(3.238.173.209) 您好!臺灣時間:2021/05/15 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李文仁
研究生(外文):Wen-JenLee
論文名稱:原子層沉積二氧化鈦薄膜及固液異質接面紫外光偵測器研製
論文名稱(外文):Study of TiO2 thin films grown by atomic layer deposition and development of solid-liquid heterojunction ultraviolet photodetector based on TiO2 active layer
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:160
中文關鍵詞:原子層沉積二氧化鈦紫外光偵測器異質接面
外文關鍵詞:atomic layer depositionTiO2UV phototectorheterojunction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究自行設計製作原子層沉積系統,以四氯化鈦和純水作為反應前驅物成長TiO2薄膜,實驗結果顯示自製原子層沉積系統具有原子層沉積特有之「表面反應自限制之薄膜成長特性」、「優異的鍍膜均勻性與順應性」與「精確控制鍍膜厚度之能力」,薄膜成長速率約為0.11 nm/cycle。
原子層沉積TiO2薄膜的結晶結構分析結果顯示,製程溫度為100 oC時原子層沉積TiO2薄膜為非晶質結構;TiO2薄膜成長於Si基材時,在150 ~ 350 oC區間所成長的TiO2薄膜為銳鈦礦結晶結構, 400 oC以上所成長的TiO2薄膜則為以anatase相為主並含有少量rutile相之兩相混合結晶結構;TiO2薄膜成長於FTO-glass基材時,在溫度150 ~ 250 oC區間所成長的TiO2薄膜為anatase結晶結構,而溫度於300 ~ 500 oC區間所成長的TiO2薄膜則為rutile結晶結構。
在原子層沉積TiO2薄膜的晶粒成長機制的探討方面,研究發現不論是否使用與TiO2晶格相匹配之基材,在溫度於150 ~ 250 oC區間時,TiO2薄膜的晶粒尺寸會隨製程溫度升高而變小,本研究將其定義為「空間限制之晶粒成長機制(space-limited crystal mechanism)」;而當溫度高於300 oC,TiO2薄膜的晶粒成長機制將因使用的基材與TiO2的晶格相匹配程度而不同,若是基材與TiO2的晶格不匹配度較大(例如Si 基板),TiO2薄膜之晶粒尺寸會隨製程溫度升高而變大,屬於「傳統典型的晶粒成長機制(conventional crystal growth mechanism)」,若採用與TiO2的晶格相匹配度較高之FTO-glass基板,則TiO2薄膜是以磊晶成長(epitaxial growth)的機制成長金紅石(rutile)結晶相之TiO2薄膜,此時TiO2薄膜的晶粒尺寸取決於基材上FTO鍍膜之晶粒尺寸大小。
本研究利用模板輔助原子層沉積法製作TiO2空心球組成三維奈米結構的實驗中,除了發現原子層沉積法具有優異的鍍膜均勻性與順應性以及精確控制鍍膜厚度之能力外,本研究中提出並證實了一種較可靠的奈米結構材料吸收光譜之量測方法為A% = 100% - T% - R%,其中A%、T%與R%分別代表材料對入射光的吸收率、穿透率與反射率。
另外本研究中研發了具有TiO2/水 固液異質接面結構的紫外光偵測器元件,證實此元件不需任何外加偏壓即具有高的光靈敏度、對入射光有優異的光譜選擇性、線性的光電流變化、響應速度快與高光電轉換響應度等優異的紫外光檢測特性,以原子層沉積技術成長的TiO2薄膜作為元件主動層時,元件之最大光電轉換響應度約為69.2 mA/W。
In this study, TiO2 films were grown by an atomic layer deposition (ALD) system using TiCl4 and H2O as precursors. The results demonstrate that the ALD system possesses excellent uniformity, high conformity, and accuracy in thickness-control of films due to its unique film-growth mechanism of self-limited surface reaction. The growth rate of TiO2 films grown by ALD is about 0.11 nm/cycle.
For crystal structure analysis of ALD-TiO2 films, the results show that the TiO2 film grown at 100 oC has an amorphous structure, whether the film is grown on an Si or FTO-glass substrate. However, when the growth temperatures were above 150 oC, the substrate played an important effect on the crystal growth of ALD-TiO2 films. For using Si as substrate, the TiO2 film has a polycrystalline structure of anatase phase as deposited at 150 – 350 oC, and a polycrystalline structure of anatase mixed with little rutile phase as grown at 400 – 500 oC. For using FTO-glass as substrate, the TiO2 film has a polycrystalline structure of anatase phase as formed at 150 – 250 oC, and a polycrystalline structure of rutile phase obtained at 300 – 500 oC.
For crystal growth mechanism of ALD-TiO2 films, there are three types of crystal growth mechanisms proposed in this study. At 150 – 250 oC, the crystal grain size of TiO2 film decreases with increasing growth temperature whether the film grown on the more lattice-matched substrate that is assigned to the “space-limited crystal growth mechanism”. However, the crystal growth mechanism of ALD-TiO2 films grown at 300 – 500 oC demonstrates a substrate-dependence behavior. If the ALD-TiO2 films grown on lattice less matched substrate (such as Si wafer), the TiO2 film exhibits a “conventional crystal growth mechanism” that the crystal grain size of film increases with increasing growth temperature. If the ALD-TiO2 films grown on more lattice-matched substrate (such as FTO-glass), the TiO2 film has an “epitaxial crystal growth mechanism” that the crystal grain size of film is dependent on the crystal grain size of substrate, not relate to growth temperature.
In addition, a process for constructing three-dimensional (3D) nanostructure consisting of TiO2 spheres on an ITO-glass substrate with easy and accurate shell-thickness controlled by a template-assisted ALD is reported in this study. Furthermore, in order to measure the absorbance spectrum for a nanostructure accurately a modified measurement method is suggested that is A% = 100% - T% - R% (where the A%, T%, and R% are absorbance, transmittance and reflectance, respectively).
Besides, a novel ultraviolet photodetector (UV-PD) based on TiO2/water solid-liquid heterojunction (SLHJ) is also reported in this study. The SLHJ UV-PD exhibits a high photosensitivity, excellent spectral selectivity, linear variation in photocurrent, and fast response that the device is operated without any external bias. Using a TiO2 film grown by ALD as the active layer of SLHJ UV-PD, the device has a maximum responsivity of 69 mA/W. The SLHJ UV-PD has an exceptional competence for UV-light detection that presents a promising direction for future development of commercially low-cost photodetectors.
總 目 錄
摘要…………………………………………………………………………...I
Abstract………………………………………………………………...........III
誌謝…………………………………………………………………………VI
總目錄……………………………………………………………………...VII
圖目錄……………………………………………………………………....XI
表目錄……………………………………………………………………...XX
中英名詞與符號對照表…………………………………………………..XXI
第一章、緒論……………………………………………………….………1
1-1 引言……………………………………………………….……..…1
1-2 研究動機……………………………………………….………..…4
第二章、理論基礎與文獻回顧………………………………………….…7
2-1 原子層沉積技術…………………….…………………………..…7
2-2 二氧化鈦之結構與特性…………….……………………..…..…23
2-3 半導體紫外光偵測器元件………….……………………..…..…28
第三章、實驗方法與步驟…………………….…………………….…..…36
3-1 研究流程規劃…………………….………………………..…..….36
3-2 原子層沉積系統設計及製作………………………………….….38
3-2-1 反應器與製程溫度控制單元………………..………….….38
3-2-2 原料輸送系統與進氣時序控制單元…………..……..…....41
3-2-3 真空建立與量測單元…………………………..…………..43
3-3 實驗材料、薄膜成長及試片製作步驟…………..………...….....46
3-3-1 原子層沉積二氧化鈦之製程原料與氣體.....…………..….46
3-3-2 基材……………………………………….......………...…..46
3-3-3 原子層沉積二氧化鈦之製程步驟………....…...……....….47
3-3-4 製作二氧化鈦空心球組成三維奈米結構之步驟...........….49
3-3-5 固液異質接面紫外光偵測器元件之製作步驟...……….....50
3-4 材料性質與元件特性分析量測…………………..………..….….54
3-4-1 材料性質分析…………..…………………..……….......….54
3-4-1-1 表面輪廓分析儀…………..…………………........…54
3-4-1-2 X光繞射分析儀…………..……….……………....…56
3-4-1-3 掃描式電子顯微鏡………..…………………........…58
3-4-1-4 穿透式電子顯微鏡………..………………….......….59
3-4-1-5 紫外光/可見光/近紅外光分光光譜儀………........…62
3-4-2 固液異質接面紫外光偵測器元件特性分析……….....…...64
第四章、二氧化鈦薄膜成長特性分析及其晶粒成長機制………………67
4-1 TiO2薄膜製程溫度與薄膜成長速率之關係.…………………..…67
4-2 TiO2薄膜之晶體結構分析………………….……………………..70
4-3 TiO2薄膜之表面顯微結構分析…………….……………………..72
4-4 TiO2薄膜晶粒成長與製程溫度之關係…….……………………..74
4-5 TiO2薄膜成長初期之成核與晶粒成長………...............................77
4-6 TiO2薄膜在Si基材上之晶粒成長機制..……................................82
4-7 小結………………………………………………………………...85
第五章、二氧化鈦空心球三維奈米結構製作及其光學特性…………….86
5-1 TiO2空心球三維奈米結構之製作流程……………...…………….86
5-2顯微結構與結晶結構分析…………………………………………90
5-3光學性質分析………………………………………………………94
5-4 TiO2殼層厚度控制…………………………………………………98
5-5 小結…………………………………………………….…………..99
第六章、二氧化鈦薄膜固液異質接面紫外光偵測器……………………100
6-1紫外光偵測器之元件結構………………………………………..101
6-2紫外光偵測器元件之工作原理…………………………………..104
6-3紫外光偵測器元件之光響應I-V特性………...............................109
6-4紫外光偵測器元件之光響應I-T特性……………………………113
6-5 元件光響應電流、光響應靈敏度與入射光強度之關係…….....116
6-6紫外光偵測器元件之光響應頻譜特性分析…..............................118
6-7 小結……………………………………………………………….121
第七章、二氧化鈦薄膜之晶粒成長機制及光電響應特性………………122
7-1 結晶結構分析…………………………………………………….122
7-2 表面顯微結構分析.........................................................................125
7-3 截面TEM顯微結構分析………………………………………...128
7-4 以原子層沉積技術成長TiO2薄膜之晶粒成長規則....................135
7-5 不同溫度成長TiO2主動層之SLHJ UV-PDs光電響應特性........138
7-6 小結……………………………………………………………….142
第八章、總結論……………………………………………………………143
參考文獻…………………………………………………………………...145
參 考 文 獻
[1] C. H. L. Goodman, M. V. Pessa, J. Appl. Phys. 60 (1986) R65.
[2] T. Suntola, Mater. Sci. Rep. 4 (1989) 261.
[3] S. M. George, A. W. Ott, J. W. Klaus, J. Phys. Chem. 100 (1996) 13121.
[4] L. Niinisto, M. Ritala, M. Leskela, Mater. Sci. Eng. B 41 (1996) 23.
[5] S. Haukka, E. L. Lakooma, T. Suntola, Stud. Surf. Sci. Catal. 120A (1999) 715.
[6] M. Leskela, M. Ritala, J. Phys. IV 9 (1999) Pr8/837.
[7] M. Ritala, M. Leskela, Nanotechnology 10 (1999) 19.
[8] M. Leskela, M. Ritala, Thin Solid Films 409 (2002) 138.
[9] R. L. Puurunen, J. Appl. Phys. 97 (2005) 121301.
[10] H. Kim, H. B. R. Lee, W. J. Maeng, Thin Solid Films 517 (2009) 2563.
[11] S. M. George, Chem. Rev. 110 (2010) 111.
[12] H. B. Profijt, S. E. Potts, M. C. M. Sanden, W. M. M. Kessels, J. Vac. Sci. Technol. A 29 (2011) 050801.
[13] T. Suntola, J. Antson, U.S. Patent 4,058,430, (1977).
[14] M. Ritala, M. Leskelä, Atomic Layer Deposition in Handbook of Thin Film Materials, (Ed: H. S. Nalwa), Academic Press, San Diego (2002), 1, p.103.
[15] O. K. Kwon, S. H. Kwon, H. S. Park, S. W. Kang, J. Electrochem. Soc. 151 (2004) C753.
[16] S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. Sanden, W. M. M. Kessels, J. Electrochem. Soc. 153 (2006) G956.
[17] K. Saito, Y. Watanabe, K. Takahashi, T. Matsuzawa, B. Sang, M. Konagai, Sol. Energy Mater. Sol. Cells 49 (1997) 187.
[18] D. M. King, X. Liang, A. W. Weimer, Powder Technol. 221 (2012) 13.
[19] M. Leskelä,W.-M. Li, M. Ritala, Semicond. Semimetals 64 (1999) 413.
[20] Atomic Layer Epitaxy (Eds.: T. Suntola, M. Simpson) Blackie, Glasgow, (1990), p.182.
[21] International Technology Roadmap for Semiconductors, (http://www.itrs.net ).
[22] J. A. Alamo, Nature 479 (2011) 317.
[23] B. Oregan, M. Grätzel, Nature 353 (1991) 737.
[24] T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, J. T. Hupp, J. Phys. Chem. C 112 (2008) 10303.
[25] G. Sberveglieri, Sens. Actuators B 23 (1995) 103.
[26] M. K. Kumar, L. K. Tan, N. N. Gosvami, H. Gao, J. Phys. Chem. C 113 (2009) 6381.
[27] I. Exnar, L. Kavan, S. Y. Huang, M. Grätzel, J. Power Sources 68 (1997) 720.
[28] J. Wang, Y. Bai, M. Wu, J. Yin, W. F. Zhang, J. Power Sources 191 (2009) 614.
[29] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, J. H. Yan, IEEE Trans. Electron Devices 44 (1997) 104.
[30] S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. M. T. He, W. L. Gladfelter, IBM J. Res. Dev. 34 (1999) 383.
[31] E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, C. D'Emic, Microelectron. Eng. 59 (2001) 341.
[32] L. A. Majewski, R. Schroeder, M. Grell, Adv. Funct. Mater. 15 (2005) 1017.
[33] K. Frohlich, M. Tapajna, A. Rosova, E. DobroCka, K. Husekova, J. Aarik, A. Aidla, Electrochem. Solid-State Lett. 11 (2008) G19.
[34] D. Rathee, M. Kumar, S. K. Arya, Solid-State Electron. 76 (2012) 71.
[35] J. W. Park, S. Yoo, IEEE Electron Device Lett. 29 (2008) 724.
[36] J. W. Park, D. Lee, H. Kwon, S. Yoo, IEEE Electron Device Lett. 30 (2009) 739.
[37] W. S. Shih, S. J. Young, L. W. Ji, W. Water, H. W. Shiu, J. Electrochem. Soc. 158 (2011) H609.
[38] N. Zhong, J. J. Cao, H. Shima, H. Akinaga, IEEE Electron Device Lett. 33 (2012) 1009.
[39] B. S. Richards, J. E. Cotter, C. B. Honsberg, Appl. Phys. Lett. 80 (2002) 1123.
[40] K. Ozasa, S. Nemoto, M. Hara, M. Maeda, K. Mochitate, Surf. Sci. 601 (2007) 4536.
[41] A. Hajjaji, M. Ben Rabha, N. Janene, M. Gaidi, B. Bessais, M. A. El Khakani, Appl. Surf. Sci. 258 (2012) 8046.
[42] A. F. Thomson, K. R. McIntosh, Prog. Photovoltaics 20 (2012) 343.
[43] X. Wang, M. Fujimaki, K. Awazu, Opt. Express 13 (2005) 1486.
[44] S. Kanehira, S. Kirihara, Y. Miyamoto, J. Am. Ceram. Soc. 88 (2005) 1461.
[45] W. W. Chen, S. Kirihara, Y. Miyamoto, J. Am. Ceram. Soc. 90 (2007) 92.
[46] L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, A. R. Gonzalez-Elipe, J. Mater. Chem. 20 (2010) 6408.
[47] G. Subramania, Y. J. Lee, A. J. Fischer, D. D. Koleske, Adv. Mater. 22 (2010) 487.
[48] J. Liu, M. Z. Li, J. M. Zhou, C. Q. Ye, J. X. Wang, L. Jiang, Y. L. Song, Appl. Phys. Lett. 98 (2011) 023110.
[49] Y. B. Dou, J. B. Han, T. L. Wang, M. Wei, D. G. Evans, X. Duan, J. Mater. Chem. 22 (2012) 14001.
[50] Y. J. Huang, G. Pandraud, P. M. Sarro, Opt. Lett. 37 (2012) 3162.
[51] H. A. Durand, J. H. Brimaud, O. Hellman, H. Shibata, S. Sakuragi, Y. Makita, D. Gesbert, P. Meyrueis, Appl. Surf. Sci. 86 (1995) 122.
[52] S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, B. T. Lee, Vacuum 76 (2004) 507.
[53] B. S. Richards, S. F. Rowlands, C. B. Honsberg, J. E. Cotter, , Prog. Photovoltaics 11 (2003) 27.
[54] S. H. Nam, J. W. Choi, S. J. Cho, K. S. Kim, J. H. Boo, J. Nanosci. Nanotechnol. 11 (2011) 7315.
[55] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86 (2005) 252101.
[56] T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, T. Hasegawa, Jpn. J. Appl. Phys. 44 (2005) L1063.
[57] T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, T. Hasegawa, Phys. Status Solidi A-Appl. Mat. 207 (2010) 1529.
[58] R. Cinnsealach, G. Boschloo, S. N. Rao, D. Fitzmaurice, Sol. Energy Mater. Sol. Cells 55 (1998) 215.
[59] D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, D. Fitzmaurice, J. Phys. Chem B. 104 (2000) 11449.
[60] N. R. Tacconi, C. R. Chenthamarakshan, K. L. Wouters, F. M. MacDonnell, K. Rajeshwar, J. Electroanal. Chem. 566 (2004) 249.
[61] A. Verma, A. K. Srivastava, A. K. Bakhshi, R. Kishore, S. A. Agnihotry, Mater. Lett. 59 (2005) 3423.
[62] C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Kraemer, P. Georen, Thin Solid Films 518 (2010) 3046.
[63] K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44 (2005) 8269.
[64] A. Fujishima, X. T. Zhang, D. A. Tryk, Surf. Sci. Rep. 63 (2008) 515.
[65] J. G. Yu, X. J. Zhao, Q. N. Zhao, Thin Solid Films 379 (2000) 7.
[66] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuators B 68 (2000) 189.
[67] J. G. Yu, X. J. Zhao, Q. N. Zhao, Mater. Chem. Phys. 69 (2001) 25.
[68] H. J. Yun, H. Lee, J. B. Joo, W. Kim, J. Yi, J. Phys. Chem. C 113 (2009) 3050.
[69] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, J. Phys. Chem. B 107 (2003) 13871.
[70] A. Dutschke, C. Diegelmann, P. Lobmann, J. Mater. Chem. 13 (2003) 1058.
[71] J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung, M. H. Hon, J. Phys. Chem. B 109 (2005) 13056.
[72] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, H. Naramoto, Thin Solid Films 401 (2001) 88.
[73] E. Gyorgy, G. Socol, E. Axente, I. N. Mihailescu, C. Ducu, S. Ciuca, Appl. Surf. Sci. 247 (2005) 429.
[74] S. Kitazawa, Y. Choi, S. Yamamoto, T. Yamaki, Thin Solid Films 515 (2006) 1901.
[75] S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, K. S. Hong, J. Phys. Chem. C 113 (2009) 6878.
[76] M. H. Suhail, G. M. Rao, S. Mohan, J. Appl. Phys. 71 (1992) 1421.
[77] P. Lobl, M. Huppertz, D. Mergel, Thin Solid Films 251 (1994) 72.
[78] D. Mardare, M. Tasca, M. Delibas, G. I. Rusu, Appl. Surf. Sci. 156 (2000) 200.
[79] V. Spagnol, H. Cachet, B. Baroux, E. Sutter, J. Phys. Chem. C 113 (2009) 3793.
[80] A. Lotnyk, S. Senz, D. Hesse, Thin Solid Films 515 (2007) 3439.
[81] S. Barman, F. Deng, R. L. McCreery, J. Am. Chem. Soc. 130 (2008) 11073.
[82] S. S. Lin, Y. H. Hung, S. C. Chen, J. Nanosci. Nanotechnol. 9 (2009) 3599.
[83] M. W. Pyun, E. J. Kim, D. H. Yoo, S. H. Hahn, Appl. Surf. Sci. 275 (2010) 1149.
[84] S. X. Wu, L. M. Xu, X. J. Xing, S. M. Chen, Y. B. Yuan, Y. J. Liu, Y. P. Yu, X. Y. Li, S. W. Li, Appl. Phys. Lett. 93 (2008) 043502.
[85] X. Weng, P. Fisher, M. Skowronski, P. A. Salvador, O. Maksimovc, J. Cryst. Growth 310 (2008) 545.
[86] R. Engel-Herbert, B. Jalan, J. Cagnon, S. Stemmer, J. Cryst. Growth 312 (2009) 149.
[87] M. Radovic, M. Salluzzo, Z. Ristic, R. Di Capua, N. Lampis, R. Vaglio, F. M. Granozio, J. Chem. Phys. 135 (2011) 034705.
[88] N. Rausch, E. P. Burte, J. Electrochem. Soc. 140 (1993) 145.
[89] G. A. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films 239 (1994) 186.
[90] W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi, K. H. Oh, Thin Solid Films 237 (1994) 105.
[91] L. K. Randeniya, A. Bendavid, P. J. Martin, E. W. Preston, J. Phys. Chem. C 111 (2007) 18334.
[92] S. H. Kwon, D. S. Jang, H. Y. Lee, J. J. Lee, J. Korean Phys. Soc. 59 (2011) 3042.
[93] M. Kemell, V. Pore, M. Ritala, M. Leskelä, M. Linden, J. Am. Chem. Soc. 127 (2005) 14178.
[94] M. Kemell, V. Pore, J. Tupala, M. Ritala, M. Leskelä, Chem. Mater. 19 (2007) 1816.
[95] T. W. Hamann, O. K. Farha, J. T. Hupp, J. Phys. Chem. C 112 (2008) 19756.
[96] Y. Lin, S. Zhou, X. Liu, S. Sheehan, D. Wang, J. Am. Chem. Soc. 131 (2009) 2772.
[97] E. Munoz, E. Monroy, J. L. Pau, F. Omnes, P. Gibart, J. Phys.-Condes. Matter 13 (2001) 7115.
[98] I. Cantarell, I. Almodovar, Int. J. Appl. Radiat. Isotopes 16 (1965) 91.
[99] A. R. Franklin, W. W. Holloway, D. H. Mcmahon, Rev. Sci. Instrum. 36 (1965) 232.
[100] G. Chodil, D. Hearn, R. C. Jopson, Rev. Sci. Instrum. 36 (1965) 394.
[101] R. Korde, J. Geist, Appl. Opt. 26 (1987) 5284.
[102] L. R. Canfield, J. Kerner, R. Korde, Appl. Opt. 28 (1989) 3940.
[103] M. Razeghi, A. Rogalski, J. Appl. Phys. 79 (1996) 7433.
[104] Y. A. Goldberg, Semicond. Sci. Technol. 14 (1999) R41.
[105] H. Morkoc, S. Stritea, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76 (1994) 1363.
[106] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadour, J. Xu, M. Razeghi, Appl. Phys. Lett. 68 (1996) 2100.
[107] J. J. T. Tovik, J. I. Pankove, B. J. Van Zeghbroeck, IEEE Trans. Electron. Dev. 46 (1999) 1326.
[108] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, M. Razeghi, Appl. Phys. Lett. 74 (1999) 762.
[109] B. Butum, T. Tut, E. Ulker, T. Yelboga, E. Ozbay, Appl. Phys. Lett. 92 (2008) 033507.
[110] O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, T. E. Seidel, Thin Solid Films 402 (2002) 248.
[111] U. Schroeder et al., “Experimental and theoretical investigation of ALD step coverage in high aspect ratio trenches, AVS ALD Conference 2002, Seoul.
[112] T. Suntola, “Atomic layer epitaxy, in Handbook of Crystal Growth, Ed. D. T. J. Hurle, Vol. 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Elsevier, Amsterdam 1994, Ch. 14.
[113]J. Aarik, A. Aidla, T. Uustare, M. Ritala, M. Leskela, Appl. Surf. Sci. 161 (2000) 385.
[114] J. P. Lee, Y. J. Jang, M. M. Sung, Adv. Funct. Mater. 13 (2003) 873.
[115] S. W Nam, M. J. Rooks, K. B. Kim, S. M. Rossnagel, Nano Lett. 9 (2009) 2044.
[116] J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, M. Leskela, Thin Solid Films 370 (2000) 163.
[117] J. Aarik, J. Karlis, H. Mandar, T. Uustare, V. Sammelselg, Appl. Surf. Sci. 181 (2001) 339-348.
[118] A. P. Alekhin, S. A. Gudkova, A. M. Markeev, A. S. Mitiaev, A. A. Sigarev, V. F. Toknova, Appl. Surf. Sci. 257 (2010) 186.
[119] V. Pore, A. Rahtu, M. Leskela, M. Ritala, T. Sajavaara, J. Keinonen, Chem. Vapor Depos. 10 (2004) 143-148.
[120] P. Alen, M. Vehkamaki, M. Ritala, M. Leskela, J. Electrochem. Soc. 153 (2006) G304.
[121] A. Niilisk, M. Moppel, M. Pars, I. Sildos, T. Jantson, T. Avarmaa, R. Jaaniso, J. Aarik, Cent. Eur. J. Phys. 4 (2006) 105.
[122] M. Ritala, M. Leskela, Thin Solid Films 225 (1993) 288.
[123] J. Aarik, A. Aidla, T. Uustare, V. Sammelselg, J. Cryst. Growth 148 (1995) 268.
[124] J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, V. Sammelselg, Thin Solid Films 305 (1997) 270.
[125] K. Kukli, M. Ritala, M. Schuisky, M. Leskela, T. Sajavaara, J. Keinonen, T. Uustare, A. Harsta, Adv. Mater. 12 (2000) 303.
[126] J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala, M. Leskela, Appl. Surf. Sci. 193 (2002) 277.
[127] Z. Hu, C. H. Turner, J. Am. Chem. Soc. 129 (2007) 3863.
[128] 鄭錫恩,李文仁,電子月刊,140 (2007) 144。
[129] M. Putkonen, “Development of low-temperature deposition processes by atomic layer epitaxy for binary and ternary oxide thin films, Dissertation for PhD., Department of Chemical Technology, Helsinki University of Technology, Espoo 2002, Finland.
[130] A. Satta, M. Baklanov, O. Richard, A. Vantomme, H. Bender, T. Conard, K. Maex, W. M. Li, K. E. Elers, S. Haukka, Microelectron. Eng. 60 (2002) 59.
[131] R. Chen, H. Kim, P. C. Mclntyre, D. W. Porter, S. F. Bent, Appl. Phys. Lett. 86 (2005) 191910.
[132] R. Chen, S. F. Bent, Adv. Mater. 18 (2006) 1086.
[133] M. Knez, K. Nielsch, L. Niinisto, Adv. Mater. 19 (2007) 3425.
[134] K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung, J. Am. Chem. Soc. 128 (2006) 858.
[135] Phase Diagrams for Ceramists, The American Ceramic Society Inc. 76 (1975).
[136] U. Diebold, Surf. Sci. Rep. 48 (2003) 53.
[137] E. P. Meagher, G. A. Lager, Can. Mineral. 17 (1979) 77.
[138] C. J. Howard, T. M. Sabine, F. Dickson, Acta Cryst. 47 (1992) 462.
[139] D. A. H. Hanaor, C. C. Sorrell, J. Mater. Sci. 46 (2011) 855.
[140] Handbook of mineralogy, Mineral Data Publishing, Version 1.
[141] Mineralogy Database (http://www.mindat.org/).
[142] B. L. Diffey, Methods 28 (2002) 4.
[143] J. Kolnik, I. H. Oguzman, K. F. Brennan, R. Wang, P. P. Ruden, Y. Wang, J. Appl. Phys. 78 (1995) 1033.
[144] E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18 (2003) R33.
[145] H. Morkoc, S. Stritea, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76 (1994) 1363.
[146] J. J. T. Torvik, J. I. Pankove, B. J. V. Zeghbroeck, IEEE Trans. Electron. Dev. 46 (1999) 1326.
[147] T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirekawa, J. Akimitsu, Sci. Technol. Adv. Mater. 9 (2008) 044204.
[148] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, M. Razehi, Appl. Phys. Lett. 68 (1996) 2100.
[149] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen, IEEE Photon. Technol. Lett. 13 (2001) 1041.
[150] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, M. Razeghi, Appl. Phys. Lett. 74 (1999) 762.
[151] M. Razeghi, A. Rogalski, J. Appl. Phys. 79 (1996) 7433.
[152] Y. M. Chiang, D. P. Birnie, W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, Wiley: New York, (1996) pp. 371-391.
[153] C. C. Wang, C. C. Kei, C. L. Wang, T. P. Perng, Jpn. J. Appl. Phys. 47 (2008) 757.
[154] I. Alessandri, M. Zucca, M. Ferroni, E. Bontempi, L. E. Depero, Cryst. Growth. Des. 9 (2009) 1258.
[155] M. Gratzel, Nature 414 (2001) 338.
[156] A. Fujishima, K. Honda, Nature 238 (1972) 37.
[157] The product datasheets for SiC, AlGaN, and TiO2 UV photodiodes of sglux GmbH (http://www.sglux.de/Products.2.0.html?&L=1).
[158] H. Wang, S. Xu, R. G. Gordon, Electrochem. Solid State Lett. 13 (2010) G75.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊