跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔榮偉
研究生(外文):Rong-WeiGong
論文名稱:質子交換法應用於鈮酸鋰長週期波導光柵之設計及研製
論文名稱(外文):Design and Fabrication of Long-Period Waveguide Gratings on Lithium Niobate by Proton Exchange
指導教授:莊文魁莊文魁引用關係
指導教授(外文):Ricky W. Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:89
中文關鍵詞:光波導質子交換長週期光柵光波導濾波器相位移光柵
外文關鍵詞:optical waveguidesproton exchangelong-period gratingwaveguide filtersphase shift grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
長週期光纖光柵(Long-period fiber grating, LPFG)已被廣泛研究和應用在光纖通訊系統上,但是光纖在元件的實現上會有幾何形狀和材料選擇上的限制,為了要消除光纖在製作上的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)已被提出研究和實現,然而隨著積體光學電路的進步,由於傳統的光柵濾波器之單一的工作波長已經無法應用於過濾多個波長的特殊頻譜需求,因此進而促使一些多波長的元件譬如像高密度分波多工系統(DWDM)的問世。但此類元件多半利用兩個或兩個以上的獨立濾波器去達到其工作需求,在後續的元件積體化整合上將會變得更加困難,但如果使用相移式(phase-shift)長週期光柵去達到兩個甚至以上的抑制頻帶則可滿足此需求。
在本論文中,我們利用二次質子交換(two-step proton-exchange)技術成功地在LiNbO3基板上製作出可靠度高且造價低廉的長週期波導光柵元件,其光柵週期為Λ=44 μm。第一次質子交換主要是製作平面波導披覆層,其溫度控制在250°C,時間為4個小時,熱退火溫度為400°C,時間為70分鐘,而第二次質子交換法主要是製作波導層,其溫度控制在250°C,時間為55分鐘,而光柵製作則是利用AZ-5214E光阻,經由標準的黃光微影製作而成。後續的量測結果顯示此光柵元件光波長抑制對比度(dip contrast)最大可達到18dB,半高全寬(FWHM)約為2.8nm,共振波長為1549.5nm,其模擬與實驗結果都相符合。
接著利用相移長週期光柵理論設計出2、3、4、5等4種不同區段(section)的相位移長週期光柵,而隨著區段數M的增加,其兩個主要抑制頻帶之間的旁瓣(sidelobes)數為M-2,而低谷跨距(trough span)隨著區段數的增加則呈現線性的增加。
Long period fiber grating (LPFG) has been extensively researched and used in fiber optic communications systems, but its device applicability cannot be expanded any further due to the inherent limitations associated with the fiber such as its fixed cylindrical shape and optically linear dielectrics. In order to mitigate the fiber-entailed limitations and also to take into account for the monolithic integratibility of devices, long period gratings based on the various waveguide structures or sometime being collectively referred to as long period waveguide gratings (LPWGs) are therefore proposed. However, with the advent of integrated optical circuits, the traditional gratings functioned as filters only involve with a single wavelength, so for other device applications that involve the filtering and transmitting of multiple wavelengths such as the dense wavelength-division multiplexing (DWDM), the traditional LPWGs could hardly be proven useful! Therefore it would be wise if the LPWGs could be further improved in order to adapt to the foregoing demand. With this spirit in mind the concept of phase-shifted long-period gratings are hereby proposed, designed and fabricated in order to deliver the selective filter spectra that involve at least two rejection bands.
In this thesis, highly reliable and low cost long-period waveguide gratings in LiNbO3 substrates were successfully produced using the two-step proton-exchange (PE) process. The proton source needed for the experiment was supplied by stearic acid and the grating pitch (Λ) so designed was set at 44 μm. In the first PE process, the slab waveguide cladding was formed while the temperature was controlled at 250°C for 4-hour and annealed later at 400°C for 70 min. The second step PE process was executed to form the core while the temperature was set at 250°C for 55min. The grating pitch was produced using AZ5214-E photoresist via a standard photolithographic technique. The subsequent measurements showed that the maximum dip contrast of the LPG device was about 18dB and the full width at half maximum (FWHM) was about 2.8nm. The resonant wavelength was measured to be 1549.5nm, which agreed rather well with the simulation conducted beforehand.
The phase-shifted long period gratings with a finite number (M) of sections cascaded together are proposed and fabricated. It was expected theoretically and later justified experimentally that an M-section phase-shifted long period grating would produce (M-2) sidelobes between two dominant rejection bands, and the separation between the two rejection bands increased linearly with respect to M.
目錄

中文摘要 І
英文摘要 ІII
致謝 VI
目錄 VІII
表目錄 XI
圖目錄 XI

第一章 序論 1
1.1 光通訊簡介 1
1.2 光學積體電路 4
1.3 論文架構 6
參考文獻 7
第二章 長週期光柵 8
2.1 導論 8
2.2 長週期光纖光柵(Long-period fiber grating, LPFG) 9
2.3 長週期波導光柵(Long-period waveguide grating) 11
2.4 相位移長週期光纖光柵 15
參考文獻 20
第三章 LiNbO3光波導 25
3.1 導論 25
3.2 質子交換製作光波導 26
3.2.1 熱退火式質子交換(APE) 29
3.3 常用之非線性光學材料 32
3.4 金屬擴散式波導 33
參考文獻 35
第四章 波導光學特性與量測 38
4.1 導論 38
4.2 光波導的耦合效益 39
4.2.1 菱鏡耦合技術 39
4.2.2 邊射耦合技術(end fire coupling) 42
4.3 折射率分佈 45
4.4 光波導損耗來源及量測 46
4.4.1 損耗的來源 46
4.4.2 損耗之量測方法 48
參考文獻 49
第五章 長週期以及長週期相位移光柵之模擬設計與實驗 51
5.1 導論 51
5.2 結構模擬及設計 51
5.2.1 波導層與批覆層之模態有效折射率 53
5.3 元件製作流程 55
5.3.1 基板清洗 57
5.3.2 質子交換光波導 58
5.3.3 光阻光柵定義於波導 59
5.3.4 拋光以及研磨 62
5.3.5 光場量測 64
5.4 穿透頻譜(Transmission spectrum)量測分析 67
5.5 長週期光柵之頻譜分析 69
5.5.1 相位移長週期光柵之頻譜分析 70
5.5.2 相位移長週期光柵之頻譜模擬 71
5.5.3 兩個區段的相位移長週期光柵 74
5.5.4 三個區段的相位移長週期光柵 76
5.5.5 四個區段的相位移長週期光柵 78
5.5.6 五個區段的相位移長週期光柵 80
5.6 結論 82
參考文獻 85
第六章 結論與未來進展 86
6.1 結論 86
6.2 未來進展 88
參考文獻 89
[1] S.E. Miller, “Integrated optics: An introduction, Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[2] F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide, IEEE Photo.Tech. Lett., vol. 7, no.5, pp.535-537, 1995.
[3] Gregory H. Olsen, “InGaAsP laser diodes, Opt. Eng., vol. 20, pp. 440-445, 1981.
[4] Prentice Hall, and P. Kaiser, “Vibrational mode assignments, Appl. Phys. Lett., vol. 23, pp.45, 1973.
[5] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm, Rev. Electrical Commun. Lab., vol. 27, pp.497-506, 1979.
[6] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits, McGraw-Hill Book Company, 1989.
[7] R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers, Electron. Lett., vol. 21, 1985.
[8] S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions, Electron. Lett., vol. 21, 1985.
[9] C.W. Pitt, “Sputtered glass optical waveguides, Electron. Lett., vol. 9, pp.401-403, 1973.
[10] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass, Electron. Lett., vol. 14, pp.132-134, 1978.
[11] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters, j.Lightwave Technol., Vol. 14, pp. 58-65, Apr. 1996.
[12] V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings, Opt. Lett., Vol. 22, pp. 648-650, May 1997.
[13] M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., Vol. 14, pp. 361-362, Mar. 2002.
[14] A. W. Snyder, “Coupled-mode theory for optical fibers, J. Opt. Soc. Am., Vol. 62, pp. 1267-1972, Nov. 1972.
[15] D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[16] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair, IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005.
[17] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings, Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
[18] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber, IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
[19] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
[20] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings, Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
[21] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers, Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
[22] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[23] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter, IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
[24] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings, Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
[25] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks, Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
[26] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss, Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
[27] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs, IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
[28] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology, Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
[29] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique, Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005.
[30] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides, Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
[31] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence, J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
[32] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides, IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
[33] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength, Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
[34] Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide, Appl. Phys. Lett., vol. 86, 241115, June 2005.
[35] D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[36] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description, Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
[37] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength, Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
[38] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide, Appl. Phys. Lett., vol. 86, 241115, June 2005.
[39] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings, J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
[40] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[41] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings, Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
[42] H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings, IEEE Photon. Technol. Lett., vol.10, no. 11,Nov. 1998
[43] Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber grating, Opt. Commun. vol. 244, pp. 233-243, 2005.
[44] R.S.Weis and T.K.Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985
[45] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices, Prentice Hall
[46] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-indexwaveguides in LiNbO3 Appl. Phys. Lett., 41, p.607-608 ,1982
[47] K. Yamamoto, Tetsuo Characteristics of pyrophosphoric acid PE inLiNbO3, J.Appl. Phys. 70, 11, p6663, 1991
[48] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid, IEEE Trans. Light Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993.
[49] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid, Electron. Lett., vol.26, pp. 81-82, 1990.
[50] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid, IEEE Trans. Photonics Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991.
[51] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides, J. Opt. Comm., vol. 9 pp. 19-23, 1988.
[52] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides, Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[53] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange, J. Lightwave Technol., vol. 18, pp. 562-567, 2000.
[54] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties, IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
[55] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass, Electron. Lett., vol. 14, pp.132-134, 1978.
[56] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate Appl. Opt. ,Vol. 35, No. 36 y 20 December 1996.
[57] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3, Appl. Phys. Lett., 25, p458-460 (1974)
[58] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides, Appl. Opt., 30, p1085-1089 (1991)
[59] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion, Appl. Phys. Lett., 27, p19-21 (1975).
[60] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides, Appl. Phys. Lett., 33, p70-72 (1978)
[61] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides, Appl. Phys. Lett., 30, p376-379 (1977)
[62] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide, Appl. Phys. Lett., 31, p742-744 (1977)
[63] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3, Appl. Phys. Lett. 38, p509-511 (1981).
[64] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3, Appl. Phys .Lett., 33, p733-734 (1978)
[65] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength, Electron. Lett., vol. 32, no. 11, pp. 1003-1005, May 1996.
[66] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization, IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996.
[67] Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-Prism Loss Measurement of Optical Waveguides, Appl. Phys. Lett., Vol. 37, No. 3, pp. 269-271, Aug. 1980.
[68] R. G. Hunsperger, Integrated Optics. Berlin: Springer-Verlag, 1984.
[69] R. G. Walker, “Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides, Electron. Lett., Vol. 21, No. 13, pp. 581-583, June 1985.
[90] Y. Okamura, A. Miki, and S. Yamamoto, “Observation of Wave Propagation in Integrated Optical Circuits, Appl. Opt., Vol. 25, No. 19, pp. 3405-3408, Jan. 1986.
[71] R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler, Appl. Opi. Vol. 12, pp. 2901-2908, Apr. 1973.
[72] C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method, National Cheng Kung University, Master thesis, 2010.
[73] S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[74] R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer, 2002.
[75] J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express, Vol. 15, pp. 2370-2314, Mar. 2007.
[76] J. M. White and P. F. Heidrich, “Optical waveguide Refractive Index Profiles from Measurement of Mode Indices: A Simple Analysis, Appl. Opt., Vol. 15, No. 1, pp. 151-155, June 1976.
[77] P. Hertel and H. P. Menzler, “Improved Inverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides, Appl. Phys., Vol. 15, pp. 75-80, June 1980.
[78] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description, Optics & Laser Technology, Vol. 39, pp. 1204-1213, Sept. 2007.
[79] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides, IEEE Photonics Technol. Lett, Vol. 15, pp. 1094-1096, Aug. 2003.
[80] Wei Jin, Kin Seng Chiang and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching, Opt. Lett. , Vol. 35, No. 4 , February 15, 2010.
[81] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings, IEEE Photonics Technology Letters, Vol. 20, No. 14 July. 15, 2008.
[82] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun,,“Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide, IEEE Photonics Technology Letters, VOL. 22, NO. 18, SEPTEMBER 15, 2010
[83] W. Jin, K. S. Chiang, and Q. Liu,“Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate, Optics. Express, Vol. 16, No. 25, December 8, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊