跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:華元甫
研究生(外文):Yuan-FuHua
論文名稱:氧化鎵覆蓋層於氮化鋁鎵/氮化鎵異質結構之紫外光三波段光檢測器
論文名稱(外文):AlGaN/GaN Heterostructure with a Ga2O3 Cap Layer Ultraviolet Tri-Band Photodetectors
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:70
中文關鍵詞:氮化鋁鎵氮化鎵氧化鎵紫外光檢測器
外文關鍵詞:AlGaNGaNGa2O3UV Photodetectors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製和分析了氧化鎵覆蓋層於氮化鋁鎵/氮化鎵異質結構之紫外光檢測器。我們藉由許多方式提升拒斥比及降低暗電流以研製三波段紫外光檢測器。
起初,我們利用爐管熱氧化方式於氮化鋁鎵/氮化鎵異質結構上成長單斜氧化鎵層,並且製作成金半金雙波段光檢測器。成長120 nm厚單斜氧化鎵之光檢測器,其暗電流於1和10 V偏壓下分別為2.05 × 10-9和4.50 × 10-8 A。與無單斜氧化鎵層之光檢測器比較,暗電流可降低約四個數量級。具有120 nm厚單斜氧化鎵之雙波段紫外光檢測器, UV-B對UV-A於1 V偏壓下和UV-A對可見光於10 V偏壓下之拒斥比分別為80.53和311.95。
接著,我們將不同功函數之金屬應用於電極上。與鈦/鋁電極相比,具有較高功函數之鎳/金電極可降低暗電流,於1和10 V偏壓下分別為1.24 × 10-10和9.44 × 10-10 A。使用鈦/鋁電極和鎳/金電極之光檢測器,UV-C對UV-B於1 V偏壓下之拒斥比分別為8.90和39.54。因此使用鎳/金電極之光檢測器具有第三波段以應用於三波段紫外光檢測器。
最後,於成長單斜氧化鎵絕緣層時,將金奈米粒子參與其中並可視為催化劑。金奈米粒子可降低暗電流、增加粒子致光散射、增加UV-C對暗電流之電流比及增加UV-C對UV-B之拒斥比。使用鈦/鋁電極和鎳/金電極並具有金奈米粒子之光檢測器, UV-C對UV-B於1 V偏壓下之拒斥比分別為705.19和157.37。因此,使用鈦/鋁電極並具有金奈米粒子之光檢測器,UV-C對UV-B於1 V偏壓下具有最大之拒斥比,其值為705.19;使用鎳/金電極並具有金奈米粒子之光檢測器具有最小之暗電流,於1和10 V偏壓下分別為2.77 × 10-11和3.91 × 10-10 A。於本論文中,使用鈦/鋁電極和鎳/金電極並具有金奈米粒子之光檢測器最適合應用於三波段紫外光檢測器。
In this thesis, the fabrication and analysis of AlGaN/GaN heterostructure with a Ga2O3 cap layer ultraviolet (UV) photodetectors (PDs) were performed. We enhanced the rejection ratios and reduced the dark current by various methods so as to fabricate tri-band UV PDs.
First, the growth of β-Ga2O3 layer by furnace oxidation above AlGaN/GaN heterostructure and the fabrication of metal-semiconductor-metal (MSM) dual-band PDs have been reported. The dark current of the PD with a 120-nm-thick β-Ga2O3 layer were 2.05 × 10-9 and 4.50 × 10-8 A under 1 and 10 V applied bias, respectively. Compared to the PD without β-Ga2O3 cap layer, the leakage current could be effectively suppressed over 4 orders of magnitude by a thick β-Ga2O3 layer. The rejection ratios of UV-B to UV-A at 1 V and UV-A to visible light at 10 V of the dual-band UV PD with a 120-nm-thick cap layer were 80.53 and 311.95, respectively.
Second, we changed the electrodes of PDs with different work function metals. With higher work functions Ni/Au electrodes compared to Ti/Al electrodes, the dark current reduced to 1.24 × 10-10 and 9.44 × 10-10 A under 1 and 10 V applied bias, respectively. The rejection ratios of UV-C to UV-B under 1 V applied bias of the PD with Ti/Al electrodes and Ni/Au electrodes were 8.90 and 39.54, respectively. The PD with Ni/Au electrodes had the third band to cater to tri-band UV PD applications.
Finally, the β-Ga2O3 insulating layer was grown with Au nanoparticles which served as catalyst. PDs with Au nanoparticles could reduce the dark current, increase the particles-induced light scattering, enhance the current ratio of UV-C to dark current and enhance the rejection ratio of UV-C to UV-B. The rejection ratios of UV-C to UV-B under 1 V applied bias of the PD with Au nanoparticles with Ti/Al electrodes and Ni/Au electrodes were 705.19 and 157.37, respectively. Hence, the PD with Au nanoparticles with Ti/Al electrodes had the largest rejection ratio of UV-C to UV-B under 1 V applied bias of 705.19 while the PD with Au nanoparticles with Ni/Au electrodes had the smallest leakage current of 2.77 × 10-11 and 3.91 × 10-10 A under 1 and 10 V applied bias, respectively. The PD with Au nanoparticles with Ti/Al electrodes and Ni/Au electrodes were the best choices to cater to tri-band UV PD applications in this thesis.
摘要 I
Abstract III
誌謝 V
Contents VI
Figure Captions VIII
Table Captions X
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.1.1 Ultraviolet (UV) Photodetectors (PDs) 1
1.1.2 AlGaN/GaN Heterostructure 2
1.1.3 β-Ga2O3 3
1.2 Organization of the Thesis 4
References 5
Chapter 2. Fabrication and Measurement Apparatus 10
2.1 Field-Emission Scanning Electron Microscope 10
2.2 Energy-Dispersive X-Ray Spectroscopy 10
2.3 X-Ray Diffraction Analysis (XRD) 11
2.4 Measurement system 12
References 13
Chapter 3. Growth of Ga2O3 Cap Layer and the Fabrication of Ultraviolet Dual-Band Photodetectors 16
3.1 Introduction 16
3.2 Experiments 17
3.3 Results and Discussion 19
3.4 Summary 21
References 23
Chapter 4. AlGaN/GaN Heterostructure with a Ga2O3 Cap Layer Ultraviolet Photodetectors with Different Electrodes 33
4.1 Introduction 33
4.2 Experiments 34
4.3 Results and Discussion 35
4.4 Summary 37
References 38
Chapter 5. Growth of Ga2O3 Cap Layer with Au Nanoparticles and the Fabrication of Ultraviolet Tri-Band Photodetectors 46
5.1 Introduction 46
5.2 Experiments 47
5.3 Results and Discussion 49
5.4 Summary 53
References 55
Chapter 6. Conclusions and Future Works 67
6.1 Conclusions 67
6.2 Future Works 68
References in Chapter 1
[1]T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, Flame Detection by a β-Ga2O3-Based Sensor, Jpn. J. Appl. Phys., vol. 48, Jan 2009.
[2]M. Razeghi, Short-wavelength solar-blind detectors - Status, prospects, and markets, Proc. IEEE, vol. 90, pp. 1006-1014, Jun 2002.
[3]E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumont, et al., High-performance GaN p-n junction photodetectors for solar ultraviolet applications, Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep 1998.
[4]G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, et al., High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures, Appl. Phys. Lett., vol. 71, pp. 2154-2156, Oct 1997.
[5]N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity, IEEE Photonics Technol. Lett., vol. 16, pp. 1718-1720, Jul 2004.
[6]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry, Appl. Phys. Lett., vol. 80, pp. 347-349, Jan 21 2002.
[7]T. Palacios, E. Monroy, F. Calle, and F. Omnes, High-responsivity submicron metal-semiconductor-metal ultraviolet detectors, Appl. Phys. Lett., vol. 81, pp. 1902-1904, Sep 2002.
[8]J. L. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors, Appl. Phys. Lett., vol. 84, pp. 2091-2093, Mar 2004.
[9]Y. H. Ahn and J. Park, Efficient visible light detection using individual germanium nanowire field effect transistors, Appl. Phys. Lett., vol. 91, Oct 2007.
[10]S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes, Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
[11]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, InGaN-GaN multiquantum-well blue and green light-emitting diodes, IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278-283, Mar-Apr 2002.
[12]S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, et al., InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate, Appl. Phys. Lett., vol. 72, pp. 211-213, 1998.
[13]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo, and S. L. Wu, AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer, IEEE Sens. J., vol. 9, pp. 87-92, 2009.
[14]M. Razeghi and A. Rogalski, Semiconductor ultraviolet detectors, J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
[15]N. Tripathi, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, and L. D. Bell, AlGaN based tunable hyperspectral detector, Appl. Phys. Lett., vol. 90, p. 231103, 2007.
[16]F. Xie, H. Lu, D. J. Chen, X. L. Ji, F. Yan, R. Zhang, et al., Ultra-Low Dark Current AlGaN-Based Solar-Blind Metal-Semiconductor-Metal Photodetectors for High-Temperature Applications, IEEE Sens. J., vol. 12, pp. 2086-2090, 2012.
[17]C. C. Huang and C. S. Yeh, GaOOH, and β- and γ-Ga2O3 nanowires: preparation and photoluminescence, New J. Chem., vol. 34, pp. 103-107, 2010.
[18]S. Geller, Crystal Structure of beta-Ga2O3, J. Chem. Phys., vol. 33, pp. 676-684, 1960.
[19]H. S. Qian, P. Gunawan, Y. X. Zhang, G. F. Lin, J. W. Zheng, and R. Xu, Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3, Cryst. Growth Des., vol. 8, pp. 1282-1287, Apr 2008.
[20]Z. G. Ji, J. Du, J. Fan, and W. Wang, Gallium oxide films for filter and solar-blind UV detector, Opt. Mater., vol. 28, pp. 415-417, Mar 2006.
[21]Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors, Appl. Phys. Lett., vol. 90, Jan 2007.
[22]T. Oshima, T. Okuno, and S. Fujita, Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., vol. 46, pp. 7217-7220, Nov 2007.
[23]P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, Individual β-Ga2O3 nanowires as solar-blind photodetectors, Appl. Phys. Lett., vol. 88, Apr 2006.
[24]T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Vertical solar-blind deep-ultraviolet schottky photodetectors based on β-Ga2O3 substrates, Appl. Phys. Express, vol. 1, Jan 2008.
[25]M. Orita, H. Ohta, M. Hirano, and H. Hosono, Deep-ultraviolet transparent conductive β-Ga2O3 thin films, Appl. Phys. Lett., vol. 77, pp. 4166-4168, Dec 2000.
[26]F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition, J. Appl. Phys., vol. 98, Jul 2005.
[27]H. W. Kim and N. H. Kim, Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 110, pp. 34-37, Jun 2004.
[28]G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, Chemical vapour deposition and characterization of gallium oxide thin films, Thin Solid Films, vol. 279, pp. 115-118, Jun 1996.
[29]Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sens. Actuator B-Chem., vol. 93, pp. 431-434, Aug 2003.
[30]A. C. Lang, M. Fleischer, and H. Meixner, Surface modifications of Ga2O3 thin film sensors with Rh, Ru and Ir clusters, Sens. Actuator B-Chem., vol. 66, pp. 80-84, Jul 2000.

References in Chapter 2
[1]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, et al., Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films, Appl. Phys. Lett., vol. 68, pp. 643-645, Jan 1996.
[2]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, et al., Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers, Appl. Phys. Lett., vol. 77, pp. 2557-2559, Oct 2000.
[3]Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, et al., Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy, Appl. Phys. Lett., vol. 86, Jan 2005.

References in Chapter 3
[1]K. P. Korona, A. Drabinska, P. Caban, and W. Strupinski, Tunable GaN/AlGaN ultraviolet detectors with built-in electric field, J. Appl. Phys., vol. 105, Apr 2009.
[2]A. Asgari, E. Ahmadi, and M. Kalafi, AlxGa1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures, Microelectron. J., vol. 40, pp. 104-107, Jan 2009.
[3]L. S. Chuah, Z. Hassan, H. A. Hassan, and N. M. Ahmed, GaN Schottky barrier photodiode on Si (111) with low-temperature-grown cap layer, J. Alloys Compd., vol. 481, pp. L15-L19, Jul 2009.
[4]Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, et al., Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates, Appl. Phys. Lett., vol. 94, Jun 2009.
[5]S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, et al., Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures, Appl. Phys. Lett., vol. 76, pp. 1534-1536, Mar 2000.
[6]J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, Misfit dislocation formation in the AlGaN/GaN heterointerface, J. Appl. Phys., vol. 96, pp. 7087-7094, Dec 2004.
[7]E. C. Young, A. E. Romanov, C. S. Gallinat, A. Hirai, G. E. Beltz, and J. S. Speck, Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1-xN/GaN heterostructures, Appl. Phys. Lett., vol. 96, Jan 2010.
[8]S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang, et al., Deposition of SiO2 layers on GaN by photochemical vapor deposition, J. Electrochem. Soc., vol. 150, pp. C77-C80, Feb 2003.
[9]L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, et al., High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure, Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec 2000.
[10]C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., vol. 44, pp. 7889-7891, Nov 2005.
[11]C. T. Lee, H. W. Chen, and H. Y. Lee, Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN, Appl. Phys. Lett., vol. 82, pp. 4304-4306, Jun 2003.
[12]K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor, Thin Solid Films, vol. 496, pp. 37-41, Feb 2006.
[13]F. Ren, C. R. Abernathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, et al., Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics, Solid-State Electronics, vol. 42, pp. 2177-2181, Dec 1998.
[14]M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, et al., Dielectric properties of electron‐beam deposited Ga2O3 films, Appl. Phys. Lett., vol. 64, pp. 2715-2717, May 1994.
[15]R. Suzuki, S. Nakagomi, and Y. Kokubun, Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer, Appl. Phys. Lett., vol. 98, p. 131114, 2011.
[16]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film, IEEE Sens. J., vol. 11, pp. 999-1003, Apr 2011.
[17]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, A β-Ga2O3/GaN Hetero-Structured Solar-Blind and Visible-Blind Dual-Band Photodetector, IEEE Sens. J., vol. 11, pp. 1491-1492, Jun 2011.
[18]S. Nakamura, GaN Growth Using GaN Buffer Layer, Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
[19]E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., Reduction of threading dislocation density in GaN using an intermediate temperature interlayer, Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.
[20]R. R. Pela, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmuller, and L. K. Teles, Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach, Appl. Phys. Lett., vol. 98, Apr 2011.
[21]O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, et al., Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition, J. Vac. Sci. Technol. B, vol. 14, pp. 3532-3542, Nov-Dec 1996.

References in Chapter 4
[1]S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, et al., Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures, Appl. Phys. Lett., vol. 76, pp. 1534-1536, Mar 2000.
[2]J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, Misfit dislocation formation in the AlGaN/GaN heterointerface, J. Appl. Phys., vol. 96, pp. 7087-7094, Dec 2004.
[3]E. C. Young, A. E. Romanov, C. S. Gallinat, A. Hirai, G. E. Beltz, and J. S. Speck, Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1-xN/GaN heterostructures, Appl. Phys. Lett., vol. 96, Jan 2010.
[4]C. T. Lee, H. W. Chen, and H. Y. Lee, Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN, Appl. Phys. Lett., vol. 82, pp. 4304-4306, Jun 2003.
[5]K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor, Thin Solid Films, vol. 496, pp. 37-41, Feb 2006.
[6]F. Ren, C. R. Abernathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, et al., Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics, Solid-State Electronics, vol. 42, pp. 2177-2181, Dec 1998.
[7]M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, et al., Dielectric properties of electron‐beam deposited Ga2O3 films, Appl. Phys. Lett., vol. 64, pp. 2715-2717, May 1994.
[8]R. Suzuki, S. Nakagomi, and Y. Kokubun, Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer, Appl. Phys. Lett., vol. 98, p. 131114, 2011.
[9]H. L. Huang, Y. N. Xie, W. F. Yang, F. Zhang, J. F. Cai, and Z. Y. Wu, Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contacts, IEEE Electron Device Lett., vol. 32, pp. 530-532, Apr 2011.
[10]Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, et al., GaN Metal-Semiconductor-Metal Ultraviolet Sensors With Various Contact Electrodes, IEEE Sens. J., vol. 2, pp. 366-371, Aug 2002.
[11]H. K. Yadav, K. Sreenivas, and V. Gupta, Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector, Appl. Phys. Lett., vol. 96, May 2010.
[12]S. Nakamura, GaN Growth Using GaN Buffer Layer, Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
[13]E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., Reduction of threading dislocation density in GaN using an intermediate temperature interlayer, Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.

References in Chapter 5
[1]H. R. Stuart and D. G. Hall, Island size effects in nanoparticle-enhanced photodetectors, Appl. Phys. Lett., vol. 73, pp. 3815-3817, Dec 1998.
[2]M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, et al., Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters, Opt. Express, vol. 16, pp. 15754-15758, Sep 2008.
[3]D. M. Schaadt, B. Feng, and E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett., vol. 86, Feb 2005.
[4]B. Cho, J. Lee, H. Seo, and H. Jeon, Electrical stability enhancement of the amorphous In-Ga-Zn-O thin film transistor by formation of Au nanoparticles on the back-channel surface, Appl. Phys. Lett., vol. 102, Mar 2013.
[5]C. H. Lin, T. T. Chen, and Y. F. Chen, Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration, Opt. Express, vol. 16, pp. 16916-16922, Oct 2008.
[6]K. W. Liu, M. Sakurai, M. Y. Liao, and M. Aono, Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles, J. Phys. Chem. C, vol. 114, pp. 19835-19839, Nov 2010.
[7]S. Nakamura, GaN Growth Using GaN Buffer Layer, Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
[8]E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., Reduction of threading dislocation density in GaN using an intermediate temperature interlayer, Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.
[9]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, et al., ZnO nanowire UV photodetectors with high internal gain, Nano Lett., vol. 7, pp. 1003-1009, Apr 2007.
[10]Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Electronic transport through individual ZnO nanowires, Appl. Phys. Lett., vol. 84, pp. 4556-4558, May 2004.
[11]P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination, Appl. Phys. Lett., vol. 89, Sep 2006.
[12]J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, Photoconductive gain modelling of GaN photoconductors, Semicond. Sci. Technol., vol. 13, pp. 563-568, Jun 1998.
[13]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN, J. Appl. Phys., vol. 83, pp. 6148-6160, Jun 1998.
[14]H. K. Yadav, K. Sreenivas, and V. Gupta, Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector, Appl. Phys. Lett., vol. 96, May 2010.
[15]Z. Hajnal, J. Miro, G. Kiss, F. Reti, P. Deak, R. C. Herndon, et al., Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3, J. Appl. Phys., vol. 86, pp. 3792-3796, Oct 1999.
[16]J. M. Wu and C. H. Kuo, Ultraviolet photodetectors made from SnO2 nanowires, Thin Solid Films, vol. 517, pp. 3870-3873, May 2009.
[17]H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater., vol. 9, pp. 205-213, Mar 2010.
電子全文 電子全文(網際網路公開日期:20231231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [51] 林俊龍, 張顯洋, and 陳玉寧, "醫療資訊化與醫療品質管理," 醫療資訊雜誌, vol. 9, pp. 83-92, 1999.
2. [47] 廖熏香, "指標系統再進化-臺灣臨床成效指標介紹," 醫療品質雜誌, vol. 5, pp. 26-29, 2011.
3. [11] 范碧玉, "美國醫院之病歷管理與醫療品管作業考察報告," 醫院雜誌, vol. 27, pp. 33-42, 1994.
4. [46] 董鈺琪, 楊銘欽, 林奇霆, 郭耕溢, 朱子斌, and 邱文達, "參加臺灣醫療照護品質指標系列(THIS)之醫院實施現況及意見調查," 醫護科技學刊, vol. 8, pp. 307-317, 2006.
5. [39] 邱瓊萱, 魏中仁, 楊志良, and 鍾國彪, "醫療產業品質保證與品質管理思潮演進─以美國與台灣為例," 醫院雜誌, vol. 33, pp. 1-12, 2000.
6. [34] 陳佩妮, 鄭守夏, 鍾國彪, and 林王美園, "台灣地區醫療品質指標適用性之探討," 中華公共衛生雜誌, vol. 16, pp. 133-142, 1997.
7. [31] 徐慧娟 and 薛亞聖, "醫院管理指標的性質與應用," 醫院雜誌, vol. 34, pp. 29-40, 2001.
8. [30] 廖熏香 and 楊漢湶, "淺談台灣醫療品質指標計畫," 醫院雜誌, vol. 33, pp. 7-11, 2000.
9. [16] 王先震, "病歷品質與教學:以病為師," 人醫心傳, vol. 11, p. 28, 2005.
10. [13] 王南燕, "電腦化病歷," 醫療資訊雜誌, vol. 3, pp. 29-33, 1994.
11. [2] 鍾國彪 and 游宗憲, "醫療品質指標發展的挑戰與展望:我們還能做什麼?," 臺灣公共衛生雜誌, vol. 28, pp. 345-360, 2009.
12. [61] 陳琇玲, 鍾國彪, and 洪幼珊, "臨床品質指標簡介," 醫院雜誌, vol. 33, pp. 37-45, 2000.
13. [65] 徐珮容, 謝明芫, and 洪冠予, "管理者的指南針-談臺灣臨床成效指標運用之經驗分享," 醫療品質雜誌, vol. 5, pp. 34-36, 2011.
14. [68] 林公孚, "如何認識與運用ISO 900系列標準," 品質月刊, pp. 25-29, 2005.
15. [69] 陳奕光 and 周恬弘, "2000年版ISO 9001標準與醫院平建國際標準應用於醫院品質管理之探討," 醫療品質雜誌, vol. 3, pp. 1-8, 2004.