|
Chapter 1 [1] E. Lohmüller, B. Thaidigsmann, M. Pospischil et al., “20% efficient passivated large-area metal wrap through solar cells on Boron-Doped Cz Silicon, IEEE Electron Device Letter, vol. 32, no. 12, pp. 1719–1721 (2011). [2] B. Thaidigsmann, A. Drews, T. Fellmeth et al., “Synergistic effects of rear-surface passivation and the metal wrap through concept, IEEE Journal of Photovoltaics, vol. 2, no. 2, pp. 109–113 (2012). [3] F. Kiefer, C. Ulzhöfer, T. Brendemühl et al., “High efficiency N-type emitter-wrap-through silicon solar cells, IEEE Journal of Photovoltaics, vol. 1, no. 1, pp. 49–53 (2011). [4] D. Kray, J. Dicker, D. Osswald et al., “Progress in high-efficiency emitter-wrap-through cells on medium quality substrates, in Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 1340–1343, Osaka, Japan, May (2003). [5] J. Renshaw and A. Rohatgi, “Device optimization for screen printed interdigitated back contact solar cells, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (2011). [6] F. J. Castaño, D. Morecroft, M. Cascant, et al., Industrially Feasible )19% Efficiency IBC Cells For Pilot Line Processing, Photovoltaic Specialists Conference (PVSC), 37th IEEE (2011). [7] T. Böscke, R. Hellriegel, T. Wütherich et al., “Fully screen-printed PERC cells with laser-fired contacts—an industrial cell concept with 19.5% efficiency, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC '11), pp. 003663–003666, Seattle, Wash, USA (2011). [8] P. Ortega, G. López, A. Orpella et al., “Crystalline silicon solar cells beyond 20% efficiency, in Proceedings of the 8th Spanish Conference on Electron Devices (CDE '11), February (2011). [9] M. Jeon, J. Lee, S. Kim et al., “Ion implanted crystalline silicon solar cells with blanket and selective emitter, Materials Science and Engineering B, vol. 176, no. 16, pp. 1285–1290 (2011). [10] T. Janssens, N.E. Posthuma, B.J. Pawlak et al.,Implantation For An Excellent Definition Of Doping Profiles In Si Solar Cells, 25th European Photovoltaic Solar Energy Conference and Exhibition 5th World Conference on Photovoltaic Energy Conversion, 6-10, Valencia, Spain (2010). [11] N. Stoddard, W. Bei, I. Witting et al., “Casting single crystal silicon: novel defect profiles from BP solar's Mono2 wafers, Solid State Phenomena, vol. 131–133, pp. 1–8 (2008). [12]N. Stoddard, R. Sidhu, J. Creager et al., “Evaluating BP solar's Mono2 material: lifetime and cell electrical data, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC '09), pp. 001163–001168 (2009).
Chapter 2 [1] M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells. John Wiley, New York (2008). [2] S. Pillai, K. R. Catchpole, T. Trupke et al., “Surface Plasmon enhanced silicon solar cells, Journal of Applied Physics, vol. 101 (2007). [3] R. A. Sinton, A. Cuevas, and M Stuckings, Quasi-steady-state photoconductance, a new method for solar cellmaterial and device characterization., in Photovoltaic Specialists Conference, Washington, pp. 457-460 (1996).
Chapter 3 [1] T. Krygowski, P. Sana, G. Crotty et al., A novel technology for the simultaneous diffusion of boron, aluminum and phosphorus in silicon, Photovoltaic Specialists, IEEE Conference, pp. 393-396 (1996). [2] D. Bouhafs, A. Moussi, M. Boumaour et al., N + silicon solar cells emitters realized using phosphoric acid as doping source in a spray process, Thin Solid Films , vol. 510, no. 1, pp. 325-328 (2006). [3] R. Chaoui , A. Messaoud, M.L. Zitouni et al., Development of an emitter for industrial silicon solar cells using the doped oxide solid source diffusion technique, Renewable Energy , vol. 23, no. 3, pp. 417-428 (2001). [4] E. Urrejola, K. Peter, A. Soiland et al., Multicrystalline solar grade silicon solar cells, Photovoltaic Specialists, IEEE Conference, pp. 000799-000805 (2010). [5] J.-F. Nekarda, M. Hörteis, F. Lottspeich et al., Comparison of three different metallization concepts for LFC cells, 25th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2010. Proceedings : 5th World Conference on Photovoltaic Energy Conversion, 6-10, Valencia, Spain, pp.2245-2249 (2010). [6] J. Szlufcik, H. Elgamel, M. Ghannam et al., Simple integral screenprinting process for selective emitter polycrystalline silicon solar cells, Applied Physics Letters, vol. 59, no. 13, pp. 1583-1584 (1991). [7] R.Y. Utama, A. Lennon, M. Lenio et al., Inkjet printing for high efficiency selective emitter silicon solar cells, Proc. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, pp. 1687–1690 (2008). [8] K. Sopian, N. Amin, N. Asim et al., Plasma Implantation for Emitter and Localized Back Surface Field (BSF) Formation in Silicon Solar Cells, Eur. J. Sci. Res. 24, 365–372 (2008). [9]M. B. Spitzer, C. J. Keavney, Low Recombination p+ and n+ Regions for High Performance Silicon Solar Cells, Proceedings 18th IEEE Photovoltaic Specialist Conference, 43 (1985). [10] H.F.Wolf.,Semiconductors,John Wiley &Sons.Inc (1971) [11]A.S.Grove, Physics and Technology of Semiconductor Devices, John Wiley &Sons, (1967). [12]D.V. Morgan, K. Board, RH. Cockrum, An introduction to Microelectronic Technology, John Wiley & Sons Inc (1985). [13] S.M,Sze, Semiconductor Device Physics and Technology, John Wiley& Sons (1969). [14]R. Low, A. Gupta et al., “High Efficiency Selective Emitter Enabled through Patterned Ion Implantation, 35th IEEE PVSC, Honolulu (2010). [15] J. Benick, et al., “Very Low Emitter Saturation Current Densities on Ion Implanted Boron Emitters, 25th EUPVSEC, Valencia, Spain (2010). [16]T. Janssens, et al., “Implantation for an Excellent Definition of Doping Profiles in Si Solar Cells, 25th EUPVSEC, Valencia, Spain (2010). [17]R.A.Sinton,Quasi-Steady-State Photoconductance, A New Method For Solar Cell Material And Device Characterization, 25th PVSC;May 13-17 (1996). [18]R.A. Sinton and A. Cuevasa, “Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Appl. Phys. Lett. 69 (17), 21 (1996). [19] B.A. Moys, Thin Solid Films 21, 145 (1974). [20] D. Redfield, “Method for evaluation of antireflection coatings, Solar Cells, vol. 3, pp. 27-33 (1981). [21] G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry, Journal of Applied Physics, vol. 53, pp. 3745 (1982). [22] Ed. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985). [23] P.A.Basore, D.T. Rover, A.W.Smith, “PC-1D version 2: enhanced numerical solar cell modeling, Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE (1988).
Chapter 4 [1] W.V.Ammon, Silicon crystal growth, in: G. Müller, J.-J.Me´tois, P.Rudolph (Eds.), Crystal Growth — From Fundamentals to Technology, Elsevier, Amsterdam, pp.239–270 (2004). [2] W.Zulehner, D.Huber, Czochralski grown silicon, in:J.Grabmeier (Ed.), Crystals, vol.8,Springer,Berlin, pp.1–143 (1982). [3] W.Dietze, W.Keller, A.Mühlbauer, Float-zone grown silicon, in:J.Grabmeier (Ed.), Crystals,vol.5,Springer,Berlin, pp.1–42 (1981). [4]W.C.Dash, Journal of Applied Physics 30, 456 (1959). [5] A.Müller, M.Gosh, R.Sonnenschein, P.Woditsch, Materials Science and Engineering B134, 257 (2006). [6] N. Stoddard, R. Sidhu, J. Creager et al., “Evaluating BP Solar’s mono2™ material: lifetime and cell electrical data., Photovoltaic Specialists Conference, 34th IEEE, 7-12 June (2009). [7] H.F. Wolf, Semiconductors, John Wiley &Sons.Inc (1971) [8]A.S. Grove, Physics and Technology of Semiconductor Devices, John Wiley &Sons, (1967). [9] D.V. Morgan, K. Board, and R.H. Cockrum, An introduction to Microelectronic Technology, John Wiley& Sons.Inc (1985). [10] S.M. Sze, Semiconductor Device Physics and Technology, John Wiley& Sons (1969). [11] D. Redfield, “Method for evaluation of antireflection coatings, Solar Cells, vol. 3, pp. 27-33 (1981). [12] R. Low, A. Gupta et al., “High Efficiency Selective Emitter Enabled through Patterned Ion Implantation, 35th IEEE PVSC, Honolulu (2010). [13] J. Benick, et al., “Very Low Emitter Saturation Current Densities on Ion Implanted Boron Emitters, 25th EUPVSEC, Valencia, Spain (2010). [14] T. Janssens, et al., “Implantation for an Excellent Definition of Doping Profiles in Si Solar Cells, 25th EUPVSEC, Valencia, Spain (2010). [15] R.A. Sinton,Quasi-Steady-State Photoconductance, A New Method For Solar Cell Material And Device Characterization, 25th PVSC;May 13-17, Washinton, D.C (1996). [16] R.A. Sinton and A. Cuevasa “Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Appl. Phys. Lett. 69 (17), 21 October (1996) [17] B.A. Moys, Thin Solid Films 21, 145 (1974).
Chapter 5 [1] A.W. Smith, A. Rohatgi and S.C. Neel, “Texture: a ray tracing program for the photovoltaic community, Photovoltaic Specialists Conference, Conference Record of the Twenty First IEEE, Vol,1, pp.426 – 431 (1990). [2] E. Fornies, C. Zaldo, J.M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance, Solar Energy Materials and Solar Cells 87, pp. 583-593 (2005). [3] M.A. Gonsalvez, R.M. Nieminen, Surface morphology during anisotropic wet chemical etching of crystalline silicon, New Journal of Physics 5, 100.1-100.28 (2003). [4] J.D. Hylton, A.R. Burgers, W.C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells, Journal of The Electrochemical Society 151, pp 408-427 (2004). [5] J. Nijs, S. Sivoththaman, J. Szlufcik et al., “Overview of solar cell technologies and results on high efficiency multicrystalline silicon substrates, Solar Energy Materials and Solar Cells 48, pp.199-217 (1997). [6] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution. Orientation dependence and behavior of passivation layers, Journal of the Electrochemical Society 137/11, pp. 3612-3626 (1996). [7] U. Gangopadhyay, S.K. Dhungel, P.K. Basu et al., “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Solar Energy Materials and Solar Cells 91/4 ,pp. 285-289 (2007). [8] P. Panek, M. Lipiski, J. Dutkiewicz et al., “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells, Journal of Materials Science 40/6, pp. 1459-1463 (2005). [9] V.Y. Yerokhov, R. Hezel, M. Lipinski et al., “Cost-effective methods of texturing for silicon solar cells, Solar Energy Materials and Solar Cells 72, pp. 291-298 (2002). [10] E.Yablonovitch and G.D.Cody, “Intensity enhancement in textured optical sheets for solar cells, IEEE Transactions on Electron Devices, Vol. ED-29, pp. 300-305 (1982). [11] W.H. Deckman, C.R .Wronski, H. Witzke et al., “Optically enhanced amorphous silicon solar cells, Appl.Phy.Lett., Vol.42, pp. 968-970 (1983). [12] H. F. Wolf, Semiconductors, John Wiley &Sons Inc (1971). [13] A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley & Sons Inc (1967). [14] D. V. Morgan, K. Board, and R. H. Cockrum, An introduction to Microelectronic Technology, John Wiley & Sons Inc (1985). [15] S. M. Sze, Semiconductor Device Physics and Technology, John Wiley& Sons Inc., (1969). [16] D. Redfield, “Method for evaluation of antireflection coatings, Solar Cells, vol. 3, pp. 27-33 (1981). [17] G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry, Journal of Applied Physics, vol. 53, pp. 3745 (1982). [18] Ed. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985).
Chapter 6 [1] K.R.McIntosh et al., Recombination at textured silicon surfaces passivated with silicon dioxide,J. Appl. Phys. , Vol. 105, p. 124520 (2009). [2] C. Gong, E. Simoen, N. E Posthuma et al., “Study of silicon-silicon nitride interface properties on planar (100), planar (111) and textured surfaces using deep-level transient spectroscopy, J. Phys. D: Appl. Phys. 43 485301 (2010). [3] B. Finch, S. C. et al., The Contribution of Planes, Vertices, and Edges to Recombination at Pyramidally Textured Surfaces, IEEE J. Photovoltaics, Vol. 1, pp. 59-65 (2011). [4] P. J. Cousins, J. E. Cotter, Minimizing Lifetime Degradation with thermal Oxidation of upright randomly textured silicon surfaces, Solar Energy Materials and Solar Cells, 90, pp. 228-240 (2005) [5] A.Müller, M.Gosh, R.Sonnenschein, P.Woditsch, Materials Science and Engineering B134, 257 (2006). [6] N. Stoddard, B. Wu, I. Witting et al., Casting single crystal silicon: G. Rozgonyi, R. Clark, Casting single crystal silicon: Novel defect profiles from BP Solar's Mono2 wafers, Solid State Phenomena, vol. 131-133, pp. 1-8 (2008). [7] H.F. Wolf ,Semiconductors,John Wiley &Sons.Inc (1971) [8] A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley & Sons Inc (1967) [9] D. V. Morgan, K. Board, and R. H. Cockrum, An introduction to Microelectronic Technology, John Wiley & Sons Inc (1985). [10] S. M. Sze, Semiconductor Device Physics and Technology, John Wiley& Sons Inc., (1969). [11] D. RedÞeld, “Method for evaluation of antireflection coatings, Solar Cells, vo. 3, no.1, pp. 27-33 (1981). [12] W.R. Runyan, Semiconductor Measurements and Instrumentation, (McGraw-Hill, New York, 1975). [13] Guo Aijuan, Ye Famin, Guo Lihui, Ji Dong, and Feng Shimeng, Effect of the back surface topography on the efficiency in silicon solar cells, Journal of Semiconductors, Vol. 30, No. 7(2009).
CHAPTER 7 [1] Minsung Jeon, Joonsung Lee, Hoon Oh, Jongkeun Lim, Myungik Hwang, Jaewon Seo, Sangkyun Kim, Wonjae Lee, Eunchol Cho, “Emitter Formation Using Ion Implatation Method For Fabrication Of Crystalline, 25th EUPVSEC, pp2438, (2010). [2] S.W. Glunz, S. Rein, J.Y. Lee and W. Warta, Journal of Applied Physics 90 (2001) 2397. [3] J. Renshaw, A. Rohatgi, 37th IEEE PVSC., (2011) 2924.
|