research, 55, 727–736.
Swedlund, P.J. and Webster, J.G., 2001. Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Environmental Science & Technology, 32, 1361–1368.
Swedlund, P.J., Webster, J. G., Miskelly, G.M., 2009. Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochimica Et Cosmochimica Acta., 73, 1548–1562.
Tan, L.P., Chen, C.H., Yu, B.S., 1993. Native gold of Taiwan. Central Geological Survey Special Publications, 7, 79–99.
Tonkin, J. W., Balistrieri, L. S., and Murray, J. W., 2002. Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environmental Science & Technology, 36, 484–492.
Tsai, L.L., Chen, C.S., Sun, L.C., 1991. Acid mine drainage in the Chinkuashih–Shuinantung area. Terrestrial, Atmospheric and Oceanic Sciences, 2, 297–316.
Turner, D. R., Whitfield, M., and Dickson, A. G., 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25C and 1 atm pressure. Geochimica et Cosmochimica Acta, 45, 855–881.
Turner, A., Millward, G. E., Bale, A. J., and Morris, A. W., 1993. Application of the K(D) concept to the study of trace–metal removal and desorption during estuarine mixing. Estuarine Coastal and Shelf Science, 36, 1–13.
Vanderweijden, C. H., Arnoldus, M. J. H. L., and Meurs, C. J., 1977. Desorption of metals from suspended material in Rhine Estuary. Netherlands Journal of Sea Research, 11, 130–145.
Vicente–Martorell, J.J., Galindo–Riano, D., Garcia–Vargas, M., Granado–Castro, M.D., 2008. Heavy metal speciation of estuarine sediments affected by acid mine drainage in the Tinto and Odiel estuary, Spain. Relationship to bioconcentration of fish tissues. Fresenius Environmental Bulletin, 17, 1744–1754.
Walton–Day, K., 2003. Passive and active treatment of mine drainage. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Course, 31, 335–359.
Waychunas, G. A., Rea, B. A., Fuller, C. C., and Davis, J. A., 1993, Surface–Chemistry of Ferrihydrite .1. Exafs Studies of the Geometry of Coprecipitated and Adsorbed Arsenate. Geochimica Et Cosmochimica Acta, 57, 2251–2269.
Waychunas, G. A., Davis, J. A., and Fuller, C. C., 1995a. Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re–evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochimica Et Cosmochimica Acta, 59, 3655–3661.
Waychunas, G.A., Xu, N., Fuller, N., Davis, J.A., and Bigham, J.M., 1995b. XAS study of AsO3– and SeO2– substituted schwertmannite. Physica B, 208/209, 481–483.
Waychunas, G. A., Fuller, C. C., Rea, B. A., and Davis, J. A., 1996. Wide angle X–ray scattering (WAXS) of “two–line ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica Et Cosmochimica Acta, 60, 1765–1781.
Webster, J.G., Swedlund, P.J., Webster, K.S., 1998. Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environmental Science & Technology, 32, 1361–1368.
Wood, T.A., Murray, K.R., Burgess, J.G., 2001. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine–drainage. Applied Microbiology and Biotechnology, 56, 560–565.
Xiong, H., Liao, Y., Zhou, L., 2008. Influence of chloride and sulfate on formation of Akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells. Environmental Science & Technology, 42, 8681–8686.
Yu, J.Y., Heo, B., Choi, I.K., Cho, J.P., Chang, H.W., 1999. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica Et Cosmochimica Acta, 63, 3407–3416.
白書禎、陳彩珠、梁松子(1990)台灣東北角濂洞灣附近沿岸海水中重金屬之分佈及形態。中華民國環境保護學會會誌,第13卷,第2期,第18–37頁。余炳盛、方建能、陳耀麟、王詠絢(1998)從陰陽海問題談地質背景與工業污染之區分。鑛冶,第42卷,第2期,第41–50頁。楊高宏、吳先琪 (2003)金瓜石礦水中亞鐵氧化行為之研究。國立台灣大學環境工程研究所碩士論文。共89頁。楊肇岳、葉榮泰(1990)陰陽海成因之研究。中華民國環境保護學會會誌,第13卷,第1期,第1–7頁。譚立平、魏稽生(1997)臺灣金屬經濟礦物。經濟部中央地質調查所,臺灣地質系列,10號,202頁。
譚柏雄(1990)臺灣東北部陰陽海的成因及其污染源之分析。中國地理學會會刊,第18期,第147–164頁。