|
§ References in chapter 1 1. E. Thrush, O. Levi, L. J. Cook, S. J. Smith, J. S. Harris, and Jr., in Proceedings of the 26th Annual International Conference of the IEEE, Engineering Medicine and Biology Society (EMBS), San Francisco, CA, (2004), pp. 2080–2081.
2. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional Brain Imaging Using Near-Infrared Technology, IEEE Eng. Med. Biol. Mag., 26, (2007), pp.38-46.
3. J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions, Acta Astronautica, 46, (2000), pp. 287-296.
4. R. Calarco, M. Fiordelisi, S. Lagomarsino, and F. Scarinci, “Near-infrared metal-semiconductor-metal photodetector integrated on silicon, Thin Solid Films, 391, (2001), pp.138-142.
5. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide, Appl. Phys. Lett., 96, (2010), pp.241112.
6. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications, Appl. Phys. Lett., 92, (2008), pp. 081103.
7. W. J. Lai, S. S. Li, C. C. Lin, C. C. Kuo, C. W. Chen, K. H. Chen, and L. C. Chen, “Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids, Scr. Mater., 63, (2010), pp. 653-656.
8. B. S. Passmore, J. Wu, M. O. Manasreh, V. P. Kunets, P. M. Lytvyn, and G. J. Salamo, “Room Temperature Near-Infrared Photoresponse Based on Interband Transitions in In0.35Ga0.65As Multiple Quantum Dot Photodetector, IEEE Electron Device Lett., 29, (2008), pp.224-227.
9. P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, “AlxGa1-xN for solar-blind UV detectors, J. Cryst. Growth, 231, (2001), pp.366-370.
10. K.J. Chen, F.Y. Hung, S.J. Chang, and S.J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films, J. Alloys Compounds, 479, (2009), pp.674-677.
11. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors, J. Appl. Phys., 79, (1996), pp. 7433.
12. H.M. Manasevit, F.M. Erdmann, and W.I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials, J. Electrochem. Soc., 118, (1971), pp.1864-1868.
13. I. Akasaki and I. Hayashi, “Research on blue emitting devices, Ind. Sci. Technol., 17, (1976), pp.48.
14. H. Neumann, “Optical properties and electronic band structure of CuInSe2, Sol. Cells, 16, (1986), pp.317-333.
15.M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells, Prog. Photovoltaics, 7, (1999), pp.311-316.
16. S. Yamanaka, M. Konagai, and K. Takahashi, “Characterization of Copper Indium Diselenide Thin Films by Raman Scattering Spectroscopy for Solar Cell Applications, Jpn. J. Appl. Phys., 28, (1989), pp.L1337-L1340.
17. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Prog. Photovoltaics, 11, (2003), pp.225-230. . 18. J. L. García and C. Guillén, “CuIn1-xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers, Thin Solid Films, 517, (2009), pp.2240-2243.
19. P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, and W. N. Shafarman, “CuIn1-xAlxSe2 thin films and solar cells, J.Appl. Phys., 91, (2002), pp.10153-10156.
20.W. N. Shafarman, S. Marsillac, P. D. Paulson, M. W. Haimbodi, and R. W. Birkmire, in Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans (IEEE, New York, 2002), pp.519.
21. S. Shirakata, I. Aksenov, K. Sato, and S. Isomura, “Photoluminescence Studies in CuAlS2 Crystals, Jpn. J. Appl. Phys., 31, (1992), pp.L1071-L1074.
22. D. N. Okoli, A. J. Ekpunobi, and C. E. Okeke, “Optical Properties of Chemical Bath Deposited CuAlS2 Thin Films, The Pacific J. Sci. Tech., 7, (2006), pp.59-63.
§ References in chapter 2 1. E. H. Rhoderick and R. H. Williams, “Metal-Semiconductor Contacts, Oxford: Clarendon Press, (1998).
2. S. M. Sze, “Semiconductor Device Physics and Technology, Wiley, (1985), pp.160.
3. S. M. Sze, “Semiconductor Device Physics and Technology, Wiley, (1985), pp.278.
4. S. M. Sze, D. J. Coleman, JR., and A. Loya, “CURRENT TRANSPORT IN METAL-SEMICONDUCTOR-METAL (MSM) STRUCTURES, Solid-State Electronics, 14, (1971), pp.1209-1218.
5. E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes, Thin Solid Films, 516, (2008), pp.1629-1633.
6. E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J.A. Muñoz, and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications, Semicond. Sci. Technol., 13, (1998), pp. 1042-1046.
7. G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures, Appl. Phys. Lett., 71, (1997), pp. 2154-2156.
8. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors, Appl. Phys. Lett., 71, (1997), pp.2334-2336.
9. J. J. Horng, Y. K. Su, S. J. Chang, T. K. Ko, and S. C. Shei, “Nitride-based Schottky barrier sensor module with high electrostatic discharge reliability, IEEE Photon. Technol. Lett., 19, (2007), pp.717-719.
10. C.H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts, IEEE Photon. Technol. Lett., 13, (2001), pp.848-850.
11. R. S. Ohl, “Light-Sensitive Electric Device, U.S. Patent 2,402,662. Field May 27, 1941. Granted June 25, 1946.
12. M. Riordan and L. Hoddeson, “The Origins of the pn Junction, IEEE Spectrum, 34, (1997), pp.46.
13. S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, (2007).
14. S.K. Cheung and N.W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics, Appl. Phys. Lett., 49, (1986), pp.85-87.
15. H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys., 50, (1979), pp.5052-5053.
§ References in chapter 3 1.W. Hörig, H. Neumann, H. Sobotta, B. Schumann, and G. Kühn, “THE OPTICAL PROPERTIES OF CuInSe2 THIN FILMS, Thin Solid Films, 48, (1978), pp. 67-72.
2.L. L. Kazmerski, M. Hallerdt, P. J. Ireland, R. A. Mickelsen, and W. S. Chen, “Optical properties and grain boundary effects in CuInSe2, Journal of Vacuum Science & Technology A, 1, (1983), pp.395-398.
3.M. L. Fearheily, “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals, Solar Cells, 16, (1986), pp.91-100.
4.S. B. Zhang, S. H. Wei, and A. Zunger, “Stabilization of ternary compounds via ordered arrays of defect pairs, Physical Review Lett., 78, (1997), pp.4059-4062.
5.R. Noufi, R. Axton, C. Herrington, and S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2, Appl. Phys. Lett., 45, (1984), pp.668-670.
6.S. Singhal, A. K. Chawla, S. Nagar, H. O. Gupta, and R. Chandra, “Photoluminescence measurements in the phase transition region of Zn1-xCdxS films, J. Nanopart. Res., 12, (2010), pp.1415-1421.
7.P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, and W. N. Shafarman, “CuIn1-xAlxSe2 thin films and solar cells, J.Appl. Phys., 91, (2002), pp.10153-10156.
8.S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, and W.N. Shafarman, “High-efficiency solar cells based on Cu(In,Al)Se2 thin films, Appl. Phys. Lett., 81, (2002), pp.1350-1352.
9.B. Kavitha and M. Dhanam, “In and Al composition in nano-Cu(InAl)Se2 thin films from XRD and transmittance spectra, Mater. Sci. Eng. B, 140, (2007) pp.59-63. 10.D. Dwyer, I. Repins, H. Efstathiadis, and P. Haldar, “Selenization of co-sputtered CuInAl precursor films, Sol. Energy Mater. Sol. Cells, 94, (2010), pp.598-605.
11.J. H. Yun, R.B.V. Chalapathy, J. C. Lee, J. Song, K. H. Yoon, “Formation of CuIn1-xAlxSe2 thin films by Selenization of Metallic Precursors in Se Vapor, Solid State Phenomena, 124-126, (2007), pp.975-978.
12.H. Neumann, “Optical properties and electronic band structure of CuInSe2, Sol. Cells, 16, (1986), pp.317-333.
13.M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells, Prog. Photovoltaics, 7, (1999), pp.311-316.
14. S. Yamanaka, M. Konagai, and K. Takahashi, “Characterization of Copper Indium Diselenide Thin Films by Raman Scattering Spectroscopy for Solar Cell Applications, Jpn. J. Appl. Phys., 28, (1989), pp.L1337-L1340.
15. E. Thrush, O. Levi, L. J. Cook, S. J. Smith, J. S. Harris, and Jr., in Proceedings of the 26th Annual International Conference of the IEEE, Engineering Medicine and Biology Society (EMBS), San Francisco, CA, (2004), pp. 2080–2081.
16. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional Brain Imaging Using Near-Infrared Technology, IEEE Eng. Med. Biol. Mag., 26, (2007), pp.38-46.
17. W. N. Shafarman, S. Marsillac, P. D. Paulson, M. W. Haimbodi, and R. W. Birkmire, in Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans (IEEE, New York, 2002), pp.519.
18. J. Kois, S. Bereznev, E. Mellikov, and A. Öpik, “Electrodeposition of CuInSe2 thin films onto Mo-glass substrates, Thin Solid Films, 511–512, (2006), pp.420-424. 19. R. Calarco, M. Fiordelisi, S. Lagomarsino, and F. Scarinci, “Near-infrared metal-semiconductor-metal photodetector integrated on silicon, Thin Solid Films, 391, (2001), pp.138-142.
20.W. J. Lai, S. S. Li, C. C. Lin, C. C. Kuo, C. W. Chen, K. H. Chen, and L. C. Chen, “Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids, Scr. Mater., 63, (2010), pp. 653-656.
21.B. S. Passmore, J. Wu, M. O. Manasreh, V. P. Kunets, P. M. Lytvyn, and G. J. Salamo, “Room Temperature Near-Infrared Photoresponse Based on Interband Transitions in In0.35Ga0.65As Multiple Quantum Dot Photodetector, IEEE Electron Device Lett., 29, (2008), pp.224-227.
§ References in chapter 4 1.K. Wetzig and C. M. Schneider, “Metal based thin films for electronics, 2nd ed., Wiley-VCH, Weinheim, (2006).
2. S. A. Campbell, “The Science and Engineering of Microelectronic Fabrication, 2nd ed., Oxford University Press, (2001).
3. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York, (2000).
4. “Single-Side Mask Aligner, in http://140.116.176.21/www/technique/20071112/single%20side%20mask%20aligner.htm.
5. V. V. Rao, T. B. Ghosh, and K. L. Chopra, “Vacuum Science and Technology, 3rd ed., Sunil Sachdev, (2008).
6. ModelMILA-5000 Infrared Lamp Heating System Instruction Manual, in http://www.ulvac.com/download/mila-5000%20e%20disk/mila5000_hard_.pdf, ULVAC-RIKO Engineering Department, Inc.
7.P. Luo, P. Yu, R. Zuo, J. Jin, Y. Ding, J. Song, Y. Chen, “The preparation of CuInSe2 films by solvothermal route and non-vacuum spin-coating process, Physica B, 405, (2010), pp.3294-3298.
8. H. Buert and H. Jenett, “Surface and thin film analysis: a compendium of principles, instrumentation, applications, Wiley-VCH, Weinheim, (2002).
9. O. C. Wells, “Scanning electron microscopy, McGraw-Hill, New York, (1974).
10. G. C. Schwartz and K. V. Srikrishnan, “Handbook of semiconductor interconnection technology, 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006). 11. M. Birkholz, P. F. Fewster, and C. Genzel, “Thin film analysis by X-ray scattering, Wiley-VCH, Weinheim, (2006).
12. T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces, John Wiley & Sons Ltd, Chichester, (2000).
§ References in chapter 5 1.J. S. Chen, E. Kolawa, C. M. Garland, M.-A. Nicolet, and R. P. Ruiz, “Microstructure of polycrystalline CuInSe2/Cd(Zn)S heterojunction solar cells, Thin Solid Films, 219, (1992), pp.183-192.
2.F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules, Sol. Energy, 77, (2004), pp.685-695.
3. J. Hedström, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, and H. –W. Schock, “ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, Proceeding of the 23rd IEEE Photovoltaic Specialist Conference, (1993), pp.364-371.
4. S. H. Wei, S. B. Zhang, and A. Zunger, “Effect of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys., 85, (1999), pp.7214-7218.
5. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams, 2nd ed., William W. Scott, Jr., (1992).
6.J. H. Scofied, A. Duda, D. Albin, B. L. Ballard, and P. K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films, 260, (1995), pp.26-31.
7.S. Singhal, A. K. Chawla, S. Nagar, H. O. Gupta, and R. Chandra, “Photoluminescence measurements in the phase transition region of Zn1-xCdxS films, J. Nanopart. Res., 12, (2010), pp.1415-1421.
8.D. C. Perng, J. W. Chen, and C. J. Wu, “Formation of CuInAlSe2 film with double graded bandgap using Mo(Al) back contact, Sol. Energy Mater. Sol. Cells, 95, (2011), pp. 257-260.
9. M. Gloeckler, J. R. Sites, and W. K. Metzger, “Grain-boundary recombination in Cu(In,Ga)Se2 solar cells, J. Appl. Phys., 98, (2005), pp.113704. 10. T. Wada, “Microstructural characterization of high-efficiency Cu(In,Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells, 49, (1997), pp.249-260.
11.M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H.W. Schock, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films, Sol. Energy Mater. Sol. Cells, 41/42, (1996), pp.335-343.
12.D. Cahen and R. Noufi, “Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance, Appl. Phys. Lett., 54, (1989), pp.558-560.
13. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells, Prog. Photovoltaics, 7, (1999), pp.311-316.
§ References in chapter 6 1. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 97, (2005), pp.114302.
2. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Core-Shell Nanowires for Photovoltaic Applications, Nano Lett., 9, (2009), pp.148-154.
3. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates, Nat. Mater., 8, (2009), pp.648-653.
4. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett., 9, (2009), pp.279-282.
5. Y. -J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells, Nano Lett., 8, (2008), pp.1501-1505.
6. Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires, J. Mater. Chem., 21, (2011), pp.6020-6026.
7.K. Yu and J. Chen, “Enhancing Solar Cell Efficiencies through 1-D Nanostructures, Nanoscale Res. Lett., 4, (2009), pp.1-10.
8.S. Singhal, A. K. Chawla, S. Nagar, H. O. Gupta, and R. Chandra, “Photoluminescence measurements in the phase transition region of Zn1-xCdxS films, J. Nanopart. Res., 12, (2010), pp.1415-1421.
9.D. C. Perng, J. F. Fang, and J. W. Chen, “Nano-Structured ZnSe/CIS Heterojunction Solar Cells with ZnSe/ZnO Coaxial Nanowires, J. Electrochem. Soc., 158, (2011), pp.H1097-H1011.
10.R. P. Chang and D. C. Perng, “Near-infrared photodetector with CuIn1-x AlxSe2 thin film, Appl. Phys. Lett., 99, (2011), pp.081103.
11.J. R. Tuttle, D.S. Albin, and R. Noufi, “Thoughts on the microstructure of polycrystalline thin film CuInSe2 and its impact on material and device performance, Sol. Cells, 30, (1991), pp.21-38.
12.C. J. Hibberd, K. Ernits, M. Kaelin, U. Müller, and A. N. Tiwari, “Chemical Incorporation of Copper into Indium Selenide Thin-films for Processing of CuInSe2 Solar Cells, Prog. Photovolt: Res. Appl., 16, (2008), pp.585-593.
13.J. S. Chen, E. Kolawa, C. M. Garland, M.-A. Nicolet, and R. P. Ruiz, “Microstructure of polycrystalline CuInSe2/Cd(Zn)S heterojunction solar cells, Thin Solid Films, 219, (1992), pp.183-192.
14.T. Wada, “Microstructural characterization of high-efficiency Cu(In,Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells, 49, (1997), pp.249-260.
15.D. Cahen and R. Noufi, “Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance, Appl. Phys. Lett., 54, (1989), pp.558-560.
16.S. Armstrong, P. K. Datta, and R. W. Miles, “Properties of zinc sulfur selenide deposited using a close-spaced sublimation method, Thin Solid Films, 403-404, (2002), pp.126-129.
§ References in chapter 7 1.P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, “AlxGa1-xN for solar-blind UV detectors, J. Cryst. Growth, 231, (2001), pp.366-370.
2.K.J. Chen, F.Y. Hung, S.J. Chang, and S.J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films, J. Alloys Compounds, 479, (2009), pp.674-677.
3.M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors, J. Appl. Phys., 79, (1996), pp. 7433.
4.H.M. Manasevit, F.M. Erdmann, and W.I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials, J. Electrochem. Soc., 118, (1971), pp.1864-1868.
5.I. Akasaki and I. Hayashi, “Research on blue emitting devices, Ind. Sci. Technol., 17, (1976), pp.48.
6.S. Shirakata, I. Aksenov, K. Sato, and S. Isomura, “Photoluminescence Studies in CuAlS2 Crystals, Jpn. J. Appl. Phys., 31, (1992), pp.L1071-L1074.
7.D. N. Okoli, A. J. Ekpunobi, and C. E. Okeke, “Optical Properties of Chemical Bath Deposited CuAlS2 Thin Films, The Pacific J. Sci. Tech., 7, (2006), pp.59-63.
8.T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams, 2nd ed., William W. Scott, Jr., (1992).
9.J. Lewis, “Material challenge for flexible organic devices, materials today, 9, (2006), pp.38-45.
10.F. Smaili, “Effect of Annealing on the Structural and Optical Properties of CuIn1–xAlxS2 Thin Films, Mater. Sci. Appl.,2, (2011), pp.1212-1218.
11.R. Zhang, B. Wang, D. Wan, and L. Wei, “Effects of the sulfidation temperature on the structure, composition and optical properties of ZnS films prepared by sulfurizing ZnO films, Opt. Mater., 27, (2004), pp. 419-423.
|