跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭世奇
研究生(外文):Shih-ChiHsiao
論文名稱:利用空間推估演算法校正資料庫並計算誤差界限於即時室內定位系統
論文名稱(外文):Database Calibration using Spatial Interpolation Methods and the Position Error Bounding for Real Time Indoor Positioning System
指導教授:詹劭勳
指導教授(外文):Shau-Shiun Jan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:62
中文關鍵詞:無線感測網路室內定位空間推估定位誤差界限
外文關鍵詞:Wireless Sensor Networkindoor positioning systemspatial interpolationconfidence bound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
近年來,社會大眾越來越慣於使用區域性資訊服務(Location-based service)與相關應用服務,隨著微機電技術的日趨發達以及行動通訊裝置的多元化發展,對於室內空間定位服務的需要也應運而生。因此,成功大學通訊與導航實驗室開發出一套名為「即時室內定位系統」(Real Time Indoor Positioning System, RTIPS)的室內定位系統測試平台,使用虛擬實境概念並且整合了自行開發的地理資訊系統,是一套能夠提供使用者即時性位置感知服務的室內定位系統。然而,此系統的開發背景環境空間為航太系系館的一間教室,這對於將來的商業或醫療應用需要將開發的背景空間擴大。另一方面,由於定位演算法的需要,隨著空間擴大,對於定位所需要的資料庫蒐集,也會耗費更多的時間與人力成本,為使本室內定位系統能夠保持原有定位表現與即時性,本論文在資料庫擴建的工作上做更詳盡的研究。

因此,本論文為了讓定位系統能更廣泛的被應用與更高的可用性,將重心放在資料庫演算法的擴建上,利用兩種空間推估演算法來擴建並校正資料庫,兩種演算法分別為克利金(Kriging)演算法與反距加權(Inverse Distance Weighted)演算法。除此之外,在克利金法的推估演算過程中,以往在計算特殊參數時,必須針對不同的感測器去一一計算其參數,為了能更有效率地決定這些參數,本文建構一套完整的程序,而且對於不同的室內環境,能夠更快速根據實驗所蒐集的資料庫,準確的估算出參數並建立適當的理論模型去近似實驗空間訊號接收情形,有別於以往利用試誤法來決定參數的方式,節省了人力以及時間成本。另外,為了能提供不同室內空間的使用者使用此定位系統,我們也更進一步研究以找出在不同的實驗空間範圍中最適當的感測器數目。最後,為使此室內定位系統更為完善,本論文將使用者的定位結果誤差界限(Position Error Bound)定義並計算出來,對於室內定位系統的使用者的生命安全,提供了更大的保障與更完整的室內定位服務。

Nowadays, there is a great need for real time indoor positioning systems of mobile users, since the well-developed MEMS technology and there are many kinds of mobile communications devices. It seems that Location Based Service is getting popular to people. Therefore, a low cost and low power consumption Real Time Indoor Positioning System (RTIPS) that is integrated with a self-developed indoor Geographic Information System (GIS) has been developed by Hsu, et al of National Cheng Kung University (NCKU). In order to make RTIPS more flexible to applications, this work tries to implement RTIPS to a larger indoor environment. Once the application location is larger, the challenge we meet is the positioning database calibration because the costs related to time and labor for calibrating a wide area are much higher than those for a smaller site. The purpose of this thesis is to achieve a more available system for an indoor positioning system; thus, this thesis extends the study on the database calibration algorithms of a fingerprint positioning algorithm.

In the database calibration stage, the collected signal quality might be affected if the positioning space is geometrically complicated. Thus, the signal transmission paths will be more complicated as well. As a result, we place an emphasis on utilizing two spatial interpolation methods including: 1) the Inverse Distance Weighting (IDW) method; 2) the Kriging method, that are used to yield a denser database from the raw data measurements. Additionally, another purpose of this thesis is to establish a procedure to determine the parameters of the theoretical models since most researches mentioned the parameters regarding as the “sill” and “range” estimation of a semi-variogram that usually depend on a trial and error approach, which consumes a great deal of time. We also conduct a study to investigate the optimal sensor numbers for different indoor environments for users. Finally, in order to make this system more complete, we determine the confidence bound of the positioning result by using the estimation variance provided by the Kriging method through the interpolation process. Moreover, we modify the estimation variance to define and calculate the confidence bound for indoor positioning, to provide users with a more safe indoor positioning service.

ABSTRACT III
ACKNOWLEDGEMENTS V
List of Content VI
List of Tables VIII
List of Figures IX
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Previous Work 2
1.3 Objectives 4
1.4 Thesis Organization 5
Chapter 2 SPATIAL INTERPOLATION METHODS 6
2.1 Introduction 6
2.2 The Inverse Distance Weighting Algorithm 8
2.3 The Kringing Algorithm 10
2.4 Summary 18
Chapter 3 INDOOR POSITIONING ALGORITHM 19
3.1 Fingerprint Method 19
3.2 The K-Weighted Nearest Neighbors Algorithm 21
3.3 Error Bound 23
3.4 Summary 23
Chapter 4 EXPERIMENT RESULTS AND ANALYSIS 25
4.1 Experiment Setup 25
4.2 Database Calibration 30
4.3 Positioning Results 45
4.4 Further Work 51
4.5 Summary 58
Chapter 5 CONCLUSIONS AND FUTURE WORK 59
5.1 Conclusions 59
5.2 Future Work 60
References 61

[1]Tsai, W.M., Hsu, L.T. and Jan, S.S., “The Development of an Indoor Location Based Service Test Bed Proceedings of ION GNSS, 2009.
[2]Hsu, L.T., Tsai, W.M. and Jan, S.S., “Development of a Real Time Indoor Location Based Service Test Bed Proceeding of ION GNSS, 2010.
[3]Jan, S.S., Hsu, L.T. and Tsai, W.M., Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network Sensors, 2010
[4]Li, B., Wang, Y., Lee, H.K., Dempster, A. and Rizos, C., “A New Method for Yielding a Database of Location Fingerprints in WLAN IEE Proc.-Commun, 2005.
[5]Zimmerman, D., Pavlik, C., Ruggles, A. and Armstrong, M.P., “An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting, Math. Geology, 1999.
[6]Cressie, N., Statistics for spatial data, JohnWiley & Sons, 1993.
[7]Haining, R. P., Spatial data analysis: theory and practice, Cambridge University Press, 2003.
[8]Goovaerts, P., Geostatistics for natural resources evaluation, Oxford University Press, 1997.
[9]Kitanidis, P. K., Introduction to geostatistics: applications to hydrogeology, Oxford University Press, 1990.
[10]Jang, J.S.R., Sun, C.T., Mizutani, E., Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice Hall, 1997.
[11]Jian, X., Olea, R.A., Yu, Y.S., “Semivariogram Modeling by Weighted Least Squares Computers & Geoscences, 1996.
[12]Waller, L.A., Gotway, C.A., Applied spatial statistics for public health data, Wiley-Interscience, 2004.
[13]Davis, J.C., Statistics and Data Analysis in Geology,3rd. edition, John Wiley & Sons, 2002
[14]Li, J., Heap, A.D., “A Review of Spatial Interpolation Methods for Environmental Scientists Geoscience Australia Record, 2008
[15]Matheron, G. (1963b) “Principles of geostatistics, Economic Geol., v. 58, pp. 1246-1266.
[16]S. A. Dudani, The distance-weighted k-Nearest Neighbor Rule, IEEE Transactions on Systems, Man and Cybernetics, Vol. 6, No. 4, 1976, pp. 325-327.
[17]Juan Blanch, “Using Kriging To Bound Satellite Ranging Errors Due to Ionosphere, Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University, 2003.
[18]Juan Blanch, “An Ionosphere Estimation Algorithm for WAAS Based on Kriging, Proceedings of ION GPS, 2002.
[19]T. Walter, P. Enge, and A. J. Hansen, “A proposed integrity equation for WAAS MOPS, Proceedings of the ION GPS-97, 1997.
[20]Oday Haddad, “WAAS Integrity Investigation for Canadian Latitudes, Master Thesis, Department of Geomatics Engineering, Calgary University, 2011
[21]D. B. Jourdan , D. Dardari and M. Z. Win, Position error bound for UWB localization in dense cluttered environments, IEEE Trans. Aerosp. Electron. Syst., vol. 44, pp. 613-628, 2008

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊