|
References [1]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface, Journal of Applied Physics, vol. 54, no. 6, pp. 3255-3259, 1983. [2]A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Applied Physics Letters, vol. 49, no. 18, pp. 1210-1212, 1986. [3]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin-film transistor with high carrier mobility, Applied Physics Letters, vol. 63, no. 10, pp. 1372-1374, 1993. [4]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications, Journal of Applied Physics, vol. 80, no. 4, pp. 2501-2508, 1996. [5]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, H. Tong-Jyun, D.-W. Chou, and W. Yeong-Her, “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator, Electron Device Letters, IEEE, vol. 30, no. 10, pp. 1039-1041, 2009. [6]C.-Y. Wei, K. Shu-Hao, H. Wen-Chieh, H. Yu-Ming, Y. Chih-Kai, F. Adriyanto, and W. Yeong-Her, “High-performance pentacene-based thin-film transistors and inverters with solution-processed barium titanate insulators, Electron Devices, IEEE Transactions on, vol. 59, no. 2, pp. 477-484, 2012. [7]C.-Y. Wei, H. Wen-Chieh, Y. Chih-Kai, C. Yen-Yu, and W. Yeong-Her, “Low-operating-voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators, Electron Device Letters, IEEE, vol. 32, no. 12, pp. 1755-1757, 2011. [8]K. H. Cherenack, A. Z. Kattamis, B. Hekmatshoar, J. C. Sturm, and S. Wagner, “Amorphous-silicon thin-film transistors fabricated at 300 ° c on a free-standing foil substrate of clear plastic, Electron Device Letters, IEEE, vol. 28, no. 11, pp. 1004-1006, 2007. [9]P. Sung Kyu, J. E. Anthony, and T. N. Jackson, “Solution-processed tips-pentacene organic thin-film-transistor circuits, Electron Device Letters, IEEE, vol. 28, no. 10, pp. 877-879, 2007. [10]H. Klauk, U. Zschieschang, and M. Halik, “Low-voltage organic thin-film transistors with large transconductance, Journal of Applied Physics, vol. 102, no. 7, pp. 074514, 2007. [11]G. R. Team, “Organic transistor/memory devices to reach $21.6 bil in 2015, Electro Manufacturing, vol. 21, pp. 1, 2008. [12]http://en.wikipedia.org/wiki/Electronic_paper [13]P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry, Applied Physics Letters, vol. 82, no. 22, pp. 3964-3966, 2003. [14]P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors, Applied Physics Letters, vol. 78, no. 23, pp. 3592-3594, 2001. [15]R. Müller, S. Smout, C. Rolin, J. Genoe, and P. Heremans, “High mobility short-channel p-type organic transistors with reduced gold content and completely gold-free source/drain bottom contacts, Organic Electronics, vol. 12, no. 7, pp. 1227-1235, 2011. [16]S.-W. Liu, C.-C. Lee, H.-L. Tai, J.-M. Wen, J.-H. Lee, and C.-T. Chen, “In situ electrical characterization of the thickness dependence of organic field-effect transistors with 1−20 molecular monolayer of pentacene, ACS Applied Materials & Interfaces, vol. 2, no. 8, pp. 2282-2288, 2010. [17]K. D. Kim, and C. K. Song, “Low voltage pentacene thin film transistors employing a self-grown metal-oxide as a gate dielectric, Applied Physics Letters, vol. 88, no. 23, pp. 233508, 2006. [18]X.-H. Zhang, S. P. Tiwari, S.-J. Kim, and B. Kippelen, “Low-voltage pentacene organic field-effect transistors with high-kappa HfO2 gate dielectrics and high stability under bias stress, Applied Physics Letters, vol. 95, no. 22, pp. 223302, 2009. [19]R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol. 97, no. 12, pp. 121301-52, 2005. [20]F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors, Small, vol. 8, no. 1, pp. 73-79, 2012. [21]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-performance bottom electrode organic thin-film transistors, Electron Devices, IEEE Transactions on, vol. 48, no. 6, pp. 1060-1064, 2001. [22]D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors, Journal of Applied Physics, vol. 100, no. 2, pp. 024509-13, 2006. [23]S. Rentenberger, A. Vollmer, E. Zojer, R. Schennach, and N. Koch, “UV/ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics, Journal of Applied Physics, vol. 100, no. 5, pp. 053701-6, 2006. [24]S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han, and W. A. Goddard, “First-principles investigation of anistropic hole mobilities in organic semiconductors, The Journal of Physical Chemistry B, vol. 113, no. 26, pp. 8813-8819, 2009. [25]I. Kymissis, “Organic field effect transistors: theory, fabrication and characterization, Springer, pp. 6, 7, 21, 2008. [26]K. R. C. Vollhardt, “Organische chemie, VCH-Verlag, Weinheim, 1990. [27]H. Klauk, “Organic electronics: material, manufacturing and applications, Wiley-Vch, pp. 8, 2006. [28]Z. Bao, and J. Locklin, “Organic field-effect transistors, CRC Press, pp. 162, 164, 2007. [29]H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors, Journal of Applied Physics, vol. 92, no. 9, pp. 5259-5263, 2002. [30]C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, “Hole mobility in organic single crystals measured by a ``flip-crystal' field-effect technique, Journal of Applied Physics, vol. 96, no. 4, pp. 2080-2086, 2004. [31]M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals, Clarendon Press, Oxford, 1982. [32]J. Puigdollers, “Pentacene thin-film transistors with polymeric gate dielectric, Organic Electronics, vol. 5, no. 1-3, pp. 67-71, 2004. [33]W. S. Wong, and A. Salleo, “Flexible electronics: materials and applications, Springer Science+Business Media, 2009. [34]S. Lee, D.-J. Yun, S.-W. Rhee, and K. Yong, “Atomic layer deposition of hafnium silicate film for high mobility pentacene thin film transistor applications, Journal of Materials Chemistry, vol. 19, no. 37, pp. 6857, 2009. [35]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, IEEE Transactions on, vol. 27, no. 3, pp. 606-608, 1980. [36]Credited to Twinson International Co., Ltd. [37]J. Park, R. D. Yang, C. N. Colesniuc, A. Sharoni, S. Jin, I. K. Schuller, W. C. Trogler, and A. C. Kummel, “Bilayer processing for an enhanced organic-electrode contact in ultrathin bottom contact organic transistors, Applied Physics Letters, vol. 92, no. 19, pp. 193311, 2008. [38]S. M. Mukhopadhyay, and T. C. S. Chen, “Surface chemical states of barium titanate: Influence of sample processing, Journal of Materials Research, vol. 10, no. 06, pp. 1502-1507, 1995. [39]L. L. Jiang, X. G. Tang, S. J. Kuang, and H. F. Xiong, “Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition, Applied Surface Science, vol. 255, no. 21, pp. 8913-8916, 2009. [40]J. Yan-ping, T. Xin-gui, L. Qiu-xiang, C. Tie-dong, and Z. Yi-chun, “XPS study of BZT thin film deposited on Pt/Ti/SiO2/Si substrate by pulsed laser deposition, vol. 17, pp. s862-s865, 2007. [41]M. Francisco, S. Z. Alexandre, R. S. Carla, Z. A. Maria, V. A. Jose, and L. Elson, “Effect of oxidizing and reducing atmospheres on Ba(Ti0.90 Zr0.10)o3:2V ceramics as characterized by piezoresponse force microscopy, Processing and Application of Ceramics, vol. 5, no. 3, pp. 139-147, 2011. [42]W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric, Microelectronic Engineering, vol. 85, no. 2, pp. 414-418, 2008. [43]T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, V. R. Rao, R. Lal, Z. H. Huang, G. J. Qi, Z. K. Chen, and C. M. Ng, “Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer, Applied Physics Letters, vol. 90, no. 12, pp. 122112-3, 2007. [44]M. Zhu, G. Liang, T. Cui, and K. Varahramyan, “Temperature and field dependent mobility in pentacene-based thin film transistors, Solid-State Electronics, vol. 49, no. 6, pp. 884-888, 2005. [45]A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors, Applied Physics Letters, vol. 86, no. 26, pp. 263501-3, 2005. [46]T. Li, P. P. Ruden, I. H. Campbell, and D. L. Smith, “Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling, Journal of Applied Physics, vol. 93, no. 7, pp. 4017, 2003. [47]W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, “Molecular orientation of evaporated pentacene films on gold: alignment effect of self-assembled monolayer, Langmuir, vol. 21, no. 6, pp. 2260-2266, 2005. [48]G. E. Thayer, J. T. Sadowski, F. Meyer zu Heringdorf, T. Sakurai, and R. M. Tromp, “Role of surface electronic structure in thin film molecular ordering, Physical Review Letters, vol. 95, no. 25, pp. 256106, 2005. [49]J. H. Kang, and X. Y. Zhu, “Pi-stacked pentacene thin films grown on Au(111), Applied Physics Letters, vol. 82, no. 19, pp. 3248-3250, 2003. [50]D. Gupta, M. Katiyar, and D. Gupta, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation, Organic Electronics, vol. 10, no. 5, pp. 775-784, 2009. [51]D. S. Park, W. C. Jang, S. W. Cho, J. H. Seo, I. S. Jeong, T. W. Kim, G. S. Chang, A. Moewes, K. H. Chae, K. Jeong, K. H. Yoo, and C. N. Whang, “Influence of 2-mercapto-5-nitrobenzimidazole treatment on the electronic characteristics of bottom-contact organic field-effect transistors, Organic Electronics, vol. 9, no. 6, pp. 1010-1016, 2008. [52]W.-K. Kim, K. Hong, and J.-L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes, Applied Physics Letters, vol. 89, no. 14, pp. 142117-3, 2006. [53]H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films, Advanced Functional Materials, vol. 17, no. 17, pp. 3639-3649, 2007. [54]H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, and F.-C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors, Organic Electronics, vol. 10, no. 2, pp. 289-298, 2009. [55]M. A. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, “Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors, ACS Nano, vol. 5, no. 1, pp. 291-298, 2010. [56]K. Berke, S. Tongay, M. A. McCarthy, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “Current transport across the pentacene/CVD-grown graphene interface for diode applications, Journal of Physics: Condensed Matter, vol. 24, no. 25, pp. 255802, 2012. [57]A. Wan, J. Hwang, F. Amy, and A. Kahn, “Impact of electrode contamination on the α-NPD/Au hole injection barrier, Organic Electronics, vol. 6, no. 1, pp. 47-54, 2005. [58]J. Hwang, A. Wan, and A. Kahn, “Energetics of metal–organic interfaces: New experiments and assessment of the field, Materials Science and Engineering: R: Reports, vol. 64, no. 1-2, pp. 1-31, 2009. [59]L.-J. Pegg, and R. A. Hatton, “Nanoscale geometric electric field enhancement in organic photovoltaics, ACS Nano, vol. 6, no. 6, pp. 4722-4730, 2012. [60]G. Horowitz, “Interface modification for tuning the contact resistance of metal/organic semiconductor junctions, The Open Applied Physics Journal, vol. 4, no. 1, pp. 2-7, 2011. [61]S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “High-performance low voltage organic thin-film transistors, Materials Research Society Symposium Proceedings, vol. 870E, pp. H1.4.1-H1.4.5, 2005. [62]W.-K. Kim, K. Hong, and J.-L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes, Applied Physics Letters, vol. 89, no. 14, pp. 142117, 2006. [63]T. Nagai, S. Naka, H. Okada, and H. Onnagawa, “Organic field-effect transistor integrated circuits using self-alignment process technology, Japanese Journal of Applied Physics, vol. 46, no. 4B, pp. 2666-2668, 2007. [64]S. Gowrisanker, Y. Ai, H. Jia, M. A. Quevedo-Lopez, H. N. Alshareef, I. Trachtenberg, H. Stiegler, H. Edwards, R. Barnett, and B. E. Gnade, “Organic thin-film transistors with low threshold voltage variation on low-temperature substrates, Electrochemical and Solid-State Letters, vol. 12, no. 3, pp. H50, 2009. [65]M. Kitamura, Y. Kuzumoto, S. Aomori, and Y. Arakawa, “High-frequency organic complementary ring oscillator operating up to 200 kHz, Applied Physics Express, vol. 4, no. 5, pp. 051601, 2011. [66]M. Rockelé, D.-V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Müller, B. van der Putten, J. Genoe, and P. Heremans, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs, Organic Electronics, vol. 12, no. 11, pp. 1909-1913, 2011. [67]C.-L. Fan, Y.-Z. Lin, W.-D. Lee, S.-J. Wang, and C.-H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors, Organic Electronics, vol. 13, no. 12, pp. 2924-2928, 2012. [68]K. Sung Hoon, L. Sun Hee, K. Youn Goo, and J. Jin, “Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOX gate insulator, Electron Device Letters, IEEE, vol. 34, no. 2, pp. 307-309, 2013.
|