|
[1] S.E. Miller, “Integrated optics: An introduction, Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969. [2] F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide, IEEE Photo.Tech. Lett., vol. 7, no.5, pp.535-537, 1995. [3] Gregory H. Olsen, “InGaAsP laser diodes, Opt. Eng., vol. 20, pp. 440-445, 1981. [4] Prentice Hall, and P. Kaiser, “Vibrational mode assignments, Appl. Phys. Lett., vol. 23, pp.45, 1973. [5] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm, Rev. Electrical Commun. Lab., vol. 27, pp.497-506, 1979. [6] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits, McGraw-Hill Book Company, 1989. [7] R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers, Electron. Lett., vol. 21, 1985. [8] S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions, Electron. Lett., vol. 21, 1985. [9] C.W. Pitt, “Sputtered glass optical waveguides, Electron. Lett., vol. 9, pp.401-403, 1973. [10] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass, Electron. Lett., vol. 14, pp.132-134, 1978. [11] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters, j.Lightwave Technol., Vol. 14, pp. 58-65, Apr. 1996. [12] V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings, Opt. Lett., Vol. 22, pp. 648-650, May 1997. [13] M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., Vol. 14, pp. 361-362, Mar. 2002. [14] A. W. Snyder, “Coupled-mode theory for optical fibers, J. Opt. Soc. Am., Vol. 62, pp. 1267-1972, Nov. 1972. [15] D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998. [16] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair, IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005. [17] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings, Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000. [18] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber, IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001. [19] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998. [20] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings, Opt. Commun., vol. 208, pp. 321-327, Jul. 2002. [21] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers, Opt. Lett., vol. 21, pp. 336-338, Mar. 1996. [22] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002. [23] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter, IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997. [24] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings, Electron. Lett., vol. 34, pp. 1132-1133, May 1998. [25] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks, Electron. Lett., vol. 36, pp. 512-514, Mar. 2000. [26] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss, Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002. [27] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs, IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005. [28] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology, Opt. Eng., vol. 43, pp.342-345, Feb. 2004. [29] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique, Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005. [30] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides, Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002. [31] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence, J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003. [32] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides, IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003. [33] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength, Electron. Lett., vol. 40, pp. 422–424, Apr. 2004. [34] Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide, Appl. Phys. Lett., vol. 86, 241115, June 2005. [35] D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998. [36] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description, Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007. [37] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength, Electron. Lett., vol. 40, pp. 422-424, Apr. 2004. [38] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide, Appl. Phys. Lett., vol. 86, 241115, June 2005. [39] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings, J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002. [40] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002. [41] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings, Opt. Commun., vol. 208, pp. 321-327, Jul. 2002. [42] H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings, IEEE Photon. Technol. Lett., vol.10, no. 11,Nov. 1998 [43] Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber grating, Opt. Commun. vol. 244, pp. 233-243, 2005. [44] R.S.Weis and T.K.Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985 [45] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices, Prentice Hall [46] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-indexwaveguides in LiNbO3 Appl. Phys. Lett., 41, p.607-608 ,1982 [47] K. Yamamoto, Tetsuo Characteristics of pyrophosphoric acid PE inLiNbO3, J.Appl. Phys. 70, 11, p6663, 1991 [48] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid, IEEE Trans. Light Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993. [49] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid, Electron. Lett., vol.26, pp. 81-82, 1990. [50] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid, IEEE Trans. Photonics Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991. [51] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides, J. Opt. Comm., vol. 9 pp. 19-23, 1988. [52] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides, Appl. Phys. Lett., vol. 42, pp. 633-635, 1983. [53] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange, J. Lightwave Technol., vol. 18, pp. 562-567, 2000. [54] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties, IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996. [55] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass, Electron. Lett., vol. 14, pp.132-134, 1978. [56] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate Appl. Opt. ,Vol. 35, No. 36 y 20 December 1996. [57] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3, Appl. Phys. Lett., 25, p458-460 (1974) [58] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides, Appl. Opt., 30, p1085-1089 (1991) [59] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion, Appl. Phys. Lett., 27, p19-21 (1975). [60] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides, Appl. Phys. Lett., 33, p70-72 (1978) [61] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides, Appl. Phys. Lett., 30, p376-379 (1977) [62] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide, Appl. Phys. Lett., 31, p742-744 (1977) [63] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3, Appl. Phys. Lett. 38, p509-511 (1981). [64] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3, Appl. Phys .Lett., 33, p733-734 (1978) [65] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength, Electron. Lett., vol. 32, no. 11, pp. 1003-1005, May 1996. [66] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization, IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996. [67] Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-Prism Loss Measurement of Optical Waveguides, Appl. Phys. Lett., Vol. 37, No. 3, pp. 269-271, Aug. 1980. [68] R. G. Hunsperger, Integrated Optics. Berlin: Springer-Verlag, 1984. [69] R. G. Walker, “Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides, Electron. Lett., Vol. 21, No. 13, pp. 581-583, June 1985. [90] Y. Okamura, A. Miki, and S. Yamamoto, “Observation of Wave Propagation in Integrated Optical Circuits, Appl. Opt., Vol. 25, No. 19, pp. 3405-3408, Jan. 1986. [71] R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler, Appl. Opi. Vol. 12, pp. 2901-2908, Apr. 1973. [72] C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method, National Cheng Kung University, Master thesis, 2010. [73] S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992. [74] R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer, 2002. [75] J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express, Vol. 15, pp. 2370-2314, Mar. 2007. [76] J. M. White and P. F. Heidrich, “Optical waveguide Refractive Index Profiles from Measurement of Mode Indices: A Simple Analysis, Appl. Opt., Vol. 15, No. 1, pp. 151-155, June 1976. [77] P. Hertel and H. P. Menzler, “Improved Inverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides, Appl. Phys., Vol. 15, pp. 75-80, June 1980. [78] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description, Optics & Laser Technology, Vol. 39, pp. 1204-1213, Sept. 2007. [79] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides, IEEE Photonics Technol. Lett, Vol. 15, pp. 1094-1096, Aug. 2003. [80] Wei Jin, Kin Seng Chiang and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching, Opt. Lett. , Vol. 35, No. 4 , February 15, 2010. [81] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings, IEEE Photonics Technology Letters, Vol. 20, No. 14 July. 15, 2008. [82] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun,,“Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide, IEEE Photonics Technology Letters, VOL. 22, NO. 18, SEPTEMBER 15, 2010 [83] W. Jin, K. S. Chiang, and Q. Liu,“Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate, Optics. Express, Vol. 16, No. 25, December 8, 2008.
|