跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉旭偉
研究生(外文):Xu-WeiLiu
論文名稱:Ti-22V-4Al合金薄片顯微組織與拉伸機械性質及顆粒沖蝕磨耗特性研究
論文名稱(外文):A Study on the Microstructures, the Tensile Mechanical Properties and Erosion Characteristics of Ti-22V-4Al Alloy Plates
指導教授:洪飛義洪飛義引用關係
指導教授(外文):Fei-Yi Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:β型鈦合金鈦-釩-鋁合金沖蝕磨耗氮化鈦
外文關鍵詞:β-type titanium alloyTi-V-Al alloyerosionTiN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金具有耐蝕性、比強度高及延展性佳等特性,已廣泛應用在航太、石化及生醫工業等方面。目前市場應用最廣泛的鈦合金為Ti-6Al-4V,室溫下為α+β雙相型鈦合金。本研究使用含有高含量β穩定元素之Ti-22V-4Al合金,利用β型鈦合金優異加工性與熱處理析出強化形成α+β雙相基地進而評估高強度薄片應用可行性。此外,鈦金屬應用在核能電廠或光電玻璃面板所需研磨漿料之輸送管路上,容易發生嚴重的沖蝕磨耗破壞問題。因此,本研究利用二階段熱處理(650°C-1hr+450°C-8hr)與低溫時效處理製程
,檢討不同析出型態α相基地之機械性質與對沖蝕磨耗率之影響。再者,實驗將β型鈦合金進行高溫滲氮處理後試料表面形成TiN+TiO2 硬質層,從而探討表面硬化處理與沖蝕磨耗率相關性。沖蝕試驗選用之顆粒粒徑約275 μm 之Al2O3,且沖蝕壓力為3 kgf/cm2。
實驗結果顯示,二階段熱處理試料在機械性質(拉伸、彎折)與沖蝕磨耗方面均優於熱處理前的β型鈦合金與低溫時效處理材,可確認α相的析出具有主導性,且二階段熱處理試片之拉伸應變敏感性不顯著。滲氮表面硬化處理證實TiN+TiO2 硬質層改善中低角度的沖蝕磨耗率因脆性破壞機制而提升在中低角度磨耗阻抗,使最大沖蝕磨耗率往高角度偏移。

Titanium has been widely used in aviation, petroleum, chemistry and biological medicine industry because of its good corrosion resistance, low density, high mechanical strength and good ductility. Currently Ti-6Al-4V is the most widely used titanium alloy on the market, and at room temperature it is α + β titanium alloy. In this study, we selected containing higher levels β stabilizing element Ti-22V-4Al alloy, using of β-type titanium alloy with excellent workability, precipitation hardening by heat treatment for the α + β phase characteristics in order to assess the feasibility of high-strength sheet application. Besides, titanium will face erosion wear problems when it is used in nuclear power plants or delivery pipe of grinding liquid used for photoelectrical glass plate. Therefore, this study used two-step heat treatment (650°C-1hr+450°C-8hr) and aging treatment process, discussing the effects of different precipitation types of α phase on the mechanical properties and the erosion behavior. Furthermore, high temperature nitrogen diffusion process formed the hard layer of TiN + TiO2 at β-type titanium alloy surface, so as to explore the correlation between surface hardening treatment layer and erosion rate. The Al2O3 particles with 275 μm were selected as the erodent and the impact pressure was 3 kgf/cm2.
The results indicate that two-step heat treatment is better than β-type titanium alloy before heat treatment and with low temperature aging treatment in the mechanical properties (tensile strength, bending) and erosion wear test. It confirms that the precipitation of α phase is dominant, and the sample of two-step heat treatment is not sensitive to strain rate. The surface hardening treatment of nitrogen diffusion proves that the hard layer of TiN+TiO2 improves the low angle erosion rate, and the maximum erosion rate shifts to the high angle because of the brittle fracture mechanism.


總目錄
摘要 I
Abstract II
誌謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
1-1研究背景 1
1-2研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2-1鈦金屬簡介 3
2-2純鈦基本性質 4
2-3合金元素添加對鈦合金的影響 4
2-4鈦合金分類 5
2-4-1 α型鈦合金 6
2-4-2 β型鈦合金 6
2-4-3 α+β型鈦合金 7
2-5金屬薄化與應力集中效應 7
2-6二階段熱處理目的 8
2-7粒沖蝕磨耗行為與機構相關研究 8
2-7-1粒沖蝕磨耗定義與變因 8
2-7-2粒沖蝕角度對材料沖蝕磨耗行為之影響 9
2-7-3料機械性質與沖蝕磨耗之關係 10
2-8硬化處理 11
第三章 實驗方法與步驟 17
3-1實驗流程概述 17
3-2 實驗材料組成與試片製備 17
3-3 顯微組織觀察與成份分析 18
3-4 X光繞射光譜分析 18
3-5 化學分析電子能譜儀(ESCA) 19
3-6 穿透式電子顯微鏡(TEM)分析 19
3-7 拉伸試驗及硬度測試 19
3-8 奈米壓痕試驗機(Nano indenter)-硬度與楊氏係數量測 20
3-9 彎折試驗觀測裂紋傳播 21
3-10沖蝕磨耗試驗 21
第四章 實驗結果 31
4-1 Ti-22V-4Al beta型鈦合金顯微組織特性 31
4-1-1熱處理製程對基地組織之影響 31
4-2 Ti-22V-4Al薄片機械性質分析 33
4-2-1拉伸速率與材料破壞韌性關係 33
4-2-2 彎折試驗下裂紋傳播機制探討 35
4-3 Ti-22V-4Al沖蝕磨耗特性 36
4-3-1 沖蝕磨耗與沖蝕角度之關係 36
4-3-2沖蝕磨耗表面與次表面特徵觀察 37
4-4滲氮表面硬化熱處理 39
4-4-1滲氮熱處理顯微組織特性 39
4-4-2滲氮熱處理沖蝕磨耗特性 41
第五章 結論 83
第六章 參考文獻 84

1.K. Tokaji, H. Shiota, and J.C. Bian, “Fatigue crack propagation in β Ti–15Mo–5Zr–3Al alloy, Materials Science and Engineering: A, Vol. 243, Issues 1–2, pp. 155-162. (1998)
2.K. Tokaji, S. Takafuji, K. Ohya, Y. Kato, and K. Mori, “Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification, Journal of Materials Science, Vol. 38, Issues 6, pp. 1153-1159. (2003)
3.K. P. Cooper, P. L. Slebodnick, K. E. Lucas, and E. A. Hogan, “Microstructural inhomogeneities and sea water corrosion in laser-deposited Ti-6Al-4V alloy matrix/carbide particulate composite surfaces, Journal of Materials Science, Vol. 33, Issues 15, pp. 3805-3816. (1998)
4.W. J. Kroll, “How commercial titanium and zirconium were born, Journal of the Franklin Institute, Vol. 260, Issues 3, pp. 169. (1955).
5.N. Miyano, A. Takahashi, J. Miyazaki, and K. Ameyama, “Prediction of precipitate morphology by atomic matching model and FEM analysis with consideration of anisotropy elastic strain in a BCC/HCP system, Materials Transactions, Vol. 49, Issues 3, pp. 471-478. (2008)
6.E. Collings, “Materials Properties Handbook, ASM international.
7.H. K. D. H. Bhadeshia, “Metallurgy of Titanium and its Alloys. (2004)
8.P. J. Bania, “Beta titanium alloys and their role in the titanium industry, JOM, Vol. 46, Issues 7, pp. 16-19. (1994)
9.M. J. Donachie, Jr.,“Titanium and Titanium Alloy, pp. 10-14. (1982)
10.G. P. Tilly, “Erosion Caused by Impact of Solid Particles, Treatise on Materials Science and Technology, 13th ed., D. Scott, Academic Press, New York, pp. 287-319. (1979)
11.K. Shimizu, T. Noguchi, T. Kamada and H. Takasaki, “Progress of Erosive Wear in Spheroidal Graphite Cast Iron, Wear, Vol. 198, pp. 150-155. (1996)
12.R. E. Winter and I. M. Hutchings, “Study of Erosion by Solid Particles, Wear, Vol. 34, pp. 141-148. (1975)
13.J. P. A. Bitter, “A Study of Erosion Phenomena Part Ⅰ, Wear, Vol. 6, pp. 5-12. (1963)
14.R. E. Winter and I. M. Hutchings, “Study of Erosion by Solid Particles, Wear, Vol. 34, pp. 141-148. (1975)
15.A. Misra and I. Finnie, “On the Size in Abrasive and Erosion Wear, Wear, Vol. 65, pp. 359-373. (1981)
16.洪飛義,矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響,國立成功大學材料科學及工程研究所博士論文,民國91年9月。
17.I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles, Journal of Materials, Vol. 2, pp. 682-700. (1967)
18.W. H. Jennings, W. J. Head and C. R. Manning, Jr., “A Mechanistic Model for the Prediction of Ductile Erosion, Wear, Vol. 40, pp. 93-112. (1976)
19.J. L. Routbort, R. O. Scattergood and A. P. L. Turner, “The Erosion of Reaction-Bonded SiC, Wear, Vol. 59, pp. 363-375. (1980)
20.W. F. Adler, “Analytical Modeling of Multiple Particle Impacts on Brittle Materials, Wear, Vol. 37, pp. 353-364. (1976)
21.D. Chen, M. Sarumi, S.T. S. Al-Hassani, S. Gan, and Z. Yin, “A Model for Erosion at Normal Impact, Wear, Vol. 205, pp. 32-39. (1997)
22.R. G. Wellman and C. Allen, “The Effect of Angle of Impact and Material Properties on the Erosion Rates of Ceramics, Wear, Vol. 186-187, pp. 117-125. (1995)
23.L. K. Hien and P. G. Shewmon, “Effects of Hardness on the Solid Particle Erosion Mechanisms in AISI 1060 Steel, Wear, Vol. 89, pp. 291-302. (1983)
24.A. Magnee, Generalized Law of Erosion: “Application to Various Alloys and Intermetallics, Wear, Vol. 181-183, pp. 500-510. (1995)
25.W. S. Dai, L. H. Chen and T. S. Lui, “ SiO2 Particle Erosion of Spheroidal Graphite Cast Iron after Surface Remelting by the Plasma Transferred Arc Process, Wear, Vol. 248, pp. 201-210. (2001)
26.D. F. Wang and Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by impact of Solid Particles, Wear, Vol. 199, pp. 283-286. (1996)
27.F. Y. Hung, L. H. Chen and T. S. Lui, “The Microstructural Effects on Tensile Properties and Erosion Wear Resistance in Upper Bainitic ADI Related to Variation in Silicon Content, Mater. Trans., Vol. 43, pp. 1748-1757. (2002)
28.A. Levy, M. Aghazadeh, and G. Hickey, “The Effect of Test Variables on the Platelet Mechanism of Erosion, Wear, Vol. 108, pp. 23-41. (1986)
29.R. Bellman, Jr., and A. Levy, “Erosion Mechanism in Ductile Metals, Wear, Vol. 70, pp. 1-27. (1981)
30.M. M. Stack and D. Pena, “Solid Particle Erosion of Ni-Cr/WC Metal Matrix Composites at Elevated Temperatures: Construction of Erosion Mechanism and Process Control Maps, Wear, Vol. 203-204, pp. 489-497. (1997)
31.M. G. Gee, R. H. Gee, and I. McNaught, “Stepwise Erosion as a Method for Determining the Mechanisms of Wear in Gas Borne Particulate Erosion, Wear, Vol. 255, pp. 44-54. (2003)
32.B. Stanisa and V. Ivusic, “Erosion Behavior and Mechanisms for Steam Turbine Rotor Blades, Wear, Vol. 186-187, pp. 395-400. (1995)
33.A. V. Levy, “The Platelet Mechanism of Erosion of Ductile Metals, Wear, Vol. 108, pp. 1-21. (1986)
34.H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance, Wear, Vol. 177, pp. 185-193. (1994)
35.S. M. Wiederhorn and B. J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials, J. Mater. Sci., Vol. 18, pp. 766-780. (1983)
36.K. Adachi and K. Kato, N. Chen, “Wear Map of Ceramics, Wear of Materials, ASME, pp. 156-168. (1997)
37.Y. I. Oka, M. Matsumura, and T. Kawabata, “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact, Wear, Vol. 162-164, pp. 688-695. (1993)
38.T. N. Rouns and K. B. Rundman, “On the Effect of Molybdenum on the Kinetics of Tempering Ductile Cast Irons, AFS Trans, pp. 25-36. (1983)
39.F. H. Hayes, “The Al-Ti-V (aluminum-titanium-vanadium) system, Journal of Phase Equilibria, Vol. 16, Issue 2, pp. 163-176. (1995)
40.L. Fouilland-Paille, S. Ettaqi, S. Benayoun, and J. J. Hantapergu, “Structural and Mechanical Characterization of Ti/TiC Cermet Coatings Synthesized by Laser Melting, Surface Coat. Tech., Vol. 88, pp. 204-211. (1996)
41.H. Z. Ye, R. Liu, D. Y. Lia, and R. Eadie, “Development of a New Wear-resistant Material: TiC/TiNi Composite, Scripta Mater., Vol. 41, pp. 1039-1045. (1999)
42.C. I. Costescu and B. J. Heuser, “The effect of a nitrogen-rich surface layer on the sub-surface deuterium (hydrogen) concentration distribution in titanium, Surface Science, Vol. 450, Issues 3, pp. 242-250. (2000)
43.Y. L. Jiang, Q. Xie, C. Detavernier, R. L. V. Meirhaeghe, and G. P. Ru, “Oxidation suppression in ytterbium silicidation by Ti/TiN bicapping layer, J. Vac. Sci. Technol: A, Vol. 25, pp. 285-289. (2007)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top