( 您好!臺灣時間:2021/05/13 18:46
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Design of an Energy Aware Task Scheduler Cooperating with Disk Prefetching and Caching
指導教授(外文):Da-Wei Chang
中文關鍵詞:完全公平工作排程器CPU 工作排程器預取與暫存硬碟省電待機狀態
外文關鍵詞:CFSCPU schedulerprefetching and cachingdiskenergy savingstandby mode
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於隨著科技的進步和行動裝置的普及,省電的議題已經成為系統開發過程中一個重要的議題。先前有學者利用硬碟預取與暫存的機制來產生較長的時間間隔讓硬碟轉換至低功率模式來為系統省電,但是此研究卻沒有將多工作環境中的工作排程器考慮進去。雖然現今的工作排程器的目標是讓所有的工作公平地使用相同的中央處理器時間,卻傾向讓I/O 密集的工作有較高的優先權,此現象可能造成加速記憶體中資料的消耗速度,而沒辦法有效率地幫使用預取與暫存的系統為硬碟省電。
In recent years, power consumption had become an important issue in system development. Previous studies had used prefetching and caching to create large time interval for disk to stay in low power mode to save energy for system. However, it did not take task scheduler into consideration under multi-process environment. Although modern task scheduler aim to let every process share CPU time fairly, it tend to let I/O bound process has higher priority which may increase data consumption and decrease disk idle interval.
The contribution of this study is that we proposed and implemented a task scheduler to insist system with prefetching and caching to save energy more efficiently for disk device. Our proposed task scheduler ES will try to schedule appropriate process through different condition to extend disk idle interval. The experiment shows that ES can help the system with prefetching and caching to save energy more efficient than CFS. The experiment result presents that ES can spend less about 10% energy compared to CFS and help disk save power more efficiently.
摘要 i
Abstract ii
誌謝 iii
Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
Chapter 2 Background and Related Work 3
2.1 Disk Power Mode and Break-Even Time 3
2.2 Threshold Policy 4
2.3 Prefetching and Caching 5
2.4 External Cache Device 6
2.5 Data Migration across Devices 7
2.5.1 Write Off-Loading 7
2.5.2 RAID (redundant array of inexpensive disks) 7
2.6 FS2 & ISRA 8
Chapter 3 Motivation 10
Chapter 4 System Design and Implementation 15
4.1 Simulator Architecture 15
4.2 Disk Energy Aware Schedule 18
4.2.1 Scheduler for disk in active mode 19
4.2.2 Scheduler for disk in standby mode 21
Chapter 5 Experiment and Evaluation 24
5.1 Experiment Setup 24
5.2 Power Consumption Evaluation 28
5.3 System Performance Evaluation 31
5.4 Memory Configuration 34
Chapter 6 Conclusion 37
Reference 38
[1] Athanasios E. Papathanasiou , Michael L. Scott, Energy efficient prefetching and caching, Proceedings of the annual conference on USENIX Annual Technical Conference, p.22-22, June 27-July 02, 2004, Boston, MA
[2] Y. Won, J. Kim, and W. Jung. Energy-aware disk scheduling for soft real-time I/O requests. Multimedia Systems Journal, 13(5):409-428, February 2008
[3] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda and Hiroaki Takada, Proposal and Quantitative Analysis of the CHStone Benchmark Program Suite for Practical C-based High-level Synthesis, Journal of Information Processing, Vol. 17, pp.242-254, (2009).
[4] HUANG, X., ALLEVA, F., HON, H.-W., HWANG, M.-Y., AND ROSENFELD, R. The SPHINX-II speech recognition system: an overview. Computer Speech and Language 7, 2 (1993), 137–148
[5] American National Standards Institute. Information Technology - AT Attachment with Packet Interface 5 (ATA/ATAPI-5). Published as ANSI/INCITS 340-2000, Dec 2000
[6] Seagate Barracuda 7200.10 Serial ATA Product Manual
[7] A. Weissel and F. Bellosa, “Self-learning hard disk power management for mobile devices, in Proc. Int. Workshop Softw. Support Portable Storage, Oct. 2006, pp. 33–40.
[8] Douglis F, Krishnan P, Bershad B. “Adaptive disk spin-down policies for mobile computers. In: Arbor A, ed. Proc. of the 2nd Usenix Symp. on Mobile and Location-Independent Computing (MOBLIC). Berkeley: USENIX Association, 1995. 121-137.
[9] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid Disk-Aware Spin-Down Algorithm with I/O Subsystem Support. In IEEE 2007 Performance, Computing, and Communications Conference, 2007.
[10] L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon, and R. Rangaswami. EXCES: External caching in energy saving storage systems.IEEE HPCA, 2008.
[11] Hai Huang , Wanda Hung , Kang G. Shin, FS2: dynamic data replication in free disk space for improving disk performance and energy consumption, Proceedings of the twentieth ACM symposium on Operating systems principles, October 23-26, 2005, Brighton, United Kingdom
[12] Liao XL, Bai S, Wang YP et al (2011) ISRA-based grouping: a disk reorganization approach for disk energy conservation and disk performance enhancement. IEEE Trans Comput 60(2):292–304
[13] Dushyanth Narayanan , Austin Donnelly , Antony Rowstron, Write off-loading: practical power management for enterprise storage, Proceedings of the 6th USENIX Conference on File and Storage Technologies, p.1-15, February 26-29, 2008, San Jose, California
[14] Charles Weddle , Mathew Oldham , Jin Qian , An-I Andy Wang , Peter Reiher , Geoff Kuenning, PARAID: a gear-shifting power-aware RAID, Proceedings of the 5th USENIX conference on File and Storage Technologies, p.30-30, February 13-16, 2007, San Jose, CA
[15] Dong Li , Jun Wang, EERAID: energy efficient redundant and inexpensive disk array, Proceedings of the 11th workshop on ACM SIGOPS European workshop, p.29-es, September 19-22, 2004, Leuven, Belgium
[16] Y. Liu, J. Huang, C. Xie, and Q. Cao. Raf: A random access first cache management to improve SSD-based disk cache. NAS, 201 0
[17] Y. Zhu and H. Jiang, “Race: A robust adaptive caching strategy for buffer cache, Computers, IEEE Transactions on, vol. 57, no. 1, pp. 25–40, Jan. 2008.
[18] Chris Gniady , Ali R. Butt , Y. Charlie Hu, Program-counter-based pattern classification in buffer caching, Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation, p.27-27, December 06-08, 2004, San Francisco, CA
[19] J. Chou, J. Kim, and D. Rotem. Exploiting Replication for Energy-Aware Scheduling in Disk Storage Systems. Technical Report LBNL-4075E,
[20] Rachita Kothiyal , Vasily Tarasov , Priya Sehgal , Erez Zadok, Energy and performance evaluation of lossless file data compression on server systems, Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference, May 04-April 06, 2009, Haifa, Israel
[21] T. Groves, J. Knockel, E. Schulte. BFS vs. CFS - Scheduler Comparison. December 2009.
[22] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded pro-
cessors. In DAC '10: Proceedings of the 47th Design Automation Conference,
pages 585{590, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0002-5.
doi: http://doi.acm.org/10.1145/1837274.1837418
[24] E. Mumolo and M.Savron. Reducing disk I/O times using anticipatory movements of the disk head. Journal of Systems Architecture 50(2004)17-33. July 2003
[25] J. Yue, Y. Zhu and Z. Cai. An Energy-Oriented Evaluation of Buffer Cache Algorithms Under Parallel I/O Workloads, IEEE Transaction on Distributed and Parallel Computing, v.19, 2008, p. 1565.
[26] FENGGUANG, W., HONGSHENG, X., AND CHENFENG, X. On the design of a new Linux readahead framework. SIGOPS Oper.Syst. Rev. 42, 5 (2008), 75–84
[27] Y. Joo, J. Ryu, S. Park, and K. G. Shin. Fast: quick application launch on solid-state drives. In Proceedings of the 9th USENIX conference on File and Storage Technologies, FAST ’11, 2011.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔