跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊宗翰
研究生(外文):Tsung-HanYang
論文名稱:非晶氧化銦鎵鋅薄膜電晶體及其光電應用
論文名稱(外文):Investigation of Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors and Optoelectronic Applications
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:75
中文關鍵詞:薄膜電晶體氧化銦鎵鋅紫外光電晶體
外文關鍵詞:thin film transistoramorphous indium gallium zinc oxidedeep UV phototransistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研製高介電常數三氧化二鎵(Ga2O3)對非晶氧化銦鎵鋅(IGZO)薄膜電晶體之影響並創新應用於深紫外光電晶體。首先,我們應用非晶氧化銦鎵鋅薄膜做為主動層、三氧化二鎵與二氧化矽做為閘極介電層來製作薄膜電晶體,可以得到場效遷移率11.2 cm2/Vs,臨界電壓0.5 V,次臨界擺幅0.29 V,電流開關比105。此外我們指出不同二氧化矽厚度對元件電特性之影響,改善電特性的確切來源並最佳化比例參數,以改善元件特性。
在實驗第二部分,我們證明非晶銦鎵鋅薄膜電晶體與高介電常數三氧化二鎵作為緩衝層來製作在玻璃基板上。在室溫下沉積下得到臨界電壓0.75 V,電流開關比1.4×105,次臨界擺幅0.14 V,場效遷移率39 cm2/Vs。將與有三氧化二鎵緩衝層與沒有做比較,其中發現我們可以達到高場效遷移率,低臨界電壓與操作電壓。這些結果可以歸咎於有效降低主動層與絕緣層之間的介面缺陷。
在非晶銦鎵鋅光電晶體部分,我們製作出可偵測深紫外光與近紫外光高介電係數三氧化二鎵/非晶氧化銦鎵鋅光電晶體,首先,使用三氧化二鎵作為絕緣層,在當閘極電壓為0 V,波長為250 nm紫外光照光下,量測電流-電壓從3.8×10-12 A 上升至2.3×10-5 A,在偏壓為0 V與250 nm的光照下所量測到的光響應值為1.7 A/W。當偏壓為0 V時,光敏感率達到1.4×104。接著,使用三氧化二鎵作為緩衝層,波長為250 nm紫外光照光下,量測電流-電壓從1.1×10-10 A 上升至1.3×10-5 A,所量測到的光響應值為1.58 A/W,且在380 nm紫外光照光下所量測到的光響應值為1.7×10-4 A/W,深紫外光到可見光拒斥比為1×105。其結果顯示非晶銦鎵鋅薄膜電晶體與高介電常數三氧化二鎵運用偵測於紫外光時,有低的功率損耗與較高的光響應和拒斥比。
In this thesis, amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) with Ga2O3 high k material were fabricated and analysis of deep UV phototransistor investigated. First, we apply a-IGZO thin film as channel layer to the fabrication of TFT with Ga2O3/SiO2 gate dielectric. It was found that the field-effect mobility were 11.2 cm2/Vs, threshold voltage of 0.5 V, subthreshold swing of 0.29 V/decade and Ion/Ioff of 105 for a-IGZO TFT with Ga2O3/SiO2 gate dielectric. Additionally, we report the effect of different silicon oxide thickness on the device performance of a-IGZO TFTs was investigated.
In the second part of our experiment, the fabrication of a-IGZO thin-film transistor with a Ga2O3 buffer layer on a glass substrate was demonstrated. The room-temperature-deposited a-IGZO channel with Ga2O3 exhibits threshold voltage of 0.75 V, drain-source current on/off ratio of 1.4×105, subthreshold swing of 0.14 V/decade, and field-effect mobility of 39 cm2/Vs under a low operation voltage. Compared with and without high k Ga2O3 buffer layer, it was found that we can achieve higher mobility, low threshold voltage and operation voltage. These results could be contributed to the Ga2O3 buffer layer decrease interface trap density efficiently.
On the part of a-IGZO phototransistor, a deep-UV sensitive a-IGZO phototransistor with Ga2O3 high k material was fabricated. Using Ga2O3 as gate dielectric, it was found that measured current increased from 3.8×10-12 A to 2.3×10-5 A as we illuminated the sample with λ= 250 nm UV light when VG was biased at 0 V. It was found that measured responsivity of the device was 1.7 A/W and we could achieve the photosensitivity of 1.4×104 when the device was biased at 0 V. Then using Ga2O3 as buffer layer, it was found that measured current increased from 1.1×10-10 A to 1.3×10-5 A as we illuminated the sample with λ= 250 nm UV light and the measured responsivity of the device was 1.58 A/W. Beside, with an incident light wavelength of 380 nm, it was found that measured responsivity of the device was 1.7×10-4 A/W and we could achieve the photosensitivity of 1×105. These results suggest that the a-IGZO thin film transistors have the low power consumption, high responsivity and rejection ratio when used in UV detection.
摘要 I
Abstract III
誌謝 V
Contents VI
Table Captions IX
Figure Captions X
Chapter 1. Introduction 1
1.1 Background of Thin Film Transistors 1
1.2 Overview of Amorphous Oxide Semiconductor 2
1.3 Overview of High-κ Material 3
1.4 Overview of Ultraviolet phototransistors 4
1.5 Organization of Dissertation 5
Reference 8
Chapter 2. Fundamental of amorphous oxide semiconductor and phototransistor 13
2.1 Amorphous ZnO-based oxide semiconductor 13
2.1.1 Electronic structure of AOS 13
2.1.2 Electronic properties of a-IGZO 14
2.2 ZnO-based phototransistor 15
2.3 Important Parameters 16
2.3.1 Field-Effect Mobility 16
2.3.2 Threshold Voltage (VT) 17
2.3.3 On/off current Ratio (Ion/off) 17
2.3.4 Subthreshold Swing (S.S) 18
2.3.5 Responsivity 18
2.4 Experimental apparatus 19
2.4.1 Radio-frequency sputtering system 19
2.4.2 Measurement Systems 19
Reference 26
Chapter 3. IGZO TFTs with Ga2O3/SiO2 dielectric layers 28
3.1 Introduction 28
3.2 Fabrication of a-IGZO TFTs with Ga2O3/SiO2 dielectric layers 29
3.3 Current-voltage (I-V) characteristics of a-IGZO TFTs with Ga2O3 and Ga2O3/SiO2 dielectric layers 30
3.3.1 Modulation of silicon oxide thickness 32
3.3.2 Modulation of oxygen flow rate 34
Reference 44
Chapter 4. IGZO TFTs with Ga2O3 buffer layers 46
4.1 Introduction 46
4.2 Fabrication of a-IGZO TFTs with Ga2O3 buffer layers 47
4.3 Current-voltage (I-V) characteristics of a-IGZO TFTs with Ga2O3 buffer layers 48
Reference 53
Chapter 5. Ga2O3/Indium-Gallium-Zinc-Oxide Thin Film Transistor Ultraviolet Phototransistor 55
5.1 Introduction 55
5.2 Fabricated of deep UV Ga2O3/a-IGZO phototransistors 56
5.2.1 IGZO TFTs with Ga2O3/SiO2 dielectric layers 56
5.2.2 IGZO TFTs with Ga2O3 buffer layers 57
5.3 Ga2O3/IGZO TFT UV phototransistor under illumination 58
5.3.1 IGZO TFTs with Ga2O3/SiO2 dielectric layers 58
5.3.2 IGZO TFTs with Ga2O3 buffer layers 62
Reference 70
Chapter 6. Conclusion and future work 72
6.1 Conclusion 72
6.2 Future work 74
Chapter 1.
[1]P. K. Weifer, H. Borkan, G. Sadasiv, L. Meray-Horvath, and F. V. Shallcross, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements, Proc. IEEE., vol. 51, pp. 851, 1964.
[2]J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition, Appl. Phys. Lett., vol. 94, pp. 142107, 2009.
[3]Y. J. Cho, J. H. Shin, S. M. Bobade, Y. B. Kim, and D. K. Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors, Thin Solid Films, vol. 517, pp. 4115-4118, 2009.
[4]J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator, Appl. Phys. Lett., vol. 93, pp. 242111, 2008.
[5]H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method, Jpn. J. Appl. Phys., vol. 47, pp. 87–90, 2008.
[6]Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, and C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors, J. Vac. Sci. Technol. B., vol. 26, pp. 1472-1476, 2008.
[7]C. Li, Y. Li, Y. Wu, B. S. Ong, and R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film, J. Appl. Phys., vol. 102, pp. 076101, 2007.
[8]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, pp. 1269-1271, 2003.
[9]N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric, IEEE Elec. Dev. Lett., vol. 30, pp. 1317-1319, 2009.
[10]W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric, IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
[11]D. A. Mourey, D. A. Zhao, and T. N. Jackson, “Selfaligned-gate ZnO TFT circuits, IEEE Electron Dev. Lett., vol. 31, pp. 326-328, 2010.
[12]H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs, Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
[13]K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors, IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
[14]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-filmtransistors with transparent amorphous zinc indium tin oxide channel layer, J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
[15]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations, J. Appl. Phys., vol. 89, pp. 5243-7275, 2001.
[16]S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, A complementary method to determine the effective flow resistivity of flat ground states, J. Korean Phys. Soc., vol. 43, pp. 868-874, 2003.
[17]L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Elec. Dev. Lett., vol. 21, pp. 181-183, 2000.
[18]B. H. Lee, L. Kang, R. Nieh, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing, Appl. Phys. Lett., vol. 76, pp. 1926-1928, 2000.
[19]M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, “Interdiffusion studies for HfSi[sub x]O[sub y] and ZrSi[sub x]O[sub y] on Si, J. Appl. Phys., vol. 92, pp. 3540-3550, 2002.
[20]K. S. Hwang, Y. S. Jeon, S. B. Kim, C. K. Kim and J. S. Oh, “Ca-Doped ZrO2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor, J. Korean Phys Soc., vol. 43, pp. 754, 2003.
[21]H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering, Vacuum, vol. 83, pp. 1311-1316, 2009.
[22]C. T. Lee, H. Y. Lee, and H. W. Chan, “GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Elec. Dev. Lett., vol. 24, pp. 54-56, 2003.
[23]Campbell J C 1985 Semiconductors and Semimetal vol. 22D, ed W T Tsang (New York: Academic)
[24]A. Star, Y. Lu, K. Bradley, and G. Gruner, “Nanotube optoelectronic memory devices, Nano Lett., vol. 4, pp.1587, 2004.
[25]Y. Huang, and R. I. Hornsey, “Nitride-based LEDs with p-InGaN capping layer, IEEE Trans. Elec. Dev., vol. 50, pp. 2570, 2003.
[26]G. Chaji, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging, Appl. Phys. Lett., vol. 93, pp. 203504, 2008.
[27]N. M. Johnson, and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica, Appl. Phys. Lett., vol. 45, pp. 1102-1104, 1984.
[28]Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors, Appl. Phys. Lett., vol. 56, pp. 650-652, 1990.
[29]C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors, vol. 9, pp. 6504–6529, 2009.

Chapter 2.
[1]H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids, vol. 352, pp. 851–858, 2006.
[2]H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, J. Non-Cryst. Solids, vol. 200, pp. 165–169, 1996.
[3]M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor, Phil. Mag. B., vol. 81, pp. 501–515, 2001.
[4]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer,“ Nature, vol. 432, pp. 488-492, 2004.
[5]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, Appl. Phys. Lett. , vol. 82, pp. 1117-19, 2003.
[6]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, pp. 488-492, 2004.
[7]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155, no. 6, pp. H390-H395, 2008.
[8]D. A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003.

Chapter 3.
[1]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, pp. 1269, 2003.
[2]Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes, Thin Solid Films, vol. 516, pp. 5899–5902, 2008.
[3]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, pp. 488–492, 2004.
[4]K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Application of exponential tail-state distribution model to the above-threshold characteristics of Zn-based oxide thin-film transistors, IEEE Tran. Electron. Dev., vol. 56, pp. 2165–2168, 2009.
[5]Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices, Jpn. J. Appl. Phys., vol. 48, pp. 031301, 2009.
[6]M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications, J. Appl. Phys., vol. 77, pp. 686-693, 1995.
[7]D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation, Appl. Phys. Lett., vol. 80, pp. 446-448 ,2002.
[8]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film, IEEE Sens. J., vol. 11, pp. 999-1003, 2011.
[9]W. S. Cheong, J. Y. Bak, and H. S. Kim, “Transparent Flexible Zinc–Indium–Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films, Jpn. J. Appl. Phys., vol. 49, pp. 05EB10-05EB10-4, 2010.
[10]K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs, J. Electrochem. Soc., vol. 155, pp. H390-H395, 2008.

Chapter 4.
[1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, no. 5623, pp. 1269–1271, 2003.
[2]Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes, Thin Solid Films, vol. 516, pp. 5899–5902, 2008.
[3]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, pp. 488–492, 2004.
[4]K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Application of exponential tail-state distribution model to the above-threshold characteristics of Zn-based oxide thin-film transistors, IEEE Tran. Electron. Dev., vol. 56, pp. 2165–2168, 2009.
[5]Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices, Jpn. J. Appl. Phys., vol. 48, pp. 031301, 2009.
[6]S. Lee, K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Jeon, C. Kim, I.H. Song, and UI. Chung, “Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors, Appl. Phys. Lett., vol. 98, pp. 203508, 2011.
[7]H. K. Noh, K. J. Chang, B. Ryu, and W. J. Lee, “Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors, Phys. Rev. B., vol. 84, pp. 115105, 2011.
[8]T. Kamiya, K. Nomura, and H. Hoson, “Subgap states doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory, Phys Stat Sol (a), vol. 207, pp. 1698–17003, 2010.
[8]S.-L. Wang, J.-W. Yu, P.-C. Yeh, H.-W. Kuo, L.-H. Peng, A. A. Fedyanin, E. D. Mishina, A. S. Sigov “High mobility thin film transistors with indium oxide/gallium oxide bi-layer structures, Appl. Phys. Lett., vol. 100, pp. 063506, 2012.

Chapter 5.
[1]S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based sensors with ITO contacts, IEEE Sensors J., vol. 6, pp. 406–411, 2006.
[2]P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L. Wu, High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer, IEEE J. Quan. Electron., vol. 43, pp. 1060–1064, 2007.
[3]M. Razeghi, “Short-wavelength solar-blind detectors-status, prospects, and markets, Proc. IEEE, vol. 90, pp. 1006–1014, 2002.
[4]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer, IEEE J. Quan. Electron., vol. 44, pp. 916–921, 2008.
[5]M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors, IEEE J. Sel. Top. Quan. Electron., vol. 10, pp. 840-848, 2004.
[6]M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors, IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
[7]H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors, Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003.
[8]M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications, J. Appl. Phys., vol. 77, pp. 686-693, 1995.
[9]T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric, Appl. Phys. Lett., vol. 101, pp. 261112, 2012.
[10]K. H. Choi and H. K. Kim, “Control of conducting filaments in TiO2 films by a thin interfacial conducting oxide layer at the cathode, Appl. Phys. Lett., vol. 102, pp. 082903, 2013.
[11]R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C. A. Richter, A. R. Hight-Walker, X. Liang, A. Seabaugh, D. Jena, H. G. Xing, D. J. Gundlach, and N. V. Nguyen, “Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy, Appl. Phys. Lett., vol. 101, pp. 022105, 2012.
[12]W. Y. Weng, T. J. Hsueh, S. J. Chang, and S. P. Chang, “A Solar-Blind β-Ga2O3 Nanowire Photodetector, IEEE Photo. Tech. Lett., vol. 22, pp. 709-711, 2010.

電子全文 電子全文(網際網路公開日期:20230101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top