|
[1] A. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, ``Scheduling independent multiprocessor tasks,' Algorithmica, Vol. 32, pp. 247--261, 2002. [2] J. Augustine, S. Banerjee, and S. Irani, ``Strip packing with precedence constraints and strip packing with release times,' Theoretical Computer Science, Vol. 410, No. 38-40, pp. 3792 -- 3803, 2009. [3] B. S. Baker, coffman, and R. L. Rivest, ``Orthogonal packings in two dimensions,' in Sixteenth Annual Allerton Conference on Communication, Control and Computing. Urbana, IL: Univ. Illinois, 1978, pp. 626--635. [4] K. P. Belkhale and P. Banerjee, ``An approximate algorithm for the partitionable independent task scheduling problem,' in International Conference on Parallel Processing, 1990. [5] S. Bischof and E. W. Mayr, ``On-line scheduling of parallel jobs with runtime restrictions,' Theoretical Computer Science, Vol. 268, No. 1, pp. 67 -- 90, 2001. [6] E. Blayo, L. Debreu, G. Mouni´e, and D. Trystram, ``Dynamic load balancing for ocean circulation model with adaptive meshing,' in In Proceedings of the 5th European Conference on parallel computing (Euro-Par 1999), volume 1685 of LNCS. SpringerVerlag, 1999, pp. 303--312. [7] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz, ``Scheduling under Resource Constraints--Deterministic Models,' Annals of Operations Research, Vol. 7, 1986. [8] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Handbook on Scheduling: From Theory to Applications. Springer Berlin / Heidelberg, 2007. [9] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subramonian, and T. von Eicken, ``Logp: a practical model of parallel computation,' Commun. ACM, Vol. 39, No. 11, pp. 78--85, 1996. [10] T. Decker, T. L¨ucking, and B. Monien, ``A 5/4-approximation algorithm for scheduling identical malleable tasks,' Theor. Comput. Sci., Vol. 361, No. 2, pp. 226--240, 2006. [11] M. Drozdowski, ``Scheduling multiprocessor tasks ¡x an overview,' European Journal of Operational Research, Vol. 94, No. 2, pp. 215 -- 230, 1996. [12] M. Drozdowski, Scheduling for Parallel Processing, 1st ed. Springer Publishing Company, Incorporated, 2009. [13] J. Du and J. Y.-T. Leung, ``Complexity of scheduling parallel task systems,' SIAM Journal on Discrete Mathematics, Vol. 2, No. 4, pp. 473--487, 1989. [14] P.-F. Dutot, G. Mouni´e, and D. Trystram, ``Scheduling Parallel Tasks: Approximation Algorithms,' in Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ser. chapter 26, J. T. Leung, Ed. CRC Press, 2004, pp. 26--26. [15] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng, ``Optimal on-line scheduling of parallel jobs with dependencies,' Journal of Combinatorial Optimization, Vol. 1, pp. 393--411, 1998. [16] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng, ``Optimal online scheduling of parallel jobs with dependencies,' in Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, ser. STOC '93. New York, NY, USA: ACM, 1993, pp. 642--651. [17] A. Feldmann, J. Sgall, and S.-H. Teng, ``Dynamic scheduling on parallel machines,' Theoretical Computer Science, Vol. 130, No. 1, pp. 49 -- 72, 1994. [18] M. Garey and D. S. Johnson, ``Complexity results for multiprocessor scheduling under resource constraints,' SIAM Journal of Computing, Vol. 4, No. 4, pp. 397--411, 1975. [19] M. R. Garey and R. L. Graham, ``Bounds for multiprocessor scheduling with resource constraints,' SIAM Journal on Computing, Vol. 4, No. 2, pp. 187--200, 1975. [20] R. L. Graham, ``Bounds for certain multiprocessing anomalies,' Bell System Technical Journal, Vol. 45, No. 9, pp. 1563--1581, 1966. [21] R. Graham, E. Lawler, J. Lenstra, and A. Kan, ``Optimization and approximation in deterministic sequencing and scheduling: a survey,' in Discrete Optimization II, ser. Annals of Discrete Mathematics, E. J. P.L. Hammer and B. Korte, Eds. Elsevier, 1979, Vol. 5, pp. 287 -- 326. [22] E. G¨unther, F. K¨onig, and N. Megow, ``Scheduling and packing malleable tasks with precedence constraints of bounded width,' in Approximation and Online Algorithms, ser. Lecture Notes in Computer Science, E. Bampis and K. Jansen, Eds. Springer Berlin / Heidelberg, 2010, Vol. 5893, pp. 170--181. [23] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, ``Scheduling precedence graphs in systems with interprocessor communication times,' SIAM Journal on Computing, Vol. 18, No. 2, pp. 244--257, 1989. [24] K. Jansen, ``Scheduling malleable parallel tasks: An asymptotic fully polynomial-time approximation scheme,' Algorithmica, Vol. 39, No. 1, pp. 59--81, 2004. [25] K. Jansen, ``A(3/2+ϵ) approximation algorithm for scheduling moldable and non-moldable parallel tasks,' in Proceedinbgs of the 24th ACM symposium on Parallelism in algorithms and architectures, ser. SPAA '12. New York, NY, USA: ACM, 2012, pp. 224--235. [26] K. Jansen and L. Porkolab, ``Linear-time approximation schemes for scheduling malleable parallel tasks,' Algorithmica, Vol. 32, No. 3, pp. 507--520, 2002. [27] K. Jansen and L. Porkolab, ``Computing optimal preemptive schedules for parallel tasks: linear programming approaches,' Mathematical Programming, Vol. 95, pp. 617--630, 2003. [28] K. Jansen and R. Solis-Oba, ``New approximability results for 2-dimensional packing problems,' in Mathematical Foundations of Computer Science 2007, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007, Vol. 4708, pp. 103--114. [29] K. Jansen and R. Th¨ole, ``Approximation algorithms for scheduling parallel jobs,' SIAM J. Comput., Vol. 39, No. 8, pp. 3571--3615, 2010. [30] K. Jansen and H. Zhang, ``An approximation algorithm for scheduling malleable tasks under general precedence constraints,' ACM Trans. Algorithms, Vol. 2, No. 3, pp. 416--434, 2006. [31] K. Jansen and H. Zhang, ``Scheduling malleable tasks with precedence constraints,' Journal of Computer and System Sciences, Vol. 78, No. 1, pp. 245--259, 2012. [32] B. Johannes, ``Scheduling parallel jobs to minimize the makespan,' Journal of Scheduling, Vol. 9, pp. 433--452, 2006. [33] E. G. C. Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan, ``Performance bounds for level-oriented two-dimensional packing algorithms,' Siam Journal on Computing, Vol. 9, pp. 808--826, 1980. [34] C. Kenyon and E. Remila, ``Approximate strip packing,' in Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, oct 1996, pp. 31--36. [35] C. Kenyon and E. R´emila, ``A near-optimal solution to a two-dimensional cutting stock problem,' Math. Oper. Res., Vol. 25, No. 4, pp. 645--656, nov 2000. [36] Y. Kopidakis and V. Zissimopoulos, ``An approximation scheme for scheduling independent jobs into subcubes of a hypercube of fixed dimension,' Theoretical Computer Science, Vol. 178, No. 1-2, pp. 265 -- 273, 1997. [37] J. K. Lenstra and A. H. G. Rinnooy Kan, ``Complexity of scheduling under precedence constraints,' OPERATIONS RESEARCH, Vol. 26, No. 1, pp. 22--35, 1978. [38] R. Lep´ere, G. Mouni´e, and D. Trystram, ``An approximation algorithm for scheduling trees of malleable tasks,' European Journal of Operational Research, Vol. 142, No. 2, pp. 242 -- 249, 2002. [39] R. Lep´ere, D. Trystram, and G. J. Woeginger, ``Approximation algorithms for scheduling malleable tasks under precedence constraints,' International Journal of Foundations of Computer Science, Vol. 13, No. 4, pp. 613 -- 627, 2002. [40] W. Ludwig and P. Tiwari, ``Scheduling malleable and nonmalleable parallel tasks,' in SODA '94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1994, pp. 167--176. [41] W. Ludwig, ``Algorithms for scheduling malleable and non-malleable parallel tasks,' Ph.D. dissertation, University if Wisconsin-Madison, 1995. [42] G. Mouni´e, C. Rapine, and D. Trystram, ``A 3/2 -approximation algorithm for scheduling independent monotonic malleable tasks,' SIAM Journal on Computing, Vol. 37, No. 2, pp. 401--412, 2007. [43] G. Mouni´e, C. Rapine, and D. Trystram, ``Efficient approximation algorithms for scheduling malleable tasks,' in SPAA '99: Proceedings of the eleventh annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM, 1999, pp. 23--32. [44] E. Naroska and U. Schwiegelshohn, ``On an on-line scheduling problem for parallel jobs,' Information Processing Letters, Vol. 81, No. 6, pp. 297 -- 304, 2002. [45] K. Pruhs, J. Sgall, and E. Torng, ``Online scheduling,' in Handbook of Scheduling: Algorithms, Models, and Performance Analysis, J. Y.-T. Leung, Ed. Chapman and Hall/CRC, 2004, ch. 15, pp. 15-1--15-43. [46] U. Schwarz, ``Tightness results for malleable task scheduling algorithms,' in Parallel Processing and Applied Mathematics, ser. Lecture Notes in Computer Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, Eds. Springer Berlin Heidelberg, 2008, Vol. 4967, pp. 1059--1067. [47] J. Sgall, ``On-line scheduling,' in Online Algorithms, ser. Lecture Notes in Computer Science, A. Fiat and G. Woeginger, Eds. Springer Berlin Heidelberg, 1998, Vol. 1442, pp. 196--231. [48] M. Skutella, ``Approximation algorithms for the discrete time-cost tradeoff problem,' MATHEMATICS OF OPERATIONS RESEARCH, Vol. 23, No. 4, pp. 909--929, 1998. [49] G. N. Srinivasa Prasanna and B. R. Musicus, ``Generalised multiprocessor scheduling using optimal control,' in SPAA '91: Proceedings of the third annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM, 1991, pp. 216--228. [50] A. Steinberg, ``A strip-packing algorithm with absolute performance bound 2,' SIAM J. Comput., Vol. 26, No. 2, pp. 401--409, Apr. 1997. [51] J. Turek, J. L. Wolf, and P. S. Yu, ``Approximate algorithms scheduling parallelizable tasks,' in SPAA '92: Proceedings of the fourth annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA: ACM, 1992, pp. 323--332. [52] D. Ye and G. Zhang, ``On-line scheduling mesh jobs with dependencies,' Theoretical Computer Science, Vol. 372, No. 1, pp. 94 -- 102, 2007. [53] H. Zhang, ``Approximation algorithms for min-max resource sharing and malleable tasks scheduling,' Ph.D dissertation University of Kiel, Kiel Germany, 2004.
|