跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永慶
研究生(外文):Yong-ChingChen
論文名稱:噴墨製程用低加工溫度銅銀墨水的製備與性質
論文名稱(外文):Synthesis and Properties of Low Temperature Cured Copper-Silver Inks for ink-jet printing
指導教授:許聯崇
指導教授(外文):Lien-Chung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:低加工溫度銅銀墨水噴墨印刷
外文關鍵詞:low temperature cured copper-silver inksink-jet printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熱還原法製備低溫噴墨製程用的銅銀二元墨水,藉由銅的前驅鹽Copper(Ⅱ) formate tetrahydrate和錯合劑 n-octylamine去製備出銅墨水,以及利用銀的前驅鹽Silver nitrate和DP (1-dimethylamino-2-propanol)在最佳化的混合溶劑中(乙醇和乙二醇)去製備出銀墨水,接著再將兩種墨水混合在一起去製備出不同比例的銅銀墨水,並以XRD確認在不同熱處理溫度下的轉換效果,以及以SEM去確認薄膜表面燒結的情況。將製備好的銅銀墨水滴在玻璃基板上,在氮氣保護下以160℃進行熱處理1小時,所得最適合的銅銀比例之銅銀薄膜電阻率為3.4×10-4 Ω cm。
Low-temperature cured Copper-Silver binary Inks were prepared from thermal reduction reaction for ink-jet printing. Copper inks were synthesized by thermal decomposition of a copper precursor (Copper(Ⅱ) formate tetrahydrate) and a complexing agent (n-octylamine). Silver inks were synthesized by a silver precursor (silver nitrate) and DP(1-dimethylamino-2-propanol) in an optimal ratio of a mixed solvent(ethanol and ethylene glycol). The two kinds of inks were mixed in different ratio to prepare a binary inks. The conversions of the precursors to the copper and silver were confirmed by XRD. The situation of sintering was observed by SEM. A copper–silver film(copper precursor : silver precursor =1:0.1) was fabricated onto a glass substrate by calcination in nitrogen atmosphere at 160℃ for one hour. The resistivity of the film was 3.4×10-4 Ω cm.
摘要…………………………………………………………………………………………I
Abstract…………………………………………………………………………II
誌謝……………………………………………………………………………………III
總目錄……………………………………………………………………………………Ⅴ
表目錄……………………………………………………………………………………Ⅸ
圖目錄……………………………………………………………………………………Ⅹ
第一章 緒論…………………………………………………………………………1
1-1 前言………………………………………………………………………………1
1-2 奈米粒子的性質…………………………………………………………2
1-2-1表面效應……………………………………………………2
1-2-2量子尺寸效應………………………………………………4
1-2-3隧道效應……………………………………………………5
1-3 銅銀材料簡介…………………………………………………………6
1-4研究動機…………………………………………………………………8
第二章 文獻回顧及原理……………………………………………………9
2-1奈米粒子的製備方法……………………………………………………9
2-1-1物理方法……………………………………………………11
2-1-1-1粉碎法………………………………………………11
2-1-1-2氣相蒸發法…………………………………………11
2-1-2化學方法……………………………………………………12
2-1-2-1氧化還原法…………………………………………13
2-1-2-2水熱合成法…………………………………………18
2-1-2-3溶膠凝膠法…………………………………………18
2-1-2-4光化學法……………………………………………18
2-2噴墨製程墨水的製備………………………………………………….20
2-2-1前驅物途徑…………………………………………………20
2-2-1-1熱轉換方法…………………………………………20
2-2-1-2光轉換方法…………………………………………21
2-2-2分散途徑……………………………………………………21
2-3 銅奈米粒子的合成……………………………………………………22
2-4 銀奈米粒子的合成……………………………………………………24
2-5 金屬奈米粒子之燒結方法……………………………………………25
2-5-1燒結原理……………………………………………………25
2-5-2粒徑對燒結狀況的影響……………………………………26
第三章 實驗步驟………………………………………………………….28
3-1 藥品與儀器……………………………………………………………28
3-1-1藥品…………………………………………………………28
3-1-2儀器…………………………………………………………28
3-2 實驗步驟………………………………………………………………30
3-2-1低加工溫度銅墨水的製備…………………………………30
3-2-2低加工溫度銀墨水的製備…………………………………31
3-2-3低加工溫度銅銀墨水的製備………………………………31
3-3 奈米金屬墨水燒結……………………………………………………35
3-4 燒結金屬薄膜進行電性量測…………………………………………36
3-5 結構鑑定與分析………………………………………………………36
3-5-1 X光繞射分析………………………………………………………36
3-6 熱處理性質與分析……………………………………………………37
3-6-1熱重分析儀…………………………………………………37
3-6-2高解析場放射型掃描式電子顯微鏡………………………37
3-6-3能量分散光譜儀……………………………………………37
3-6-4四點探針……………………………………………………38
3-6-5表面粗度儀…………………………………………………38
3-7 噴墨系統………………………………………………………………38
第四章 結果與討論……………………………………………………….40
4-1低加工溫度銅銀墨水之合成與性質鑑定…………………………….40
4-1-1低加工溫度銅墨水之合成………………………………..41
4-1-2低加工溫度銀墨水之合成………………………………..41
4-1-3低加工溫度銅墨水的鑑定………………………………..43
4-1-4低加工溫度銀墨水的鑑定………………………………..48
4-1-5低加工溫度銅銀墨水的鑑定……………………………..52
4-2不同熱處理溫度對低加工溫度銅銀墨水之研究…………………….53
4-3不同銅銀比例低加工溫度墨水之研究……………………………….55
4-4低加工溫度銅銀墨水之噴墨性質和研究…………………………….62
第五章 結論……………………………………………………………….66
參考文獻……………………………………………………………………67
[1]黃德歡, 改變世界的奈米技術: 美國瀛舟出版社, 2002.
[2]Q. Jiang , S. Zhang, and M. Zhao, Size-dependent melting point of noble metals, Materials Chemistry and Physics, vol. 82, pp. 225, 2003.
[3]J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chemical Reviews, vol. 87, pp. 877-899, 1987.
[4]A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots Science, vol. 271, pp. 933, 16 February 1996.
[5]W. F. Smith, and J. Hashemi, Foundations of Materials Science and Engineer, 3th ed. New York: McGraw-Hill, 2004.
[6]ASM, Alloy phase diagrams vol. 3: ASM International, 1992.
[7]M. Harada, N. Toshima, K. Yoshida, and S. Isoda, Aggregated structure analysis of polymer-protected platinum/ruthenium colloidal dispersions using EXAFS, HRTEM, and electron diffraction measurements, Journal of Colloid and Interface Science, vol. 283, pp. 64-78, 2005.
[8]蘇品書, 超微粒子材料技術: 復漢出版社, 1989.
[9]莊萬發, 超微粒子理論應用: 復漢出版社, 1995.
[10]S. Remita , M. Mostafavi , M. O. Delcourt , and J. Belloni, Ligand effects on solvated metal cluster properties, Journal de Chimie Physique et de Physico-Chimie Biologique, vol. 93, pp. 1828, 1996.
[11]M. T. Reetz , and S. A. Quaiser, New method for the preparation of nanostructured metal clusters, Angew. Chem. Int. Ed. Engl., vol. 34, pp. 2240, 1995.
[12]S. Yatsuya, S. Kasukabe, and R. Uyeda, Formation of Ultrafine Metal Particles by Gas Evaporation Technique. I. Aluminium in Helium, Jpn. J. Appl. Phys., vol. 12, pp. 1675-1684, 1973.
[13]Y. Takeuchi, T. Ida, and K. Kimura, Colloidal Stability of Gold Nanoparticles in 2-Propanol under Laser Irradiation, The Journal of Physical Chemistry B, vol. 101, pp. 1322-1327, 1997.
[14]K. Kimura, The Study of Metal Colloids Produced by Means of Gas Evaporation Technique. II. Reaction of Metal Sols in Organic Solvents, Bulletin of the Chemical Society of Japan, vol. 57, pp. 1683-1684, 1984.
[15]W. Nobuhiko, I. Masaru, A Method of Preparation of Finely Dispersed Ultrafine Particles, Jpn. J. Appl. Phys., vol. 15, pp. 755, 1976.
[16]A. Henglein, and M. Giersig, Formation of Colloidal Silver Nanoparticles:  Capping Action of Citrate, The Journal of Physical Chemistry B, vol. 103, pp. 9533-9539, 1999.
[17]T. Yamaki, H. Maeda, K. Kusakabe, and S. Morooka, Control of the pore characteristics of thin alumina membranes with ultrafine zirconia particles prepared by the reversed micelle method, Journal of Membrane Science, vol. 85, pp. 167-173, 1993.
[18]A.V.Kabanov, S. N. Namethkin, A.V. Levashov, K. Martinek, Biol. Memb. vol. 2, pp. 985, 1985.
[19]A. C. Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, and A. S. Wallace, Preparation and structural characterization of an unprotected copper sol, The Journal of Physical Chemistry, vol. 92, pp. 2270-2275, 1988.
[20]D. V. Goia, and E. Matijevic, Preparation of monodispersed metal particles, New Journal of Chemistry, vol. 22, pp. 1203-1215, 1998.
[21]M. S. Antelman, The Encyclopedia of Chemical Electrode Potentials. New York: Plenum, 1982.
[22]C. W. Wu, B. P. Mosher, and T. F. Zeng, One-step green route to narrowly dispersed copper nanocrystals, Journal of Nanoparticle Research, vol. 8, pp. 965-969, 2006.
[23]F.Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, and K.Tekaia-Elhsissen,, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol NanoStructured Materials, vol. 11, pp. 1277-1284, 1999.
[24]S. H. Wu, and D. H. Chen, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions, Journal of Colloid and Interface Science, vol. 273, pp. 165-169, 2004.
[25]T. Sugimoto, K. Okada, and H. Itoh, Synthetic of Uniform Spindle-Type Titania Particles by the Gel–Sol Method, Journal of Colloid and Interface Science, vol. 193, pp. 140-143, 1997.
[26]K. Esumi, K. Matsuhisa, and K. Torigoe, Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template, Langmuir, vol. 11, pp. 3285-3287, 1995.
[27]J. J. P. Valeton, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, J. Perelaer, U. S. Schubert, G. P. Crawford, and P. J. Smith, Room temperature preparation of conductive silver features using spin-coating and inkjet printing, Journal of Materials Chemistry, vol. 20, pp. 543-546, 2010.
[28]S. F. Jahn, T. Blaudeck, R. R. Baumann, A. Jakob, P. Ecorchard, T. Rüffer, H. Lang, and P. Schmidt, Inkjet Printing of Conductive Silver Patterns by Using the First Aqueous Particle-Free MOD Ink without Additional Stabilizing Ligands†, Chemistry of Materials, vol. 22, pp. 3067-3071, 2010.
[29]H. Freundlich, and D. Steiner, Some observations on colloidal solutions of silver and copper, Journal of the Chemical Society (Resumed), pp. 1081-1085, 1937.
[30]J. A. Creighton, and D. G. Eadon, Ultraviolet-visible absorption spectra of the colloidal metallic elements, Journal of the Chemical Society, Faraday Transactions, vol. 87, pp. 3881-3891, 1991.
[31]I. Lisiecki, and M. P. Pileni, Synthesis of copper metallic clusters using reverse micelles as microreactors, Journal of the American Chemical Society, vol. 115, pp. 3887-3896, 1993.
[32]G. Schmid, Clusters and Colloids: From Theory to Applications, 1 ed.: Wiley-VCH, 1994.
[33]R. J. Hunter, Introduction to Modern Colloid Science: Oxford University Press, USA, 1994.
[34]G. G. Condorelli, L. L. Costanzo, I. L. Fragala, S. Giuffrida, and G. Ventimiglia, A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films, Journal of Materials Chemistry, vol. 13, pp. 2409-2411, 2003.
[35]C. L. Kitchens and C. B. Roberts, Copper Nanoparticle Synthesis in Compressed Liquid and Supercritical Fluid Reverse Micelle Systems, Industrial & Engineering Chemistry Research, vol. 43, pp. 6070-6081, 2004.
[36]B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films, vol. 515, pp. 7706-7711, 2007.
[37]S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia, and J. Moon, Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing, Advanced Functional Materials, vol. 18, pp. 679-686, 2008.
[38]T. Y. Dong, H. H. Wu, C. Huang, J. M. Song, I. G. Chen, and T. H. Kao, Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film, Applied Surface Science, vol. 255, pp. 3891-3896, 2009.
[39]A. Yabuki, N. Arriffin, and M. Yanase, Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes, Thin Solid Films, vol. 519, pp. 6530-6533, 2011.
[40]K. Esumi, N. Ishizuki, K. Torigoe, H. Nakamura, and K. Meguro, Preparation of colloidal silver using various reductants in the presence of copolymers of vinyl alcohol-N-vinyl pyrrolidone, Journal of Applied Polymer Science, vol. 44, pp. 1003-1007, 1992.
[41]H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone), Langmuir, vol. 12, pp. 909-912, 1996.
[42]R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science, vol. 294, pp. 1901-1903, November 30,2001.
[43]Y. Sun and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, vol. 298, pp. 2176-2179, December 13, 2002.
[44]M. Andersson, J. S. Pedersen, and A. E. C. Palmqvist, Silver Nanoparticle Formation in Microemulsions Acting Both as Template and Reducing Agent, Langmuir, vol. 21, pp. 11387-11396, 2005.
[45]M. Zheng, Z. S. Wang, and Y. W. Zhu, Preparation of silver nanoparticle via active template under ultrasonic, Transactions of Nonferrous Metals Society of China, vol. 16, pp. 1348-1352, 2006.
[46]J. J. Lee, M. H. Kima, T. S. Chang, S. T. Kima, S. M. Koo, Y. C. You, and S. J. Lee, Silver complex inks for ink-jet printing: the synthesis and conversion to a metallic particulate ink, Journal of Ceramic Processing Research, vol. 8, p. 219~223, 2007.
[47]W. D. Yang, C. Y. Liu, Z. Y. Zhang, Y. Liu, and S. D. Nie, One step synthesis of uniform organic silver ink drawing directly on paper substrates, Journal of Materials Chemistry, vol. 22, pp. 23012-23016, 2012.
[48]R. L. Coble, Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts, Journal of Applied Physics, vol. 32, pp. 793-799, 1961.
[49]C. Herring, Effect of Change of Scale on Sintering Phenomena, Journal of Applied Physics, vol. 21, pp. 301-303, 1950.
[50]M. H. Tsai, Effects of Pulse Voltage on the Droplet Formation of Alcohol and Ethylene Glycol in a Piezoelectric Inkjet Printing Process with Bipolar Pulse, Materials Transactions, vol. 49, pp. 331-338, 2008.
[51]A. Frattini, N. Pellegri, D. Nicastro, and O. D. Sanctis, Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes, Materials Chemistry and Physics, vol. 94, pp. 148-152, 2005.
[52]C. E. Mellor, J. L. Plumb, L. L. Hope, and M. I. Abdalla, Fabrication Of
Electrode Structures On Very Large Electroluminescent Displays, Advances
in Display Technology IV, vol. 457, 1984.
[53]H. H. Lee, K. S. Chou, and K. C. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, vol. 16, 2005.
[54]T. Cuk, S. M. Troian, C. M. Hong, and S. Wagner, Using convective flow
splitting for the direct printing of fine copper lines, Applied Physics Letters,
vol. 77, pp. 2063, 2000.
[55]B. Lee, Y. Kim, S. Yang, I. Jeong, and J. Moon, A low-cure-temperature copper nano ink for highly conductive printed electrodes, Current Applied Physics, vol. 9, pp. e157-e160, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top