跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董恒志
研究生(外文):Heng-ChihTung
論文名稱:Michaelis-Menten與相關模型最適設計探討
論文名稱(外文):A Study of Optimal Designs for Michaelis-Menten Model and Related Models
指導教授:陳瑞彬陳瑞彬引用關係
指導教授(外文):Ray-Bing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:統計學系碩博士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:54
中文關鍵詞:非線性模型局部D-最適設計標準化最大最小D-最適設計粒子群最佳化演算法
外文關鍵詞:Nonlinear ModelLocally D-optimal DesignStandardized Maximin D-optimal DesignParticle Swarm Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Michaelis-Menten 模型和其相關模型目前被廣泛的使用在生物學研究當中。在此篇文章當中,我們將專注於此類非線性模型的最適設計問題,首先對觀測值具有相關的Michaelis-Menten 模型,找尋最適正合設計。另外針對Michaelis-Menten也考慮了,標準化最大最小D-最適準則的設計。除了Michaelis-Menten模型之外,對於另外四種相關模型的局部D-最適設計與標準化最大最小D-最適設計亦進行探討。為了有效率地計算數值結果,本論文中利用粒子群最佳化演算法來執行相關數值計算。
The Michaelis-Menten model and its related models are widely used in biology studies. In this thesis, we focus on the optimal design issues for these nonlinear models. First we study the exact designs for the correlated Michaelis-Menten model and the standardized maximin D-optimal designs for Michaelis-Menten model. Then the locally D-optimal designs and the standardized maximin D-optimal designs for four different inhibition models are studied. Here particle swarm optimization approach is used to obtain the numerical results.
1. Introduction ........................................1
2. Optimal Designs for Nonlinear Models ................4
3. Particle Swarm Optimization .........................6
3.1 PSO for the Minimization or Maximization Problem ...7
3.2 Nested PSO for the Maximin or Minimax Problem.......8
4. Optimal Designs for Michaelis-Menten Model .........11
4.1 Locally Exact D-optimal Designs for Correlated Observations ..........................................11
4.2 Standardized Maximin D-optimal Designs ............15
5. Optimal Designs for Four Inhibition Models .........22
5.1 Locally D-optimal Designs .........................22
5.2 Standardized Maximin D-optimal Designs ............25
6. Conclusion .........................................33
References ............................................34
Appendix ..............................................36
Appendix A. Testification for Convergency of PSO with Correlated Observations ...............................37
Biedermann, S., Dette, H., and Pepelyshev, A. (2004), “Maximin optimal designs for a compartmental model, in mODa 7 -Advances in Model-Oriented Design and Analysis, 41–49, Physica-Verlag HD.

Boer, E. P. J., Rasch, D. A. M. K., and Hendrix, E. M. T. (2000), “Locally optimal designs in nonlinear regression: A case study of the michaelis-menten function, in Advances in Stochastic Simulation Methods, 177–188, Springer.

Bogacka, B., Patan, M., Johnson, P. J., Youdim, K., and Atkinson, A. C. (2011), “Optimum design of experiments for enzyme inhibition kinetic models, J Biopharm Stat, 21(3), 555–72.

Box, G. E. P. and Lucas, H. (1959), “Design of experiments in non-linear situations,Biometrika, 46(1-2), 77–90.

Chen, R. B., Chang, S. P., Wang, W., Tung, H. C., and Wong, W. K. (2013), “Optimal minimax designs via particle swarm optimization methods, Preprint.

Chernoff, H. (1953), “Locally optimal designs for estimating parameters, Annals of Mathematical Statistics, 24(4), 586–602.

Dette, H. (1996), “Lower bounds for efficiencies with applications, Research Developments in Probability and Statistics: Festschrift zum 65sten Geburtstag von ML Puri, 111–124.

Dette, H. (1997), “Designing experiments with respect to ’standardized’ optimality criteria, Journal of the Royal Statistical Society. Series B (Methodological), 59(1), 97–110.

Dette, H. and Biedermann, S. (2003), “Robust and efficient designs for the michaelis-menten model, Journal of the American Statistical Association, 98(463), 679–686.

Dette, H. and Kunert, J. (2012), “Optimal designs for the michaelis menten model with correlated observations, Preprint.

Dette, H. and Wong, W. K. (1999), “E-optimal designs for the michaelis-menten model, Statistics and Probability Letters., 44(4), 405–408.

Dunn, G. (1988), “Optimal designs for drug, neurotransmitter and hormone receptor assays, Statistics in Medicine, 7(7), 805–815.

Eberhart, R. and Kennedy, J. (1995), “A new optimizer using particle swarm theory, in Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, 39–43, IEEE.

King, J. and Wong, W. K. (2000), “Minimax d-optimal designs for the logistic model, Biometrics, 56(4), 1263–1267.

Maloney, J. and Heidel, J. (2003), “An analysis of a fractal kinetics curve of savageau, Anziam Journal, 45, 261–269.

Rasch, D. (1990), “Optimum experimental-design in nonlinear-regression, Communications in Statistics-Theory and Methods, 19(12), 4789–4806.

Song, D. and Wong, W. K. (1998), “Optimal two-point designs for the michaelis-menten model with heteroscedastic errors, Communications in Statistics-Theory and Methods, 27(6), 1503–1516.

Yang, X. S. (2010), “Engineering optimization: An introduction with metaheuristic applications, in Particle Swarm Optimization, John Wiley and Sons.

Yu, X. Z. and Gu, J. D. (2007), “Differences in michaelisvmenten kinetics for different cultivars of maize during cyanide removal, Ecotoxicology and Environmental Safety,67(2), 254–259.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文