跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊成
研究生(外文):Chun-ChengKuo
論文名稱:Sn1-xGexSe奈米晶液相合成及可調控能隙研究
論文名稱(外文):Solution-phase synthesis and tunable bandgap of Sn1-xGexSe nanocrystals
指導教授:林文台
指導教授(外文):W.T. Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:奈米晶單一反應器系統Sn1-xGexSe可調控能隙材料
外文關鍵詞:nanocrystalsone-pot systemSn1-xGexSetunable bandgap materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討Ge摻雜對Sn1-xGexSe(0 ≤ x ≤ 0.7)奈米晶的合成及能隙的影響。於單一反應器系統在油胺溶劑中,230-260°C、5-24 小時下可合成出Sn1-xGexSe 奈米晶。Ge摻雜係使用三種不同的Ge前驅體如Ge、GeI4 和GeCl4來進行。結果顯示,相較於其他兩種Ge前驅體,來自於GeCl4之Ge較容易摻雜進入SnSe晶體。隨著Ge摻雜物的含量增加,要形成SnSe純相而無雜質在Sn1-xGexSe奈米晶中,需提高溫度或增加時間,此顯示出在單一反應器系統合成中,SnSe的生成速率較GeSe快,即使SnCl2 、GeCl4前驅物分別為固態和液態。Sn1-xGexSe 奈米晶隨著Ge的濃度( 0 ≤ x ≤ 0.7 )的增加,間接能隙從0.92 eV增加至1.17 eV 而直接能隙可由1.37 eV增加至1.53 eV。本研究顯示Sn1-xGexSe奈米晶在單一反應器系統油胺溶劑中可簡單地合成出而無需添加其他還原劑如hexamethyl-disilazane。除此之外,可調控能隙Sn1-xGexSe奈米晶為一個很有潛力的光伏材料。
The effects of Ge-doping on the synthesis and bandgap of Sn1-xGexSe nanocrystals with 0 ≤ x ≤ 0.7 were studied. Sn1-xGexSe nanocrystals were synthesized at 230-260°C for 5-24 h in the oleylamine (OLA) solvent in a one-pot system. Three different Ge precursors such as Ge, GeI4 and GeCl4 were used for Ge-doping. The result showed that the Ge dopant from the GeCl4 precursor can be more readily incorporated into the SnSe lattice as compared with the other two Ge precursors. The synthesis temperature and time required to form single SnSe phase without the impurities in the Sn1-xGexSe nanocrystals increased with the amount (x) of Ge dopant, revealing that during synthesis in the one-pot system the formation rate of SnSe is faster than that of GeSe even though the Sn precursor, SnCl2, is in the solid state and the Ge precursor, GeCl4, is in the liquid state. The indirect and direct bandgaps of Sn1-xGexSe nanocrystals could be tuned from 0.92 to 1.17 eV and from 1.37 to 1.53 eV, respectively, by increasing the Ge concentration (x) from 0 to 0.7. This study reveals that the Sn1-xGexSe nanocrystals can be simply synthesized in the OLA solvent in a one-pot system without introduction of other reduction agents such as hexamethyl-disilazane. In addition, the tunable band gap of Sn1-xGexSe nanocrystals may make them potential candidates as the photovoltaic materials.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
第一章 引言 1
第二章 光電基礎理論與文獻回顧 3
2.1基本光電原理 3
2.1.1光電導效應 3
2.1.2光伏特效應 3
2.1.3太陽能材料的歷史發展 4
2.2太陽能材料的介紹 5
2.2.1光電材料物理特性需求 5
2.2.2光電材類分類 6
2.2.3提升材料光電轉換效率的方法 7
2.3可調控能隙材料文獻回顧 10
2.3.1 ZnS&CIS& CIGS& CZTS& CZTSe文獻 10
2.3.2 SnSe化學合成文獻 11
2.3.3藉由尺寸調控 SnSe能隙文獻 13
2.3.4藉由摻雜 SnSe能隙文獻 14
2.3.5 GeSe文獻 16
2.4 研究動機 17
第三章 實驗步驟與方法 19
3.1濕式化學法在氮氣中合成SnSe及Sn1-xGexSe奈米晶 19
3.2材料特性分析 19
3.2.1 X光繞射儀(X-ray Diffractometer)[92] 20
3.2.2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)[92] 21
3.2.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)[92] 22
3.2.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS)[92] 23
3.2.5 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis,ESCA) [94] 24
3.2.6 紫外/可見光(UV-vis)光譜儀[95] 26
第四章 結果與討論 27
4.1 濕式化學法在氮氣中合成SnSe奈米晶 27
4.2不同Ge前驅體對合成 Sn1-xGexSe奈米晶的影響 27
4.3濕式化學法在氮氣中合成Sn1-xGexSe奈米晶 30
4.4濕式化學法在氮氣中合成Sn1-x GexSe奈米晶之微結構 31
4.5 Ge摻雜 SnSe奈米晶之光學性值 32
第五章 結論 33
文獻參考 35
附錄 107
JCPDS Cards No. 01-075-6133(SnSe) 107
JCPDS Cards No. 01-075-1802(GeSe) 109
JCPDS Cards No. 00-003-0475(Ge) 111

[1]賴麗蓉, 京都議定書之分析及未來發展勢, 能源季刊, vol. 28 ,pp. 1-16, 1998.
[2]王啟秀,孔祥科,左玉婷, 全球能源產業趨勢研究-以台灣太陽能光電產業為例, Web Journal of Chinese Management Review, vol. 11, p. 3, 2008.
[3]N. S. Lewis, Toward cost-effective solar energy use, science, vol. 315, pp. 798-801, 2007.
[4]S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, Organic-based photovoltaics: toward low-cost power generation, MRS bull, vol. 30, pp. 10-19, 2005.
[5]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, et al., Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced Materials, vol. 18, pp. 789-794, 2006.
[6]E. H. Sargent, Infrared photovoltaics made by solution processing, Nature photonics, vol. 3, pp. 325-331, 2009.
[7]Q. Guo, G. M. Ford, H. W. Hillhouse, and R. Agrawal, Sulfide Nanocrystal Inks for Dense Cu(In1− xGax)(S1− ySey)2 Absorber Films and Their Photovoltaic Performance, Nano letters, vol. 9, pp. 3060-3065, 2009.
[8]C. Wadia, A. P. Alivisatos, and D. M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment, Environmental Science & Technology, vol. 43, pp. 2072-2077, 2009.
[9]J. C. Fan, Promises of III-V solar cells, Solar energy materials, vol. 23, pp. 129-138, 1991.
[10]B. Pejova and A. Tanuševski, A Study of Photophysics, Photoelectrical Properties, and Photoconductivity Relaxation Dynamics in the Case of Nanocrystalline Tin (II) Selenide Thin Films, The Journal of Physical Chemistry C, vol. 112, pp. 3525-3537, 2008.
[11]B. Pejova and I. Grozdanov, Chemical synthesis, structural and optical properties of quantum sized semiconducting tin (II) selenide in thin film form, Thin Solid Films, vol. 515, pp. 5203-5211, 2007.
[12]J. L. Stone, Photovoltaics: Unlimited electrical energy from the sun, Physics Today, vol. 46, p. 22, 1993.
[13]F. C, New Form of Selenium Cell,with some Remarkable Electrical Discoveries made by its Use, Proc. Am. Assoc. Adv. Sci., vol. 33, p. 97, 1883.
[14]D. Chapin, C. Fuller, and G. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[15]D. Reynolds, G. Leies, L. Antes, and R. Marburger, Photovoltaic effect in cadmium sulfide, Physical Review, vol. 96, pp. 533-534, 1954.
[16]M. Prince, Silicon solar energy converters, Journal of Applied Physics, vol. 26, pp. 534-540, 1955.
[17]J. J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, Journal of Applied Physics, vol. 27, pp. 777-784, 1956.
[18]J. J. Wysocki and P. Rappaport, Effect of temperature on photovoltaic solar energy conversion, Journal of Applied Physics, vol. 31, pp. 571-578, 1960.
[19]W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells, Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
[20]美國國家再生能源實驗室(NREL), Best Research- Cell Efficiencies.
[21]Z. Zainal, S. Nagalingam, A. Kassim, M. Z. Hussein, and W. M. M. Yunus, Effects of annealing on the properties of SnSe films, Solar energy materials and solar cells, vol. 81, pp. 261-268, 2004.
[22]D. T. Quan, Electrical properties and optical absorption of SnSe evaporated thin films, physica status solidi (a), vol. 86, pp. 421-426, 1984.
[23]J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, and P. Yu, PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation, Journal of the American Chemical Society, vol. 128, pp. 3241-3247, 2006.
[24]O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, and A. J. Nozik, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, vol. 334, pp. 1530-1533, 2011.
[25]W. X. Jiading Mou , Tongsheng Mou, 接面型光電元件原理, 光電技術, vol. 6, p. 257, 2003.
[26]J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol, Acs Nano, vol. 2, pp. 271-280, 2008.
[27]D. A. R. Barkhouse, A. G. Pattantyus-Abraham, L. Levina, and E. H. Sargent, Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency, ACS nano, vol. 2, pp. 2356-2362, 2008.
[28]G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states, Nano letters, vol. 8, pp. 1446-1450, 2008.
[29]D. D. Vaughn II, R. J. Patel, M. A. Hickner, and R. E. Schaak, Single-crystal colloidal nanosheets of GeS and GeSe, Journal of the American Chemical Society, vol. 132, pp. 15170-15172, 2010.
[30]D. M. Kaschak, J. T. Lean, C. C. Waraksa, G. B. Saupe, H. Usami, and T. E. Mallouk, Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: Toward an inorganic “leaf, Journal of the American Chemical Society, vol. 121, pp. 3435-3445, 1999.
[31]L. Li, R. Ma, Y. Ebina, K. Fukuda, K. Takada, and T. Sasaki, Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials, Journal of the American Chemical Society, vol. 129, pp. 8000-8007, 2007.
[32]O. C. Compton, C. H. Mullet, S. Chiang, and F. E. Osterloh, A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets, The Journal of Physical Chemistry C, vol. 112, pp. 6202-6208, 2008.
[33]S. Chen, Y. Liu, C. Shao, R. Mu, Y. Lu, and J. Zhang, Structural and optical properties of uniform ZnO nanosheets, Advanced Materials, vol. 17, pp. 586-590, 2005.
[34]A. De Vos, Detailed balance limit of the efficiency of tandem solar cells, Journal of Physics D: Applied Physics, vol. 13, p. 839, 1980.
[35]X. H. Zhong, Y. Y. Feng, W. Knoll, and M. Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width, Journal of the American Chemical Society, vol. 125, pp. 13559-13563, 2003.
[36]H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, and S. Otsuka-Yao-Matsuo, Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system, Chemistry of materials, vol. 18, pp. 3330-3335, 2006.
[37]T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach, Nature materials, vol. 6, pp. 951-956, 2007.
[38]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, and A. Dodabalapur, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2(CIGS) Nanocrystal “Inks for Printable Photovoltaics, Journal of the American Chemical Society, vol. 130, pp. 16770-16777, 2008.
[39]J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles, Chemistry of Materials, vol. 20, pp. 6906-6910, 2008.
[40]D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu, and Y. Lu, Synthesis of quaternary semiconductor nanocrystals with tunable band gaps, Chemistry of Materials, vol. 21, pp. 2489-2493, 2009.
[41]H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, Tunable band gap Cu2ZnSnS4xSe4(1− x) nanocrystals: experimental and first-principles calculations, CrystEngComm, vol. 13, pp. 2222-2226, 2011.
[42]Z. Li, J. Shi, Q. Liu, Y. Chen, Z. Sun, and Z. Yang, Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires, Nanotechnology, vol. 22, p. 265615, 2011.
[43]P. D. Antunez, J. J. Buckley, and R. L. Brutchey, Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells, Nanoscale, vol. 3, pp. 2399-2411, 2011.
[44]J. Chamberlain and M. Merdan, Infrared photoconductivity in p-SnS, Journal of Physics C: Solid State Physics, vol. 10, p. L571, 1977.
[45]I. Lefebvre, M. Szymanski, J. Olivier-Fourcade, and J. Jumas, Electronic structure of tin monochalcogenides from SnO to SnTe, Physical Review B, vol. 58, p. 1896, 1998.
[46]A. Volykhov, V. Shtanov, and L. Yashina, Phase relations between germanium, tin, and lead chalcogenides in pseudobinary systems containing orthorhombic phases, Inorganic Materials, vol. 44, pp. 345-356, 2008.
[47]H. Wiedemeier and F. J. Csillag, The thermal expansion and high temperature transformation of SnS and SnSe*, Zeitschrift für Kristallographie, vol. 149, pp. 17-29, 1979.
[48]M. A. S. I. Lefebvre, J. Oliver-Fourcade and J. C. Jumas, and Phys, Rev. B: Condens. Matter Mater. Phys., 1998.
[49]R. Car, G. Ciucci, and L. Quartapelle, Electronic band structure of SnSe, physica status solidi (b), vol. 86, pp. 471-478, 1978.
[50]N. S. Dantas, A. F. d. Silva, and C. Persson, Electronic band-edge properties of rock salt PbY and SnY (Y= S, Se, and Te), Optical Materials, vol. 30, pp. 1451-1460, 2008.
[51]A. Walsh and G. W. Watson, Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory, Physical Review B, vol. 70, p. 235114, 2004.
[52]U. Waghmare, N. Spaldin, H. Kandpal, and R. Seshadri, First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb, Physical Review B, vol. 67, p. 125111, 2003.
[53]W. Z. Wang, Y. Geng, P. Yan, F. Y. Liu, Y. Xie, and Y. T. Qian, A novel mild route to nanocrystalline selenides at room temperature, Journal of the American Chemical Society, vol. 121, pp. 4062-4063, 1999.
[54]W. X. Zhang, Z. H. Yang, J. W. Liu, L. Zhang, Z. H. Hui, W. C. Yu, et al., Room temperature growth of nanocrystalline tin (II) selenide from aqueous solution, Journal of Crystal Growth, vol. 217, pp. 157-160, 2000.
[55]G. Shen, C. Di, X. Jiang, K. Tang, Y. Liu, and Y. Qian, Rapid synthesis of SnSe nanowires via an ethylenediamine-assisted polyol route, Chemistry Letters, pp. 426-427, 2003.
[56]S. Schlecht, M. Budde, and L. Kienle, Nanocrystalline tin as a preparative tool: Synthesis of unprotected nanoparticles of SnTe and SnSe and a new route to (PhSe)4Sn, Inorganic chemistry, vol. 41, pp. 6001-6005, 2002.
[57]M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, Solution-phase synthesis of SnSe nanocrystals for use in solar cells, Journal of the American Chemical Society, vol. 132, pp. 4060-4061, 2010.
[58]W. J. Baumgardner, J. J. Choi, Y.-F. Lim, and T. Hanrath, SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry, Journal of the American Chemical Society, vol. 132, pp. 9519-9521, 2010.
[59]S. Chen, X. Gong, A. Walsh, and S.-H. Wei, Crystal and electronic band structure of Cu2ZnSnX4( X=S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters, vol. 94, pp. 041903-041903-3, 2009.
[60]A. P. Alivisatos, Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals, 2009.
[61]H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, X. Chen, Novel SnSxSe1− x nanocrystals with tunable band gap: experimental and first-principles calculations, Journal of Materials Chemistry, vol. 21, pp. 12605-12608, 2011.
[62]T. Mahalingam, V. Dhanasekaran, G. Ravi, R. Chandramohan, A. Kathalingam, and J.-K. Rhee, Role of Deposition Potential on the Optical Properties of SnSSe Thin Films, ECS Transactions, vol. 35, pp. 1-10, 2011.
[63]J. J. Buckley, F. A. Rabuffetti, H. L. Hinton, and R. L. Brutchey, Synthesis and Characterization of Ternary SnxGe1–xSe Nanocrystals, Chemistry of Materials, vol. 24, pp. 3514-3516, 2012.
[64]C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, and J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity, Journal of the American Chemical Society, vol. 132, pp. 46-47, 2009.
[65]O. C. Compton and F. E. Osterloh, Niobate nanosheets as catalysts for photochemical water splitting into hydrogen and hydrogen peroxide, The Journal of Physical Chemistry C, vol. 113, pp. 479-485, 2008.
[66]W. J. Youngblood, S.-H. A. Lee, K. Maeda, and T. E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors, Accounts of chemical research, vol. 42, pp. 1966-1973, 2009.
[67]A. Takagaki, M. Sugisawa, D. Lu, J. N. Kondo, M. Hara, and K. Domen, Exfoliated nanosheets as a new strong solid acid catalyst, Journal of the American Chemical Society, vol. 125, pp. 5479-5485, 2003.
[68]L. Hu, Q. Peng, and Y. Li, Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion, Journal of the American Chemical Society, vol. 130, pp. 16136-16137, 2008.
[69]D. Shah, P. Maiti, E. Gunn, D. F. Schmidt, D. D. Jiang, and C. A. Batt, Dramatic Enhancements in Toughness of Polyvinylidene Fluoride Nanocomposites via Nanoclay‐Directed Crystal Structure and Morphology, Advanced Materials, vol. 16, pp. 1173-1177, 2004.
[70]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, and J. Xu, Ultrastrong and stiff layered polymer nanocomposites, Science, vol. 318, pp. 80-83, 2007.
[71]C. e. N. e. R. Rao, A. e. K. Sood, K. e. S. Subrahmanyam, and A. Govindaraj, Graphene: The New Two‐Dimensional Nanomaterial, Angewandte Chemie International Edition, vol. 48, pp. 7752-7777, 2009.
[72]R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, 2D materials: to graphene and beyond, Nanoscale, vol. 3, pp. 20-30, 2011.
[73]K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets, Applied Physics Letters, vol. 91, pp. 201901-201901-3, 2007.
[74]T. Sasaki and M. Watanabe, Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, The Journal of Physical Chemistry B, vol. 101, pp. 10159-10161, 1997.
[75]K. Fukuda, K. Akatsuka, Y. Ebina, R. Ma, K. Takada, and I. Nakai, Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties, ACS nano, vol. 2, pp. 1689-1695, 2008.
[76]M. R. Allen, A. Thibert, E. M. Sabio, N. D. Browning, D. S. Larsen, and F. E. Osterloh, Evolution of Physical and Photocatalytic Properties in the Layered Titanates A2Ti4O9 (A= K, H) and in Nanosheets Derived by Chemical Exfoliation†, Chemistry of Materials, vol. 22, pp. 1220-1228, 2009.
[77]M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, Journal of Materials Chemistry, vol. 19, pp. 2503-2511, 2009.
[78]M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, and K. Takada, Robust High-κ Response in Molecularly Thin Perovskite Nanosheets, ACS nano, vol. 4, pp. 5225-5232, 2010.
[79]N. Sakai, Y. Ebina, K. Takada, and T. Sasaki, Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies, Journal of the American Chemical Society, vol. 126, pp. 5851-5858, 2004.
[80]M. Osada, Y. Ebina, K. Fukuda, K. Ono, K. Takada, and K. Yamaura, Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets, Physical Review B, vol. 73, p. 153301, 2006.
[81]J. Zhang, J. M. Soon, K. P. Loh, J. Yin, and J. Ding, Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets M. B. Sullivian, Magnetic molybdenum disulfide nanosheet films, Nano letters, vol. 7, pp. 2370-2376, 2007.
[82]E. Coronado, C. Martí-Gastaldo, E. Navarro-Moratalla, A. Ribera, S. J. Blundell, and P. J. Baker, Coexistence of superconductivity and magnetism by chemical design, Nature chemistry, vol. 2, pp. 1031-1036, 2010.
[83]J. Yu, J. Fan, and K. Lv, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale, vol. 2, pp. 2144-2149, 2010.
[84]M. Reddy, T. Yu, C.-H. Sow, Z. X. Shen, C. T. Lim, and G. Subba Rao, α‐Fe2O3 Nanoflakes as an Anode Material for Li‐Ion Batteries, Advanced Functional Materials, vol. 17, pp. 2792-2799, 2007.
[85]J. w. Seo, J. t. Jang, S. w. Park, C. Kim, B. Park, and J. Cheon, Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries, Advanced Materials, vol. 20, pp. 4269-4273, 2008.
[86]C. Kannewurf and R. Cashman, Optical absorption and photoconductivity in germanium selenide, Journal of Physics and Chemistry of Solids, vol. 22, pp. 293-298, 1961.
[87]A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, vol. 95, pp. 49-68, 1995.
[88]D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, Colloidal Synthesis and Electrical Properties of GeSe Nanobelts, Chemistry of Materials, vol. 24, pp. 3643-3649, 2012.
[89]M. Biçer and İ. Şişman, Electrodeposition and growth mechanism of SnSe thin films, Applied Surface Science, vol. 257, pp. 2944-2949, 2011.
[90]J. Nedeljkovic, M. Nenadovic, O. Micic, and A. Nozik, Enhanced photoredox chemistry in quantized semiconductor colloids, The Journal of Physical Chemistry, vol. 90, pp. 12-13, 1986.
[91]T. Abraham, C. Juhasz, J. Silver, J. Donaldson, and M. Thomas, A TIN-119 Mössbauer and electrical conductivity study of the system SnxGe1-xSe (0⩽x⩽ 1), Solid State Communications, vol. 27, pp. 1185-1187, 1978.
[92]汪建民等人, 材料分析, 中國材料科學學會, 1998.
[93]陳力俊等, 材料電子微鏡學, vol. 1, p. 3, 2006.
[94]J. C. Vickerman and I. S. Gilmore, Surface analysis: the principal techniques vol. 2: Wiley Online Library, 2009.
[95]R. Weiher and R. Ley, Optical properties of indium oxide, Journal of Applied Physics, vol. 37, pp. 299-302, 1966.
[96]Y. Liu, W. Luo, R. Li, G. Liu, M. R. Antonio, and X. Chen, Optical spectroscopy of Eu3+ doped ZnO nanocrystals, The Journal of Physical Chemistry C, vol. 112, pp. 686-694, 2008.
[97]F. Ye and A. Ohmori, The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings, Surface and Coatings Technology, vol. 160, pp. 62-67, 2002.
[98]E. Macklen, 396. Preparation of germane. Part I. Reaction between lithium aluminium hydride and germanium tetrachloride, Journal of the Chemical Society (Resumed), pp. 1984-1988, 1959.
[99]M. H. Kim, G. Gupta, and J. Kim, Facile solution routes for the syntheses of GeTe nanocrystals, RSC Advances, vol. 3, pp. 288-292, 2013.
[100]Q. Zhang, G. Armatas, and M. G. Kanatzidis, Activation of Tellurium with Zintl Ions: 1/∞{[Ge5Te10] 4−}, An Inorganic Polymer with Germanium in Three Different Oxidation States, Inorganic chemistry, vol. 48, pp. 8665-8667, 2009.
[101]X. Lu, B. A. Korgel, and K. P. Johnston, High yield of germanium nanocrystals synthesized from germanium diiodide in solution, Chemistry of materials, vol. 17, pp. 6479-6485, 2005.
[102]L. H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements, Geochimica et Cosmochimica Acta, vol. 2, pp. 155-169, 1952.
[103]H. Wiedemeier and E. Irene, KNUDSEN measurements of the sublimation and the Heat of Formation of GeSe, Zeitschrift für anorganische und allgemeine Chemie, vol. 404, pp. 299-307, 1974.
[104]V. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, Optical absorption and photoconductivity at the band edge of β‐Ga2− xInxO3, physica status solidi (b), vol. 195, pp. 653-658, 1996.
[105]A. Kudo and I. Mikami, Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution, J. Chem. Soc., Faraday Trans., vol. 94, pp. 2929-2932, 1998.
[106]L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, Electron magnetic resonance and optical properties of Ga2− 2xIn2xO3 solid solutions, Journal of Physics and Chemistry of Solids, vol. 60, pp. 1755-1762, 1999.
[107]W. T. Lin, C. Y. Ho, Y. M. Wang, K. H. Wu, and W. Y. Chou, Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor, Journal of Physics and Chemistry of Solids, vol. 73, pp. 948-952, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 劉信雄、莊妙芬、馬興德、羅振慶、馬崇熙、吳麗香、吳樹南、李國祿(1995)。智障者社區安置支持性因素之探討。特殊教育與復健學報,4,29-73。
2. 劉信雄、莊妙芬、馬興德、羅振慶、馬崇熙、吳麗香、吳樹南、李國祿(1995)。智障者社區安置支持性因素之探討。特殊教育與復健學報,4,29-73。
3. 劉信雄、莊妙芬、馬興德、羅振慶、馬崇熙、吳麗香、吳樹南、李國祿(1995)。智障者社區安置支持性因素之探討。特殊教育與復健學報,4,29-73。
4. 劉佩嘉(2004):誰才是真正的做決定者:自我決策對重度障礙者之重要性。特殊教育季刊,92,32-36。
5. 劉佩嘉(2004):誰才是真正的做決定者:自我決策對重度障礙者之重要性。特殊教育季刊,92,32-36。
6. 劉佩嘉(2004):誰才是真正的做決定者:自我決策對重度障礙者之重要性。特殊教育季刊,92,32-36。
7. 楊詠雯、林宏熾、林示安、周穎馨、柯馨絜(2005)。自閉症青年自我決策狀況之分析-以台灣中部地區為例。身心障礙研究,3,102-112。
8. 楊詠雯、林宏熾、林示安、周穎馨、柯馨絜(2005)。自閉症青年自我決策狀況之分析-以台灣中部地區為例。身心障礙研究,3,102-112。
9. 楊詠雯、林宏熾、林示安、周穎馨、柯馨絜(2005)。自閉症青年自我決策狀況之分析-以台灣中部地區為例。身心障礙研究,3,102-112。
10. 陳麗如(2008)。教導身心障礙的學生自我決策技能。特殊教育季刊,107,1-8。
11. 陳麗如(2008)。教導身心障礙的學生自我決策技能。特殊教育季刊,107,1-8。
12. 陳麗如(2008)。教導身心障礙的學生自我決策技能。特殊教育季刊,107,1-8。
13. 陳麗如(2001)。從美國DCDT 研討會議省思台灣地區身心障礙者轉銜服務工作之發展。特殊教育季刊,85,12-17。
14. 陳麗如(2001)。從美國DCDT 研討會議省思台灣地區身心障礙者轉銜服務工作之發展。特殊教育季刊,85,12-17。
15. 陳麗如(2001)。從美國DCDT 研討會議省思台灣地區身心障礙者轉銜服務工作之發展。特殊教育季刊,85,12-17。