|
Allan, J. (2002). Introduction to topic detection and tracking. In Topic detection and tracking. Norwell: Kluwer Academic Publishers. Allan, J. (2002). Topic Detection and Tracking: Event-Based Information Organization. Norwell, MA, USA: Kluwer Academic Publishers. Alvanaki, F., Sebastian, M., Ramamritham, K., & Weikum, G. (2011). EnBlogue: emergent topic detection in web 2.0 streams. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (SIGMOD '11) (pp. 1271-1274). New York: ACM. Bun, K., & Ishizuka, M. (2002). Topic Extraction from News Archive Using TF*PDF Algorithm. In Proceedings of the 3rd International Conference on Web Information Systems Engineering (WISE '02) (pp. 73-82). Washington: IEEE Computer Society. Cataldi, M., Caro, L., & Schifanella, C. (2010). Emerging topic detection on Twitter based on temporal and social terms evaluation. In Proceedings of the Tenth International Workshop on Multimedia Data Mining (MDMKDD '10). New York. Chen, K., Luesukprasert, L., & Chou, S.-C. (2007, 8 19). Hot Topic Extraction Based on Timeline Analysis and Multidimensional Sentence Modeling. IEEE Trans. on Knowl. and Data Eng., pp. 1016-1025. Chen, S., & Chen, C. (2011, 2). TAIEX Forecasting Based on Fuzzy Time Series and Fuzzy Variation Groups. Fuzzy Systems, IEEE Transactions on, pp. 1-12. Ferro, T., Divine, D., & Zachry, M. (2012). Knowledge workers and their use of publicly available online services for day-to-day work. In Proceedings of the 30th ACM international conference on Design of communication (SIGDOC '12), (pp. 47-54). New York. Hastie, T., Tibshirani, R., & Friedman, J. (2009). 14.3.12 Hierarchical clustering. In The Elements of Statistical Learning (2nd ed.). Kaleel, S., AlMeshary, M., & Abhari, A. (2013). Event detection and trending in multiple social networking sites. In Proceedings of the 16th Communications & Networking Symposium (CNS '13). San Diego: Society for Computer Simulation International. Kaplan, A., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, (pp. 59-68). Kaplan, A., & Haenlein, M. (2011). The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons, (pp. 105-113). Kong, S., Feng, L., Sun, G., & Luo, K. (2012). Predicting lifespans of popular tweets in microblog. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval (SIGIR '12), (pp. 1129-1130). New York. Kontostathis, A., Galitsky, L., Pottenger, W., Roy, S., & Phelps, D. (2003). A survey of emerging trend detection in textual data mining. In Survey of Text Mining (pp. 185-224). Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? In Proceedings of the 19th international conference on World wide web (WWW '10), (pp. 591-600). New York. Lerman, K., & Hogg, T. (2010). Using a model of social dynamics to predict popularity of news. In Proceedings of the 19th international conference on World wide web (WWW '10)., (pp. 621-630). New York. Peng, F., Qian, X., Meng, H., Zhou, D., & Li, G. (2011). Research on algorithm of extracting micro-blog's hot topics. Electronics, Communications and Control (ICECC), (pp. 986-989). Pervin, N., Fang, F., Datta, A., Dutta, K., & Vandermeer, D. (2013, 1 19). Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams. ACM Trans. Manage. Inf. Syst. Porter, M. (1997). An algorithm for suffix stripping. In Readings in information retrieval, (pp. 313-316). San Francisco. Sokal, R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, pp. 1409–1438. Tang, J., Wang, X., Gao, H., Hu, X., & Liu, H. (2012). Enriching short text representation in microblog for clustering. Front. Comput. Sci China, (pp. 88-101). Wang, C., Zhang, M., Ru, L., & Ma, S. (2008). Automatic online news topic ranking using media focus and user attention based on aging theory. In Proceedings of the 17th ACM conference on Information and knowledge management (CIKM '08), (pp. 1033-1042). New York. Wang, Y., Agichtein, E., & Benzi, M. (2012). TM-LDA: efficient online modeling of latent topic transitions in social media. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '12), (pp. 123-131). New York. Wu, H., Salzberg, B., & Zhang, D. (2004). Online event-driven subsequence matching over financial data streams. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data (SIGMOD '04), (pp. 23-34). New York. Yu, C., Zhang, X., & Luo, H. (2010). Mining Hot Topics from Free-Text Customer Reviews An LDA-Based Approach. Web Information Systems and Applications Conference (WISA), (pp. 85-89). Zheng, D., & Li, F. (2009). Hot Topic Detection on BBS Using Aging Theory. In Proceedings of the International Conference on Web Information Systems and Mining (WISM '09), (pp. 129-138).
|