跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張其峰
研究生(外文):Chi-FengChang
論文名稱:以軟微影技術製備含有微奈米結構之矽晶太陽能電池
論文名稱(外文):Fabrication of Nanostructure on Crystalline Silicon Solar Cell by Soft Lithography
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:矽晶太陽能電池聚苯乙烯奈米球軟微影技術
外文關鍵詞:silicon solar cellpolystyrene nanospheressoft lithography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩大部份,第一部份為矽晶太陽能電池製程之改善,針對不同熱擴散溫度及時間與銀膠網印燒結的溫度及時間變化,將太陽能電池製程做成最佳化之參數。第二部份是在矽晶太陽能電池表面加上一層含有聚光結構的透明薄膜,薄膜製作之材料採用具有自組裝特性的聚苯乙烯奈米球以及含有規則陣列的結構等等。奈米球是經由旋轉塗佈機旋塗在玻璃基板上,以軟微影技術使用具有透光性的高分子材質PDMS翻製不同尺寸與結構的透明薄膜,最後將此薄膜黏貼在電池表面上,並藉由光進入含有微奈米結構的薄膜,使光反射下降進而提升短路電流(Isc),實驗測試將140nm、430nm、820nm和2um的奈米球及規則陣列的結構,經由PDMS翻製成透明薄膜後當作聚光層,黏貼於電池表面。
最終由量測分析結果得知開路電壓(Voc)維持在0.53 V,填充係數(FF) 維持在0.70~0.71,短路電流密度(Jsc)最高可由22.28mA/cm2增加到24.25mA/cm2,因此轉換效率亦從8.3%增加至9.1%。
The study has two primary parts. First part is to improvement process of silicon solar cell. Those focus on change different temperature and time for thermal diffusion and sinter silver glue. It made the process of silicon solar cell optimization. The second part is to add the transparent film that it has nanostructure on the surface of silicon solar cells. The transparent film used polystyrene nanospheres that it has self-assembly properties and Hexagonal closed-packed, as well as regulation array structure. The Polystyrene nanospheres used spin coater to spin on a glass substrate. It used a PDMS that is a light-transparent polymer material to fabricate different size and structure of the transparent film by soft lithography. Finally, the silicon solar cell to stuck transparent film that it made light get into the nanostructure film, so that decrease the light-reflection and enhance the short-circuit current (Isc). This study used 140nm, 430nm, 820nm and 2um nanospheres and regulation array structure to make the transparent film by imprint PDMS, and used it stuck on the surface of the solar cell.
The result of measurement shows that the open circuit voltage (Voc) to maintain in 0.53 V, the fill factor (FF) was maintained at 0.70 to 0.71, the short-circuit current density (Jsc) increased from 22.28mA/cm2 to 24.25mA/cm2, therefore conversion efficiency increased from 8.3% to 9.1%.
考試合格簽名頁
摘要
Abstract
致謝
目錄....................................................................................................I
表目錄..............................................................................................V
圖目錄.............................................................................................VI
第一章 太陽能電池序論.................................................................1
1.1前言與研究背景.....................................................................1
1.2太陽能電池原理.....................................................................2
1.3太陽能電池參數介紹與損耗機制.........................................4
1.4太陽能電池基本結構.............................................................8
第二章 軟微影技術應用於微奈米材料.......................................10
2.1奈米材料介紹.......................................................................10
2.2奈米球自組裝機制…...........................................................11
2.3奈米球自組裝技術...............................................................11
2.4軟微影技術...........................................................................13
第三章 實驗製程與量測分析.......................................................15
3.1 太陽能電池製作流程與性能分析......................................15
3.1.1實驗材料及設備............................................................15
3.1.2實驗製程介紹................................................................18
3.1.3太陽能電池元件量測....................................................20
3.2微奈米結構製作與分析.......................................................22
3.2.1實驗材料........................................................................22
3.2.2利用軟微影翻製奈米球狀結構薄膜............................23
3.2.3奈米球應用於電池元件製作流程................................23
3.3不同形狀結構製作與分析...................................................25
3.3.1實驗材料........................................................................25
3.3.2利用軟微影翻製不同形狀結構薄膜............................25
3.4微奈米結構量測...................................................................26
第四章 實驗結果與討論...............................................................27
4.1 太陽能電池製程參數研究.................................................27
4.1.1不同金屬電極比較........................................................27
4.1.2不同熱擴散溫度與時間比較……………….............27
4.2 奈米球各種製程參數研究.................................................28
4.2.1濃度1%w/w之奈米球...................................................28
4.2.2濃度10%w/w之奈米球.................................................30
4.3 PDMS翻製微奈米結構薄膜之表面形貌...........................31
4.3.1 奈米球凹結構薄膜……..............................................31
4.3.2 奈米球凸結構薄膜……..............................................33
4.3.3 不同形狀結構薄膜……..............................................34
4.4微奈米結構薄膜應用於電池表面分析...............................34
4.5全反射、光電轉換效率、外部量子效率分析...................35
4.5.1全反射……....................................................................35
4.5.2外部量子效率……........................................................36
4.5.3光電轉換效率……........................................................36
4.5.4含有微奈米結構電池元件總討論……........................37

第五章 結論...................................................................................39
參考文獻.........................................................................................41
[1]D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys, Vol. 25, 676-677, (1954)
[2]蔡進譯,超高效率太陽電池從愛因斯坦的光電效應談起,物理雙月刊,第二十七卷第五期
[3]P. Doshi, A. Rohatgi, M. Ropp, Z. Chen, D. Ruby, D. L. Meier, “Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing, Solar Energy Materials and Solar Cells, Vol. 41-42, 31-39, (1996)
[4]U. Mohr, R. Leihkauf, K. Jacob, “Phosphorus distribution probles in 100-silicon using a spin-on source at low temperatures, Appl. Phys., Vol. 64, No.1, 77-81, (1997)
[5]P. Doshi and A. Rohatgi, “18% Efficient Silicon Photovoltaic Devices by Rapid Thermal Diffusion and Oxidation, IEEE Transactions on Electron Devices, Vol. 45, No. 8, 1710-1716, (1998)
[6]V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Silicon PV devices based on a single step for doping, anti-reflection and surface passivation, Solar Energy Materials & Solar Cells, Vol. 94, No.12, 2205-2211, (2010)
[7]A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee, A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers, Solar Energy Materials & Solar Cells, Vol. 93, No.8, 1276-1280, (2009)
[8]A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A. Wang, Angle-dependent reflectance measurements on photovoltaic materials and solar cells, Optics Communications, Vol. 172, No. 1-6, 139-151, (1999)
[9]I. Zubel and M. g. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sensors and Actuators A: Physical, Vol. 93, No. 2, 138-147, (2001)
[10]P. Campbell, M. A. Green, High performance light trapping textures for monocrystalline silicon solar cells, Solar Energy Materials and Solar Cells, Vol. 65, No. 1-4, 369-375, (2001)
[11]P. Doshi, G. E. Jellison, Jr., and A. Rohatgi, Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics, Applied Optics, Vol. 36, No. 30, 7826-7837, (1997)
[12]D. S. Ruby, W. L. Wilbanks, C. B. Fieddermann, A Statistical Analysis of the Effect of PECVD Deposition Parameters on Surface and Bulk Recombination in Silicon Solar Cells, IEEE First WCPEC, Vol. 2, No. 5-9, 1335-1338, (1994)
[13]Z. Chen, P. Sana, J. Salami and A. Rohatgi, A Novel and Effective Antireflection Coating PECVD SiO2/SiN for Si Solar Cells, IEEE Transactions on Electron Devices, Vol. 40, No. 6, 1161-1165, (1993)
[14]M. J. Kerr, J. Schmidt and A. Cuevas, J. H. Bultman, Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide, Journal of Applied Physics, Vol. 89, No. 7, 3821-3826, (2001)
[15]T. Saitoh, O. Kamataki and T. Uematsu, Optimization of Antireflection Film Structures for Surface-Passivated Crystalline Silicon Solar Cells, Jpn. J. Appl. Phys., Vol. 33, No.4A, 1809-1813, (1994)
[16]C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée and L. A. Verhoef, Low temperature surface passivation for silicon solar cells, Solar Energy Materials and Solar Cells, Vol. 40, No. 4, 297-345, (1996)
[17]S. Narasimha, A. Rohatgi, and A. W. Weeber, An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cells, IEEE Transactions on Electron Devices, Vol. 46, No. 7, 1363-1370, (1999)
[18]A. Kaminskia, B. Vandellea, A. Favea, J.P. Boyeauxa, Le Quan Namb, R. Monnab, D. Sartib, A. Laugiera, Aluminium BSF in silicon solar cells, Solar Energy Materials and Solar Cells, Vol. 72, 373-379, (2002)
[19]M. Kamp, M. Emmerling, S. Kuhn, A .Forchel, Nanolithography using a 100 kV electron beam lithography system with a Schottky emitter, Journal of Vacuum Science & Technology, Vol. 17, No. 1, 86-89, (1999)
[20]S. Juhl and S. F. Lyuksyutov, Precise formation of nanoscopic dots on polystyrene film using z-lift electrostatic lithography, Applied Physics Letters, Vol. 85, No. 17, 3836-3838, (2004)
[21]E. Miyauchi, H. Arimoto, H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes, Nuclear Instruments and Methods in Physics Research, Vol. 39, No. 1-4, 515-520, (1989)
[22]H. W. Deckman, J. H. Dunsmuir, Natural lithograph, Applied Physics Letters, Vol. 41, No. 4, 377-379, (1982)
[23]F. Jarai-Szabo, S. Astilean and Z. Neda, Understanding Self-Assembled Nanosphere Patterns, Chemical Physics Letters, Vol. 408, No. 4-6, 241-246, (2005)
[24]V.Ng, Y.V.Lee, B.T.Chen and A.O.Adeyeye, Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques, Nanotechnology, Vol. 13, No. 5, 554-558, (2002)
[25]C. D. Dushkin, G. S. Lazarov, S.N. Kotsev, H. Yoshimura and K. Nagayama, Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment, Colloid and Polymer Science, Vol. 277, No. 10, 914-930, (1999)
[26]K. Nagayama, Two-dimensional Self-Assembly of Colloids in Thin Liquid Films, Colloids and Surfaces, Vol. 109, 363-374, (1996)
[27]G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science, Vol. 295, No. 5564, 2418-2421, (2002)
[28]N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir, Vol. 8, No. 12, 3183-3190, (1992)
[29]R. Micheletto, H. Fukuda and M. Ohtsu, A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,, Langmuir, Vol. 11, No. 9, 3333-3336, (1995)
[30]J. C. Hulteen, R. P. van Duyne, Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces, Journal of Vacuum Science and Technology, Vol. 13, No. 3, 1553-1558, (1995)
[31]D. Wang and H. Mohwald, Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating, Advanced Material, Vol. 16, No. 3, 244-247, (2004)
[32]Y. Xia, X. M. Zhao, G. M. Whitesides, Pattern transfer: Self-assembled monolayers as ultrathin resists, Microelectronic Engineering, Vol. 32, NO. 1-4, 255-268, (1996)
[33]Y. Xia, and G. M. Whitesides, Soft Lithography, Angew. Chem. Int, Vol. 37, 550-575, (1998).
[34]H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres, Langmuir, Vol. 22, No.17, 7358-7363, (2006)
[35]Y. H. Kang, S. S. Ohb, Y. S. Kim, C. G. Choi, Fabrication of antireflection nanostructures by hybrid nano-patterning lithography, Microelectronic Engineering, Vol. 87, NO. 2, 125-128, (2010)
[36]X. Y. Ling, C. Acikgoz, I. Y. Phang, M. A. Hempenius, D. N. Reinhoudt, G. J. Vancso and J. Huskens, 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask, Nanoscale, Vol. 2, 1455-1460, (2010)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top