跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李筆智
研究生(外文):Bi-JrLi
論文名稱:以熱碳還原法製備Ca3(Sc,Zn)2Si3O12: Ce3+綠色螢光粉體之結構與光致發光性質研究
論文名稱(外文):Study of Structural and Photoluminescent Properties of Ca3(Sc,Zn)2Si3O12: Ce3+ Green Phosphors by Carbothermal Reduction Method
指導教授:陳引幹陳引幹引用關係
指導教授(外文):In-Gann Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:103
中文關鍵詞:綠色螢光粉熱碳還原法光致發光量子效率熱穩定性
外文關鍵詞:Green phosphorsCarbothermal reduction methodPhotoluminescenceQuantum efficiencyThermal stability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熱碳還原法製備Ca2.955Sc2Si3O12:Ce3+ (CSS:Ce)綠色螢光粉,並和在空氣下熱處理所製備之CSS:Ce相互比較,進而探討熱碳還原法對CSS:Ce其發光性質提升之助益。接著我們藉由熱碳還原法共摻雜Zn2+於CSS:Ce綠色螢光粉中,製備出Ca2.955Sc2-(2/3)xZnxSi3O12:Ce3+ (x=0~0.5) (CSZS:Ce)綠色螢光粉。最後則是與本實驗室另一研究Ca2.955Sc2-yAlySi3O12:Ce3+ (y=0~0.4) (CSAS:Ce)一同比較不同的PL量測溫度對發光強度之影響,以了解不同摻雜離子對發光性質之熱穩定性的影響。
研究結果顯示,以熱碳還原法製備CSS:Ce綠色螢光粉相較於在一般空氣下熱處理會有更佳的發光強度、量子效率以及吸收率表現,而經由拉曼散射光譜及X光吸收光譜可以得知在熱碳還原法中Ce3+較不易被氧化成Ce4+,因此螢光粉中留有較多的發光中心Ce3+,因此使得吸收率提升了約4%,而量子效率則是提升了約8%;此外,以熱碳還原法製程共摻雜Zn2+以取代Sc3+,可以製備出有更佳的發光性質及更高的熱穩定性之發光材料CSZS:Ce,其中又以Zn2+的摻雜濃度為x=0.3時,有最佳的發光性質及熱穩定性,在此摻雜濃度下,吸收率可以提升約8%,而量子效率則是提升約10%,而且在PL量測溫度為150℃時,發光強度仍然可以保持約92%。而從X光繞射光譜、傅利葉轉換紅外線光譜及拉曼散射光譜的分析結果顯示,摻雜Zn2+有助於減少Sc2O3的殘留,但是一旦Zn2+的摻雜量過多時(x≧0.2),即會有助於Ca3Si3O9相生成,當螢光粉有上述雜相殘留時,會導致發光性質的劣化。而藉由掃描式電子顯微鏡可以發現到液相燒結的現象,液相燒結可以增加反應時的均勻度,使得發光性質能有效地提升。最後,我們將探討不同摻雜離子對發光性質之熱穩定性的影響,從本實驗室於CSS:Ce之相關研究成果可以得知,Zn2+的摻雜有助於提升此螢光粉之熱穩定性,然而Al3+的摻雜則會使熱穩定性變差,這是因為Al3+的摻雜會提高聲子能量以及降低熱淬滅性質之活化能,因此雖然CSZS:Ce及CSAS:Ce兩系統綠色螢光粉都可以作為現今高功率白光LED中的光色轉換材料,然而從光學性質可知道Zn2+的摻雜能更有效地提升發光強度,而由溫度對發光強度之研究可知道Zn2+的摻雜能提升熱穩定性,而Al3+的摻雜則會減弱熱穩定性。上述的分析顯示CSZS:Ce綠色螢光粉具有較佳之發展潛力。
In this study, we used the carbothermal reduction(CTR) method to produce Ca3Sc2Si3O12:Ce3+ (CSS:Ce). The CSS:Ce by CTR method was compared with that fired in air to analyze whether the optical performance could be improved or not. And then we used CTR method and added Zn2+ ions into CSS:Ce to substitute for Sc3+. We could get the Ca2.955Sc2-(2/3)xZnxSi3O12:Ce3+ (x=0~0.5) (CSZS:Ce) green phosphors. Finally, compared with Ca2.955Sc2-yAlySi3O12:Ce3+ (y=0~0.4) (CSAS:Ce), which were other CSS:Ce researches in our lab, we could analyze the relationship between the ion doping and thermal stability of optical properties.
The results show the three highlights. Firstly, the luminescent intensity of CSS:Ce by CTR method was better than that fired in air. This was attributed that more Ce3+ ions were doped into the structure, which was proved by X-ray absorption spectrum and Raman scattering spectrum. Secondly, by CTR method, Zn2+ doping could effectively improve the optical performance and thermal stability. The chemical formula were Ca2.955Sc2-(2/3)xZnxSi3O12:Ce3+ (x=0~0.5). When Zn2+ doping content (x) was 0.3, the optical performance was the best. From XRD patterns, Raman scattering spectra, and FTIR spectra, it was observed that residual Sc2O3 content decreased. However, when x (Zn2+ doping content) was more than 0.2, the new impurity phase, Ca3Si3O9 (Pseudowollastonite, psW), was produced. Impurity phase could weaken the optical performance. Additionally, SEM showed Zn2+ doping brought about liquid phase sintering. Liquid phase sintering could cause samples to diffuse more uniformly in firing process and effectively improve optical performace. Thirdly, compared with Ca2.955Sc2-yAlySi3O12:Ce3+ (CSAS:Ce), which are other CSS:Ce researches in our lab, Zn2+ doping could enhance the thermal stability but Al3+ doping could not. This was attributed that Al3+ doping would decrease the activation energy of thermal quenching behavior and increase the energy of effective phonons. Therefore, the thermal stability of CSZS:Ce were better than CSAS:Ce.
The above-mentioned results shows the CSZS:Ce phosphors are very excellent material as color conversion material for high power LED
摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 論文架構 2
第二章 理論基礎與文獻回顧 4
2-1 螢光粉發光機制及原理 4
2-1-1 發光機制 4
2-1-2 發光原理 5
2-2 螢光粉體之設計 6
2-2-1 主體結構效應 6
2-2-2 活化劑之選擇 7
2-2-2-1 過渡金屬離子 7
2-2-2-2 稀土離子 7
2-2-2-3 結構缺陷 8
2-2-3 抑制劑的避免 9
2-3影響發光波長之因素 9
2-3-1 組態座標模型(configurational coordinate diagram) 9
2-3-2 史托克位移 (Stokes shift) 10
2-3-3 電子雲膨脹效應 (Nephelauxetic effect) 10
2-3-4 晶格場效應 11
2-4 影響發光強度之因素 13
2-4-1 濃度淬滅 13
2-4-2 毒劑效應 13
2-4-3 敏化劑(sensitizer)的增添 14
2-4-4 溫度對發光強度之影響 14
2-4-4-1 熱淬滅性質 14
2-4-4-2 磁偶極矩與電偶極矩之間的轉變 15
2-4-5 高Huang-Rhys耦合常數的主體 15
2-4-6 表面缺陷 16
2-4-7 雜相殘留 16
2-5 分析儀器之原理介紹及其應用 16
2-5-1 X光繞射儀(X-ray diffractometer spectrometer, XRD) 16
2-5-2熱差/熱重分析儀(Differential Thermal Analysis/Thermogravimetric, DTA/TG) 17
2-5-3 傅利葉轉換紅外線光譜儀(Fourier Transform Infrared, FTIR) 17
2-5-4 拉曼光譜儀 (Micro-Raman) 18
2-5-5 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 19
2-5-6 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 21
2-5-7 螢光光譜量測 21
2-5-8 時間解析光激螢光(TRPL) 22
2-5-9 熱淬滅性質之量測(Thermal quenching behavior) 23
2-6 Ca3Sc2Si3O12:Ce3+晶體結構及發光性質 23
2-6-1 Ca3Sc2Si3O12:Ce3+晶體結構介紹 23
2-6-2 Ca3Sc2Si3O12:Ce3+發光性質介紹 24
2-7 陳引幹教授實驗室目前關於螢光粉之相關研究 24
2-7-1 YAG:Ce黃色螢光粉之研究 24
2-7-1-1 藉著共沉法(co-precipitation)及添加HMDS製YAG:Ce之奈米粉末研究 24
2-7-1-2添加不同濃度的HMDS製備YAG:Ce之奈米粉末研究 25
2-7-1-3 YAG:Ce螢光體披覆SiO2之研究 25
2-7-1-4 摻雜Si置入YAG:Ce螢光體之研究 25
2-7-1-5 以溶熱法製備YAG:Ce奈米螢光粉體之研究 25
2-7-2 Ca3Sc2Si3O12:Ce3+綠色螢光粉之研究 26
2-7-2-1 固態法製備Ca2.955Sc2-YAlYSi3O12:Ce0.03 (y=0~0.4)之研究 26
2-7-2-2 固態法製備Ca2.955Sc2-(2/3)xZnxSi3O12:Ce0.03 (x=0~0.5)之研究 26
2-7-3 硫屬螢光粉之研究 26
2-7-3-1 ZnS:Cu, Cl 26
2-7-3-2 ZnS:Cu, Mn, Cl 27
2-7-3-3添加ZnS奈米粒子之ZnS:Cu, Mn, Cl 27
2-7-3-4 Zn1-xCdxS :Cu, Cl 27
2-7-3-5 ZnS/ZnO:Mn螢光薄膜 27
2-7-4 CaTiO3:Eu3+, Li+紅色螢光粉之研究 27
2-7-5 Ca3Y2Si3O12摻雜(Re3+)螢光粉之研究 28
2-7-5-1 Ca3Y2Si3O12:Eu3+紅色螢光粉之研究 28
2-7-5-2 Ca3Y2Si3O12:Tb3+, Ce3+綠色螢光粉之研究 28
2-7-5-3 Ca3Y2Si3O12:Dy3+, Ce3+白色螢光粉之研究 28
2-7-6 Y2BaZnO5:Eu3+, A+ (A = K, Na, Li)紅色螢光粉之研究 28
2-8 Ca3Sc2Si3O12:Ce3+的文獻回顧 28
第三章 實驗方法及步驟 47
3-1 實驗藥品 47
3-2 實驗步驟 47
3-2-1以熱碳還原法製備Ca2.955Sc2Si3O12:Ce3+綠色螢光粉 48
3-2-2 Ca2.955(Sc2-(2/3)XZnX)Si3O12:Ce3+之結構與光致發光性質 48
3-2-3 Zn2+及Al3+的摻雜發光之熱穩定性之影響 49
3-3儀器設備 49
第四章 結果與討論 53
4-1熱碳還原法對於Ca2.955Sc2Si3O12:Ce3+之結構及光致發光性質探討 53
4-1-1 螢光粉粉體性質 53
4-1-2 光致發光性質 55
4-2 以熱碳還原法製備Ca2.955Sc2-(2/3)xZnxSi3O12:Ce0.03之結構及光學分析 62
4-2-1 熱差/熱重分析(Differential Thermal Analysis/Thermogravimetric, DTA/TG) 62
4-2-2 XRD結晶相分析與晶格常數比較 63
4-2-3傅利葉轉換紅外線光譜 (Fourier Transform Infrared, FTIR spectrum) 65
4-2-4 拉曼散射光譜分析(Raman Scattering Spectrum) 66
4-2-5 SEM分析 69
4-2-6光致發光性質(Photoluminescence property) 70
4-2-7 時間解析光激螢光光譜(Time-Resolved Photoluminescence Spectrum ,TRPL) 73
4-2-8 溫度與發光性質之關係(Temperature-dependent luminescence) 74
4-3 Zn2+及Al3+摻雜對發光性質之熱穩定性的影響 88
第五章 結論 94
參考文獻 96
[1] Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijima,“Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting diodes,J. Electrochem. Soc., 154[1] J35-J38 (2007).
[2] Y. Shimomura, T. Kurushima, M. Shigeiwa, and N. Kijima,“Redshift of green photoluminescence of Ca3Sc2Si3O12:Ce3+ phosphor by charge compensatory additives,J. Electrochem. Soc., 155[2] J45-J49 (2008).
[3] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,J. Phys. D. Appl. Phys., 44[7] (2011).
[4] Y. F. Wu, Y. H. Chan, Y. T. Nien, and I. G. Chen,“Crystal structure and optical performance of Al3+ and Ce3+ codoped Ca3Sc2Si3O12 green phosphors for white LEDs,J. Am. Ceram. Soc., 96[1] 234-40 (2013).
[5] J. G. Sole, L. E. Bausa, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, New York (2008).
[6] 粘永堂,“摻雜過渡元素之硫屬螢光粉的合成、微結構與發光特性研究, 國立成功大學材料科學及工程學系博士論文 (民國96年).
[7] U. Lafont, H. van Zeijl, and S. van der Zwaag,“Increasing the reliability of solid state lighting systems via self-healing approaches: A review,Microelectron. Reliab., 52[1] 71-89 (2012).
[8] Y. Liu, W. Zhuang, Y. Hu, W. Gao, and J. Hao,“Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications,J. Alloy. Compd., 504[2],488-92 (2010).
[9] B. Kolesov and C. Geiger,“Raman spectra of silicate garnets,Phys. Chem. Miner, 25[2] 142-51 (1998).
[10] Quantum yield measurement of sodium salicylate, Hitachi High Technologies, Inc, Japan (2010).
[11] M. Bettinelli, A. Speghini, F. Piccinelli, A. N. C. Neto, and O. L. Malta,“Luminescence spectroscopy of Eu3+ in Ca3Sc2Si3O12,J. Lumin., 131[5] 1026-28 (2011).
[12] Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang,“Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications, J. Mater. Chem, 21[41] 16379-84 (2011).
[13] Y. Liu, J. Hao, W. Zhuang, and Y. Hu,“Structural and luminescent properties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for solid-state lighting,J. Phys. D. Appl. Phys, 42[24] (2009).
[14] Y. T. Nien, Y. L. Chen, I. G. Chen, C. S. Hwang, Y. K. Su, S. J. Chang, and F. S. Juang,“Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment,Mater. Chem. Phys., 93[1] 79-83 (2005).
[15] Y. T. Nien, K. M. Chen, I. G. Chen, and T. Y. Lin,“Photoluminescence enhancement of Y3Al5O12:Ce nanoparticles using HMDS,J. Am. Ceram. Soc., 91[11] 3599-602 (2008).
[16] Y.T. Nien, K.M. Chen, and I. G. Chen,“Improved photoluminescence of Y3Al5O12:Ce nanoparticles by silica coating,J. Am. Ceram. Soc.,93[6],1688-91 (2010).
[17] Y. T. Nien, T. H. Lu, V. R. Bandi, and I. G. Chen,“Microstructure and photoluminescence characterizations of Y3Al5O12:Ce phosphor ceramics sintered with silica,J. Am. Ceram. Soc., 95[4],1378-82 (2012).
[18] 陳琨明,“釔鋁石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究,國立成功大學材料科學及工程學系碩士論文 (民國96年)
[19] 詹雅涵, Ca3Sc2-xMxSi3O12:Ce3+ (M = Y3+, Al3+, Zn2+)螢光粉體結構與光致發光性質之研究,國立成功大學材料科學及工程學系碩士論文 (民國100年).
[20] 吳昀芳,“應用於白光發光二極體之紅色鈦酸鈣與綠色鈣鈧矽氧螢光粉研究,國立成功大學材料科學及工程學系博士論文 (民國102年).
[21] Y. F. Wu, Y. T. Nien, Y. J. Wang, and I. G. Chen,“Enhancement of photoluminescence and color purity of CaTiO3:Eu phosphor by Li doping,J. Am. Ceram. Soc., 95[4],1360-66 (2012).
[22] V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen,“Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,J. Am. Ceram. Soc., 92[12] 2953-56 (2009).
[23] B. V. Rao, Y. T. Nien, W. S. Hwang, and I. G. Chen,“An investigation on luminescence and energy transfer of Ce3+ and Tb3+ in Ca3Y2Si3O12 phosphors,J. Electrochem. Soc., 156[11] J338-J41 (2009).
[24] V. R. Bandi, Y. T. Nien, and I. G. Chen,“Enhancement of white light emission from novel Ca3Y2Si3O12:Dy3+ phosphors with Ce3+ ion codoping,J. Appl. Phys., 108[2] (2010).
[25] 劉冠麟,“添加鹼金族碳酸物製備釔鋇鋅氧螢光粉及其發光性質之研究,國立成功大學材料科學及工程學系碩士論文 (民國97年).
[26] Y. Suzuki, M. Kakihana, Y. Shimomura, and N. Kijima,“Synthesis of Ca3Sc2Si3O12:Ce3+ phosphor by hydrothermal Si alkoxide gelation,J. Mater. Sci., 43[7],2213-16 (2008).
[27] Y. Chen, M. Gong, and K. W. Cheah,“Effects of fluxes on the synthesis of Ca3Sc2Si3O12:Ce3+ green phosphors for white light-emitting diodes,Mater. Sci. Eng. B-Adv., 166[1] 24-27 (2010).
[28] Y. Liu, W. Zhuang, Y. Hu, and W. Gao,“Improved photoluminescence of green-emitting phosphor Ca3Sc2Si3O12:Ce3+ for white light emitting diodes,J. Rare. Earth., 28[2] 181-84 (2010).
[29] Y. Chen, K. W. Cheah, and M. Gong,“Low thermal quenching and high-efficiency Ce3+, Tb3+-co-doped Ca3Sc2Si3O12 green phosphor for white light-emitting diodes,J. Lumin., 131[8] 1589-93 (2011).
[30] Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang,“Generation of broadband emission by incorporating N3- into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs,J. Mater. Chem., 21[17] 6354-58 (2011).
[31] Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang,“Crystal structure and luminescence properties of Lu3+ and Mg2+ incorporated silicate garnet Ca3-(x+0.06)LuxCe0.06(Sc2-yMgy)Si3O12,J. Lumin., 132[5] 1257-60 (2012).
[32] R. C. Ropp,“Luminescence and the Solid State,Elsevier, Amsterdam (1991).
[33] Y. C. Fang, P. C. Kao, and S. Y. Chu,“Effect of Si-N incorporation on color-tunable CaEuAl2-xSixO4-xNx phosphors: luminescence, thermal stability, and its application,J. Electrochem. Soc., 158[4] J120-J24 (2011).
[34] http://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/
[35] B. A. Averill, General Chemistry: Principles, Patterns, and Applications, v. 1.0M, Pearson Benjamin Cummings, San Francisco (2006).
[36] Sanchonx,“Interferometer for FTIR,(2011).
[37] Moxfyre,“Molecular energy levels and Raman effect,(2009).
[38] http://www.apsensing.com/service-support/training/.
[39] 張仕穎,“利用同步輻射研究(Zn,Cr)O薄膜電子結構,國立高雄大學應用物理學系碩士論文 (民國99年).
[40] F-7000 service training, Hitachi High Technologies, Inc, Japan (2008).
[41] http://www.oesemi.ios.ntou.edu.tw/
[42] 呂東原,“二六族化合物半導體量子結構之光學特性研究,國立台灣海洋大學光電科學研究所碩士論文 (民國94年).
[43] http://www.britannica.com/EBchecked/media/2446/The-structure-of-garnet
[44] J. Barker, M. Y. Saidi, and J. L. Swoyer,“Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method,Electrochem. Solid. St., 6[3] A53-A55 (2003).
[45] T. Suzuki, I. Kosacki, H. U. Anderson, and P. Colomban,“Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films,J. Am. Ceram. Soc., 84[9] 2007-14 (2001).
[46] V. Grover, A. Banerji, P. Sengupta, and A. K. Tyagi,“Raman, XRD and microscopic investigations on CeO2-Lu2O3 and CeO2-Sc2O3 systems: A sub-solidus phase evolution study,J. Solid. State. Chem., 181[8] 1930-35 (2008).
[47] F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli,“Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,J. Rare. Earth., 27[4] 555-59 (2009).
[48] P. S. Chum and K. W. Swogger,“Olefin polymer technologies—history and recent progress at the dow chemical company,Prog. Polym. Sci., 33[8] 797-819 (2008).
[49] K. Higashi, K. Sonoda, H. Ono, S. Sameshima, and Y. Hirata,“Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method,J. Mater. Res., 14[03] 957-67 (1999).
[50] F. Wilburn, J. Sharp, D. Tinsley, and R. McIntosh,“The effect of procedural variables on TG, DTG and DTA curves of calcium carbonate,J. Therm. Anal. Calorm., 37[9] 2003-19 (1991).
[51] D. Uhlich, J. Plewa, and T. Jüstel,“Phase formation and characterization of Sr3Y2Ge3O12, Sr3In2Ge3O12, and Ca3Ga2Ge3O12 doped by trivalent europium,J. Lumin., 128[10] 1649-54 (2008).
[52] C. Chiang, M. Tsai, and M. H. Hon,“Synthesis and photoluminescent properties of Ce3+ doped terbium aluminum garnet phosphors,J. Alloy. Compd., 431[1] 298-302 (2007).
[53] Z. Jiang, Y. Wang, and L. Wang,“Enhanced Yellow-to-Orange Emission of Si-Doped Mg3Y2Ge3O12:Ce3+ Garnet Phosphors for Warm White Light-Emitting Diodes, J. Electrochem. Soc., 157[5] J155-J58 (2010).
[54] D. Aza,“Morphological and structural study of pseudowollastonite implants in bone,J. Microsc., 197[1] 60-67 (2001).
[55] S. R. Stock and B. D. Cullity, Elements of X-Ray Diffraction Third Edition, Prentice Hall, Upper Saddle River, NJ (2001).
[56] G. Parthasarathy, V. Balaram, and R. Srinivasan,“Characterization of green garnets from an Archean calc-silicate rock, Bandihalli, Karnataka, India: evidence for a continuous solid solution between uvarovite and grandite,J. Asian. Earth. Sci., 17[3] 345-52 (1999).
[57] P. Makreski, T. Runčevski, and G. Jovanovski,“Minerals from Macedonia. XXVI. Characterization and spectra–structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy,J. Raman. Spectrosc., 42[1] 72-77 (2011).
[58] J. G. Li, T. Ikegami, and T. Mori,“Fabrication of transparent, sintered Sc2O3 ceramics,J. Am. Ceram. Soc., 88[4],817-21 (2005).
[59] J. Roman, S. Padilla, and M. Vallet-Regí,“Sol-gel glasses as precursors of bioactive glass ceramics,Chem. Mater., 15[3] 798-806 (2003).
[60] P. N. De Aza, A. H. De Aza, A. Herrera, F. A. Lopez-Prats, and P. Pena,“Influence of sterilization techniques on the in vitro bioactivity of pseudowollastonite,J. Am. Ceram. Soc., 89[8] 2619-24 (2006).
[61] 黃國瑋, CuO對銻摻雜氧化鍚之燒結緻密化與導電性質影響, 國立成功大學材料科學及工程學系碩士論文 (民國93年).
[62] I. H. Jung, S. A. Decterov, and A. D. Pelton,“Critical thermodynamic evaluation and optimization of the CaO-MgO-SiO2 system,J. Eur. Ceram. Soc., 25[4] 313-33 (2005).
[63] V. Bachmann, C. Ronda, and A. Meijerink,“Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,Chem. Mater., 21[10] 2077-84 (2009).
[64] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park,“Temperature-dependent emission spectra of M2SiO4:Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs,Solid. State. Commun., 133[7] 445-48 (2005).
[65] R. D. Shannon and C. T. Prewitt,“EFFECTIVE IONIC RADII IN OXIDES AND FLUORIDES,Acta. Crystall. B-Stru., B 25 925-& (1969).
[66] R. D. Shannon and C. T. Prewitt,“REVISED VALUES OF EFFECTIVE IONIC RADII, Acta. Crystall. B-Stru., B 26 1046-& (1970).
[67] L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. Li, and X. Sun,“Temperature dependent luminescence of yellow-Emitting alpha-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,J. Am. Ceram. Soc., 92[11] 2668-73 (2009).
[68] S. Bhushan and M. V. Chukichev,“Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,Journal of Materials Science Letters, 7[4] 319-21 (1988).
[69] R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo,“2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,Appl.Phys.Lett.,90[19] (2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top