(3.92.96.236) 您好!臺灣時間:2021/05/07 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王士侃
研究生(外文):Shih-KanWang
論文名稱:利用衛星測高與驗潮站資料推估台灣週遭海水面變化與地殼變動
論文名稱(外文):Sea Level Change and Crustal Motion around Taiwan Observed by Satellite Altimetry and Tide Gauge
指導教授:郭重言郭重言引用關係
指導教授(外文):Chung-Yen Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:99
中文關鍵詞:海水面變化地殼變動衛星測高驗潮站希爾伯特-黃轉換
外文關鍵詞:Sea level changeCrustal motionSatellite altimetryTide gaugeHHT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
台灣為一個海島國家,山地大多集中於中央區域,而主要人口與經濟發展則集中於沿岸地區,因此海水面上升對於台灣的影響相對世界其他大陸地區顯得更為嚴重。另外,台灣西部區域由於長期超抽地下水,導致嚴重地層下陷。因此如何正確推估台灣附近區域海水面變化與地殼變動情形是一門很重要的研究課題。
傳統上,驗潮站與衛星測高資料皆可用來取得海水面高度資訊,然而單獨使用驗潮站資料計算海水面變化會受到地殼變動影響,若僅使用衛星測高資料則會受到海洋長週期訊號干擾。因為驗潮站資料包含海水面以及地殼變動訊號,而衛星測高僅量測海水面變化訊號,因此可由衛星測高與驗潮站資料間的差值求得各驗潮站地殼變動之情形,計算結果顯示,除了中國沿海幾處受到地質構造及地貌影響產生抬升的情形外,台灣和菲律賓地區大多呈現出地層下降情形。為了減低使用單一資料估計海水面變化的缺點,本研究採用一嶄新方法來計算台灣附近海域的海水面變化。此方法首先利用希爾伯特-黃轉換(Hilbert-Huang Transformation, HHT)對驗潮站資料進行分解,分解成數個本質模態函數(Intrinsic Mode Functions, IMFs),再將低頻IMFs進行重組,並與相對應時間之衛星測高資料相減求得差值,以減低海洋低頻訊號對利用衛星測高資料計算海水面斜率之影響,最後利用線性擬合求得海水面變化之斜率。根據計算結果,台灣周遭平均海水面上升為4.23 mm/yr,明顯高於全球海水面變化平均值3.11 mm/yr [Ablain et al., 2009]。
另外,經由比較海水面變化、海水質量、比容海平面變化(steric sea level)後得知海水溫度及鹽度變化所造成之比容海水面變化為造成台灣附近海水面變化和上升之主因。最後利用HHT對全球衛星測高網格資料進行分解並將低頻訊號重組後,以線性擬合求得全球平均海水面變化為3.12 mm/yr,與先前研究相符。

Taiwan is an island, where most of mountains located at the central area, and most highly developed cities are located near the coasts. Compared with other countries, sea level rise could cause a relative significant impact on Taiwan. In addition, resulting from the over-withdrawal of groundwater, the western area of Taiwan suffers from a severe subsidence. Therefore, monitoring sea level variations and vertical motions have become a very important issue for Taiwan.
Traditionally, the most common instruments used to measure sea surface heights tide gauges and satellite altimetry; however, the tide gauge records contain the crustal vertical motions and the data span of satellite altimetry data is too short to avoid low-frequency effects on the trend determination. Since tide gauge records contain sea level and vertical motion signals and altimetry data contains sea level information only, vertical motions at gauges can be accurately computed by the differences of tide gauges and satellite altimetry. The estimated vertical motions show that most gauge stations in Taiwan and Philippines were subsiding except for in China. The vertical uplift in China is related to the geological tectonics and geomorphology. In order to determine sea level accurately around Taiwan, we adopted a novel algorithm to determine accurate sea level trend by combining tide gauges and satellite altimeter data in the study. First of all, Hilbert-Huang Transformation (HHT) method is used to decompose the selected tide gauge records completely into few independent monotones cycles, which called Intrinsic Mode Functions (IMFs). Afterwards, the residual time series computed by subtracting sea level time series reconstructed using specific IMFs, which represent low frequencies and cannot be clearly detected in altimeter data, from the corresponding altimetry data is fitted to derive the sea level trend. According to the result, the estimated sea level trend around Taiwan is 4.23 mm/yr, which is higher than global mean sea level of 3.11 mm/yr [Ablain et al., 2009].
A comparison of steric sea level (SSL), GRACE derived ocean mass change and total sea level around Taiwan is also investigated in the study. The result indicates that SSL contributes more than ocean mass does and dominates sea level trends around Taiwan. Finally, the global sea level trend derived from the reconstructed latitude-weighted time series using the last two IMFs by HHT is determined at 3.12 mm/yr, agreeing well with previous studies.

中文摘要 I
Abstract III
誌謝 V
Table of Contents VI
List of Tables VIII
List of Figures X
Chapter 1: Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Literature review 4
1.4 Organization 8
Chapter 2: Introduction of Used Data 9
2.1 Tide Gauge 9
2.1.1 Tide Gauge Instrument 9
2.1.2 Resources of tide gauge records 11
2.1.3 Selection of the tide gauge stations 12
2.1.4 Errors in tide gauge data 15
2.1.5 Tide gauge data correction 16
2.2 Satellite altimetry 18
2.2.1 Introduction of Satellite altimetry 18
2.2.2 Resources of satellite altimetry data 20
2.2.3 TOPEX / Poseidon (1992 - 2006) and Jason-1 (2002 - present) 20
2.2.4 Basic concept of satellite altimetry 21
2.2.5 Corrections of altimetry measurements. 24
2.3 Ocean mass derived from GRACE 25
2.4 Steric sea level 29
2.4.1 Data from Ishii et al. [2009] 29
2.4.2 The Estimation of the Circulation and Climate of the Ocean model 30
Chapter 3: Vertical Motions around Taiwan 31
3.1 Methodology 31
3.2 Corrections of tide gauge records 32
3.3 Results and Discussion 36
Chapter4: Sea Level Change around Taiwan 54
4.1 Algorithms 54
4.1.1 Hilbert-Huang Transform (HHT) 54
4.1.2 Wavelet analysis 61
4.1.3 A comparison of HHT and Wavelet decomposition. 62
4.2 Methodology 63
4.2.1 HHT used for sea level trend determination 64
4.2.2 Wavelet analysis used for sea level trend determination 69
4.3 Results 72
4.3.1 Sea level trend using tide gauge and satellite altimetry 72
4.3.2 Sea level trends derived from tide gauges 73
4.4 Characteristic of sea level rise around Taiwan 77
4.4.1 Steric sea level around Taiwan 78
4.4.2 Contributions of steric sea level and ocean mass during 2004-2010 83
4.5 Global Sea Level Trends 88
Chapter 5: Conclusion and future work 91
5.1 Vertical motions around Taiwan 91
5.2 Sea level trend in these years 92
5.3 Future work 93
Reference 95

楊穎堅,唐存勇,梁文德,基隆與高雄海水面變化,第十八屆海洋工程研討會論文集,553-560,1996.
劉根友,朱耀仲,許厚澤,張為民,GPS監測中國沿海驗潮站垂直運動觀測研究,武漢大學學報:信息科學版,30,12,2005.
Ablain, M., A. Cazenave, G. Valladeau, and S. Guinehut, A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993-2008, Ocean Science, 5, 193-201, 2009.
Argus, D. F., and M. B. Heflin, Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System, Geophysical Research Letters, 22(15), 1973-1976, 1995.
Cazes-Boezio, G., D. Menemenlis, and C. R. Mechoso, Impact of ECCO Ocean-State estimates on the initialization of seasonal climate forecasts, Journal of Climate, 21, 1929-1947, doi: 10.1175/2007JCLI1574.1, 2008.
Cazenave, A., K. Dominh, F. Ponchaut, L. Soudarin, J. F. Cretaux, and C. L. Provost, Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS, Geophysical Research Letters, 26(14), 2077-2080, 1999.
Chambers, D. P., M. E. Tamisiea, R. S. Nerem, and J C. Ries, Effects of ice melting on GRACE observations of ocean mass trends, Geophysical Research Letters, 34, L05610, doi:10.1029/2006GL029171, 2007.
Chang, T. Y., F. Chao, C.-C. Chiang, and C. Hwang, Vertical crustal motion of active plate convergence in Taiwan derived from tide gauge, altimetry, and GPS data, Tectonophysics, 578, 98-106, doi:10.1016/j.tecto.2011.10.002, 2011.
Chelton, D. B., J. C. Ries, B. J. Haines, L. L. Fu, and P. S. Callahan, Satellite Altimetry, Satellite altimetry and Earth sciences, editor L-L Fu, A Cazenave, Academic Press, 69, 1-131, 2001.
Chen J. L., C. R. Wilson, B. D. Tapley, and J. C. Ries, Low degree gravitational changes from GRACE: Validation and interpretation, Geophysical Research Letters, 31, L22607, doi:10.1029/2004GL021670, 2004.
Ching, K.-E., M.‐L. Hsieh, K. M. Johnson, K.‐H. Chen, R.‐J. Rau, and M. Yang, Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations 2000-2008, Journal of Geophysical Research, 116, B08406, doi:10.1029/2011JB008242, 2011.
Coughlin, K.T., and K.K. Tung, 11-year solar cycle in the stratosphere
extracted by the empirical mode decomposition method, Advances in space
research, 34, 2, 323, 2004.
Cretaux, J.-F., L. Soudarin, A. Cazenave, and F. Bouille, Present-day tectonic plate motions and crustal deformations from the DORIS space system, Journal of Geophysical Research, 103(B12), 30,167-30,181D, 1998.
Cretaux, J. F., L. Soudarin, F. J. M. Davidson, M.-C. Gennero, M. Berge-Nguyen, and A. Cazenave, Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, Journal of Geophysical Research, 107(B12), 2374, doi:10.1029/2002JB001820, 2002.
Deguchi, T., Y. Kinugasa, and K. Kurita, Monitoring of land deformation using Terra SAR-X data around active fault in the metro Manila, the Philippines, FIG Working Week: Bridging the Gap between Cultures, Marrakech, Morocco, 18-22 May 2011.
Ding, J. J., Time-Frequency Analysis and wavelet transform, National Taiwan
Universaty, 2011.
Douglas, B. C., Sea level change in the era of the recording tide gauge,
International Geophysics, 75, 37-64, 2001.
Duan, X. J., J. Y. Guo, C. K. Shum, and W. V. D. Wal, On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions, Journal of Geodesy, 83, 1095-1106, doi: 10.1007/s00190-009-0327-0, 2009.
Ericson, J. P., C. J. Vörösmarty, S. L. Dingman, L. G. Ward, and M. Meybeck, Effective sea-level rise and deltas: Causes of change and human dimension implications, Global and Planetary Change, 50, 63-82 doi:10.1016/j.gloplacha.2005.07.004, 2006.
Farge, M., Wavelet transforms and their applications to turbulence, Annual Review of Fluid Mechanics, 24, 395-457, 1992.
Flandrin, P., G. Rilling and P. Gon﹐calv`es, Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 11, 112-114, 2004.
Garcia, D., I. M. Vigo, B. F. Chao, and M. C. Martinez, Vertical crustal motion along the mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data, Pure and Applied Geophysics, 164, 851-863, doi:10.1007/s00024-007-0193-8, 2007.
Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.
Gledhill, R. J., Methods for investigating conformational change in biomolecular simulations, Ph.D. dissertation, University of Southampton, 201, 2003.
Guo, J. Y., Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu, and J. S. Ning, Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophysical Journal International, 159, 53-68, doi:10.1111/j.1365-246X.2004.02410.x, 2004.
Guo, J. Y., X. J. Duan, and C. K. Shum, Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data, Geophysical Journal International, 181, 290-302 doi:10.1111/j.1365-246X.2010.04534.x, 2010.
Hannah, J., The difficulties in using tide gauges to monitor long-term sea level change, International Federation of Surveyors, 1-10, 2010.
Hastie, T. and R. Tibshirani, Exploring the nature of covariate effects in the proportional hazards model, Biometrics, 46, 1005-1016, 1990.
Heflin, M., W. Bertiger, G. Blewitt, A. Freedman, K. Hurst, S. Lichten, U. Lindqwister, Y. Vigue, F. Webb, T. Yunck, and J. Zumberge, Global Geodesy using GPS without fiducial sites, Geophysical Research Letters, 19(2), 131-134, 1992.
Hetland, A., and T. Wu, Deformation of the Philippine Sea plate under the coastal range, Taiwan: Result from an Offshore-Onshore seismic experiment, Terrestrial, Atmospheric and Oceanic Sciences, 19, 363-378, 1998.
Huang, N. E., Z. Shen, S. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis., Proceedings of Royal Society London, 454, 903-995, 1998.
Huang, N. E., Z. Shen, and S. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annual Review of Fluid Mechanics, 31, 417-457, 1999.
Hu, H., L. Huang, and G. Yang, Recent vertical crustal deformation in the coastal area of eastern China, Scientia Geologica Sinica, 28, 3, 1993.
IPCC: Climate Change 2007: The physical science basis. Summary for policy makers, Contribution of working group I to the fourth assessment report, The Intergovernmental Panel on Climate Change, 2007.
IPCC, Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, Summary for Policymakers, 2007.
Ishii, M., and M. Kimoto, Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections, Journal of Oceanography, 1-34, 2009.
Kuo, C. Y., C. K. Shum, A. Braun, and J. X. Mitrovica, Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia, Geophysical Research Letters, 31, L01608, doi:10.1029/2003GL019106, 2004.
Kuo, C. Y., C. K. Shum, A. Braun, K.-C. Cheng, and Y. Yi, Vertical Motion Determined Using Satellite Altimetry and Tide Gauges, Terrestrial, Atmospheric and Oceanic Sciences, 19, 1-2, 21-35, doi: 10.3319/TAO.2008.19.1-2.21(SA), 2008
Leatherman, P. S., K. Zhanng, and B.C. Douglas, Sea level rise drives coastal
erosion, EOS Transactions, 81, 55-57, 2000.
Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, Warming of the world ocean, Science, 287, 2225-2229, 2000.
Lin, L.-C., H.-K. Chang, M.-C. Liang, and N. Huang, Sea level variability and multidecadal oscillation in Taiwan, Proceedings of the 33rd Ocean Engineering Conference in Taiwan, 2011.
Long, S. R., R. J. Lai, N. E. Huang, and G. R. Spedding, Blocking and trapping of waves in an inhomogeneous flow, Dynamics of Atmospheres and Oceans, 20, 79-106, 1993.
Lowry, A.R., M. W. Hamburger, C.M. Meertens, and E.G. Ramos, GPS monitoring of crustal deformation at Taal Volcano, Philippines, Journal of Volcanology and Geothermal Research, 105, 35-47, 2001.
Marcos, M., F. M. Calafat, W. Llovel, D. Gomis, and B. Meyssignac, Regional distribution of steric and mass contributions to sea level changes, Global and Planetary Change, 76, 206-218, doi:10.1016/j.gloplacha.2011.01.007, 2011.
Milne, G., J. Davis, J. Mitrovica, H. Scherneck, J. Johans¬son, M. Poutanen, and H. Koivula, Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia, Science, 291, 2381-2385, 2001.
Miller, L., and B. C. Douglas, Mass and volume contributions to twentieth-century global sea level rise, Nature, 428, 406-409, 2004.
Nerem, R. S., and G. T. Mitchum, Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements, Geophysical Research Letters, 29, doi:10.1029/2002GL015037, 2002.
Ose, T., Y. K. Song and A. Kitoh, Sea surface temperature in the South China Sea-an index for the Asian monsoon and ENSO system, Journal of the Meteorological Society of Japan, 75, 1997.
Paulson, A., S. Zhong, and J. Wahr, Inference of mantle viscosity from GRACE and relative sea level data, Geophysical Journal International, 171, 497-508, doi:10.1111/j.1365-246X.2007.03556, 2007.
Pidwirny, M., Crustal deformation processes: folding and faulting, Fundamentals of Physical Geography: 2nd Edition, 10, 2006.
Soudarin, L., J.-F. Cretaux, and A. Cazenave, Vertical crustal motions from the DORIS space-geodesy system, Geophysical Research Letters, 26(9), 1207-1210, 1999.
Spedding, G. R., F. K. Browand, N. E. Huang, and S. R. Long, A 2D complex wavelet analysis of an unsteady wind-generated surface wave field, Dynamics of Atmospheres and Oceans, 20, 55-77, 1993.
Swenson, S., D. P. Chambers, and J. Wahr, Estimating geocenter variations from a combination of GRACE and ocean model output, Journal of Geophysical Research, 113, B08410, doi:10.1029/2007JB005338, 2008.
Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, GRACE measurements of mass variability in the Earth system, Science, 305, 503-505, 2004.
Tseng, Y.-H. , C. Breaker and T. Y. Chang, Sea level variations in the regional seas around Taiwan, Journal of Oceanography, 66, 27-39, 2010.
Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, Journal of Geophysical Research, 103 (B12), 30, 205-30, 1998.
Wu, Z. and N. E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of the Royal Society London, 460A 1597-1611, 2004.
Wu, Z. and N. E. Huang, Ensemble empirical mode decomposition: anoise-assisted data analysis method, Advances in Adaptive Data Analysis, 1, 11-41, 2009.
Xie, S. P., Q. Xie, D.-X. Wang and W. T. Liu, Summer upwelling in the South China Sea and its role in regional climate variations, Journal of Geophysical Research, 108, doi:10.1029/2003cj001867,2003.
Zhang, J.G., Y. Wang, and Y. S. Cheng, The analysis of China sea level change. Chinese Journal of Geophysical Research, 52(7), 1725-1733, doi:10.3969/j.issn.0001-5733.2009.07.007, 2009.
Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102(B3), 5005-5018, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔