(3.236.222.124) 您好!臺灣時間:2021/05/10 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黄世兄
研究生(外文):Hoang TheHuynh
論文名稱:PACE奈米級衛星姿態判定與控制系統之實現
論文名稱(外文):Implementation of Attitude Determination and Control System into PACE Nanosatellite
指導教授:苗君易苗君易引用關係
指導教授(外文):Jiun-Jih Miau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:92
外文關鍵詞:PACEADCSImplementationSILPIL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文描述微衛星PACE之姿態判定與控制系統的實現。PACE衛星是國立成功大學開發的2U立方衛星,重量小於兩公斤,體積為100 mm x 100 mm x 227 mm。PACE衛星有兩個主要的任務,分別為進行姿態控制的實驗與驗證酬載的功能性以期能做為未來小型衛星的裝備。姿態判定與控制次系統的目標為題提供主動控制,例如減速控制、姿態判定以及姿態穩定。更重要的是PACE衛星的任務操作允許使用者上傳ADCS演算法,如此一來演算法便可在太空中被驗證。為了要驗證嵌入式ADCS飛行軟體,發展了程序迴路模擬(Processor-in-the-loop)平台,此模擬由許多模型構成,像是太空環境、軌道動態、姿態動態、感測器與制動器模型…等、這些模型都在Labview軟體裡模擬。及時控制器CompactRIO用來做為模擬器,執行Labview軟體模擬各個模型並提供即時的介面與ADCS模組連接。而所有的演算法與ADCS模組也都已實現並驗證。
The thesis describes the implementation of an active attitude determination and control system (ADCS) for the PACE nanosatellite. PACE satellite is a 2U cubesat under developed at National Cheng Kung University (NCKU) with a mass less than 2 kg and dimension of 100 mm x 100 mm x 227 mm. Two main missions of PACE satellite are to conduct attitude control experiments and to demonstrate the technology to be used in future missions for small satellite. The ADCS sub-system aims to provide functions for active attitude control such as detumbling, determination and stabilization. More importantly, the operation of the PACE mission will allow users to upload ADCS algorithms so that the algorithm can be tested and verified in space. In order to fully verify the embedded ADCS software, a verification system and a Processor-in-the-loop (PIL) simulation are developed. The simulation models consisting of space environment, orbit dynamic, attitude dynamic, and sensor/actuator are modeled using Labview software. A CompactRIO real-time controller is adopted as a simulator to execute simulation models into Labview and also to provide real-time interface with ADCS board. For the results, algorithms and functions for ADCS software are both implemented and verified. The results are met the requirements for ADCS.
Abstract II
Acknowledgement III
Contents IV
List of Figures VI
List of Tables X
Chapter 1. Introduction 1
1.1. Background 1
1.2. PACE Nanosatellite 2
1.3. Space Segment 3
1.4. Ground Segment 7
1.5. Launch Segment 8
1.6. Hardware of ADCS Development 8
1.7. Requirements for ADCS 13
1.8. Thesis Outline 14
Chapter 2. Fundamental of ADCS 15
2.1. Euler Angles and Quaternion 15
2.2. Coordinate System 17
2.3. Equation of Motion 22
2.4. Orbit Propagator 25
2.5. The Space Environment 29
Chapter 3. The ADCS of PACE 38
3.1. Attitude Control Strategy 38
3.2. Detumbling 39
3.3. Attitude Determination 40
3.4. Attitude Control 44
3.5. Summary of Control Laws 46
3.6. ADCS Implementation 47
3.7. Simulation 48
3.8. Onboard Implementation 52
3.9. Verification 61
Chapter 4. Result 66
4.1. ADCS Software 67
4.2. Detumbling 70
4.3. Attitude Determination 73
4.4. Attitude Control 80
Chapter 5. Conclusion 87
5.1. Discussion of Results 87
5.2. Future Work 89
Appendix 90
Reference 91
[1]J.J. Miau, J.C. Juang. A University Nano-Satellite Program: PACESAT. 5th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 2005.
[2]J.J. Miau, J.C. Juang, A. Scholz. In-Orbit Testing of Attitude Control Laws on the PACE Nanosatellite Platform. 4th European CubeSat Symposium, Belgium, 2012.
[3]A. Scholz. Technical Requirements Specification. System Engineering Document, PACE lab, 2012.
[4]A. Scholz, J.J. Miau, J.C. Juang, C.C. Ker, B.C. Chen, H.L. Chiu, J.K. Tu. Development of Digital CMOS Sun Sensors at National Cheng Kung University. UNIVERSAT, Chung Li, Taiwan, 2007.
[5]A. Scholz. Implementation of Advanced Determination and Control Techniques into a Nanosatellite. National Cheng Kung University, 2008.
[6]C.C. Yen. Design, Implementation and Verification of Microsatellite Attitude Determination and Control Subsystem. National Cheng Kung University, 2011.
[7]Y.M. Suen, Design and Simulation of a Picosatellite Attitude Control Subsystem, National Cheng Kung University, 2003.
[8]S. Lee. CubeSat Design Specification. California Polytechnic State University, 2008.
[9]R. Nugent, R. Munakata, A. Chin. The CubeSat: The Picosatellite Standard for Research and Education. American Institute of Aeronautics and Astronautics, 2008.
[10]R. Wertz. Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 1978.
[11]M.D. Shuster, S.D. Oh. Three-Axis Attitude Determination from Vector Observations. Journal of Guidance and Control, 1981.
[12]M.D. Shuster. The Quest for Better Attitudes. The Journal of the Astronautical Sciences, 2006.
[13]M.D. Shuster. Journal of Guidance, Control and Dynamics. Filter QUEST or REQUEST, 2008.
[14]Two-Line Element Sets. The Center for Space Standards & Innovation. URL: http://www.celestrak.com/NORAD/elements/.
[15]O. Reda, A. Andreas. Solar Position Algorithm for Solar Position Algorithm for Solar Radiation Applications. NREL Report No. TP-560-34302, 2008.
[16]P. Vinti. Orbital and Celestial Mechanics. American Institute of Aeronautics & Astronautics. 1998.
[17]International Geomagnetic Reference Field. IAGA Division V-MOD Geomagnetic Field, 2010.
[18]J. Miller. SUN'S UP. The Radio Amateur Satellite Corporation, 1985.
[19]N.S. Takahashi, A.L.S.M. de Souza, M.C. Tosin. Execution Time of QUEST Algorithm in Embedded Processors. 3rd CTA-DLR Workshop on Data Analysis & Flight Control, Brazil, 2009.
[20]C. Hall. Spacecraft Dynamics and Control. Virginia Tech, 2003.
[21]D. Choukroun. Novel Methods for Attitude Determination Using Vector Observations. Israel Institute of Technology, 2003.
[22]N.K. Ure, Y.B. Kaya, G. Inalhan. The development of a Software and Hardware-in-the-Loop Test System for ITU-PSAT II Nanosatellite ADCS. Aerospace Conference, IEEE, 2011.
[23]M.J. Sidi. Spacecraft Dynamics and Control. Cambridge University Press, New York, 1997.
[24] B. Andresen, C. GrØn, R. H. Knudsen, C. Nielsen, K.K SØrensen, D. Taagaard. Attitude Control System for AAUSAT-II. Aalborg University, Denmark, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔