跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠霖
研究生(外文):Kuan-LinChen
論文名稱:利用黃光微影製作溶液式鋯鈦酸鋇絕緣層於五環素薄膜電晶體之研究
論文名稱(外文):High Performance Pentacene Thin Film Transistors with Solution-Processed BZT Gate Insulator via Photolithography
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:99
中文關鍵詞:有機薄膜電晶體五環素高介電常數黃光微影紫外光/臭氧處理
外文關鍵詞:organic thin film transistorpentacenehigh dielectric constantphotolithographyUV/ozone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用溶液式高介電材料鋯鈦酸鋇於五環素有機薄膜電晶體,相較於金屬遮罩,透過黃光微影能夠有效將元件面積縮減。為了降低臨界電壓,電晶體的閘極使用兩種不同功函數金屬,分別為較高與較低於五環素的HOMO,發現藉由利用較高的功函數金屬,臨界電壓有效從-4.6V下降至-2.6V。並且使用紫外光/臭氧處理元件之源極與汲極表面,進而改善五環素分子於金屬表面失序成長之現象,增強電流注入能力,同時降低電晶體之總電阻。並且透過AFM與XRD分析,得知五環素分子成長於紫外光/臭氧處理之金屬表面之晶粒與晶相明顯得到改善,因此得到良好之電晶體特性:高場效載子移動率(4.5 cm2V-1s-1)、低次臨界效應(260 mV/decade)、高電流開關比(1.4 × 105)以及低驅動電壓(-5V)。
The solution-processed high-k barium zirconate titanate (BZT) as gate dielectric for pentacene-based organic thin film transistor (OTFT) applications is presented. As compared to the conventional metal mask, the fabricated transistors by photolithography process can effectively reduce the device dimension, especially for the bottom gate contact structures. To reduce the transistor threshold voltage, higher work function metals (Au) is used as the gate electrodes. The threshold voltage is efficiently decreased from -4.6 to -2.6 V as compared to that of Al. In addition, the UV/ozone was employed to treat the Au(source/drain) surface to improve the poor crystalline of pentacene grown on Au. Moreover, the surface morphologies and orientations of pentacene films were analyzed through atomic force microscopy (AFM) and X-ray diffraction. As the results show, the stack of pentacene molecules from disorder changed to vertical growth on the Au surface. Thus, the electrical properties of pentacene-based thin film transistors show high field-effect mobility of 4.5 cm2V-1s-1, low subthreshold swing of 260 mV/decade, high on/off ratio of 1.4× 105 and low operation voltage of -5 V. These results are better than the reported data using bottom contact pentacene OTFTs.
Contents
摘要 I
Abstract II
誌謝 IV
Figure Captions VII
Table Captions IX
Chapter 1 Introduction 1
1-1 Introduction to the development of OTFTs 1
1-2 Advantages of organic thin film transistors 2
1-3 Background and motivation 4
1-4 Organization of thesis 6
Chapter 2 Organic Semiconductor 7
2-1 Organic semiconductor Materials 7
2-2 Physics of organic semiconductors 9
Chapter 3 Principle of OTFT 13
3-1 Thin-film transistor architecture 13
3-2 Operating mode 15
3-3 Important parameters of OTFTs 17
3-3-1 Field-effect mobility 17
3-3-2 Threshold voltage 18
3-3-3 Subthreshold Swing 19
3-3-4 On/off current ratio 19
3-4 Oxide charges 22
3-4-1 Interface tapped charge (Qit) 22
3-4-2 Fixed oxide charge (Qf) 22
3-4-3 Oxide trapped charge (Qot) 22
3-4-4 Mobile ionic charge (Qm) 22
Chapter 4 Experiment 24
4-1 Experimental materials 24
4-2 Experimental instruments 28
4-2-1 Sputter 28
4-2-2 Thermal Evaporator 31
4-2-3 Spin coater 32
4-2-4 UV-ozone cleaner 34
4-3 Experimental procedure 35
4-3-1 Substrate cleaning 35
4-3-2 Gate electrode 36
4-4-3 Insulator layer 39
4-3-3-1 BZT solution preparation 39
4-3-3-2 Experiment of insulator 39
4-3-4 Etching of insulator 41
4-3-5 Source and Drain electrodes 44
4-3-6 UV/ozone treatment 47
4-3-7 Active layer 47
4-4 Measurement System 50
4-4-1 Current-Voltage (I-V) measurement 50
4-4-2 Capacitance-Voltage (C-V) measurement 50
4-4-3 Atomic Force Microscope (AFM) 50
4-4-4 X-ray photoelectron spectroscopy (XPS) 51
4-4-5 X-ray Diffraction (XRD) 51
Chapter 5 Results and Discussion 53
5-1 Analysis of insulator film 53
5-1-1 X-ray photoelectron spectroscopy (XPS) 53
5-1-2 Physical properties of BZT 55
5-1-3 MIM measurement 57
5-2 Electrical properties 59
5-2-1 Different deposition rates of active layer 59
5-2-2 Different metal of gate electrodes 65
5-3 Surface treatment with UV/ozone 70
5-3-1 AFM analysis 70
5-3-2 XRD analysis 76
5-3-3 Energy level 78
5-3-4 MSM measurement 80
5-3-5 Electrical properties 82
Chapter 6 Conclusions and Future Works 91
6-1 Conclusions 91
6-2 Future works 92
References 94

References
[1]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface, Journal of Applied Physics, vol. 54, no. 6, pp. 3255-3259, 1983.
[2]A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Applied Physics Letters, vol. 49, no. 18, pp. 1210-1212, 1986.
[3]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin-film transistor with high carrier mobility, Applied Physics Letters, vol. 63, no. 10, pp. 1372-1374, 1993.
[4]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications, Journal of Applied Physics, vol. 80, no. 4, pp. 2501-2508, 1996.
[5]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, H. Tong-Jyun, D.-W. Chou, and W. Yeong-Her, “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator, Electron Device Letters, IEEE, vol. 30, no. 10, pp. 1039-1041, 2009.
[6]C.-Y. Wei, K. Shu-Hao, H. Wen-Chieh, H. Yu-Ming, Y. Chih-Kai, F. Adriyanto, and W. Yeong-Her, “High-performance pentacene-based thin-film transistors and inverters with solution-processed barium titanate insulators, Electron Devices, IEEE Transactions on, vol. 59, no. 2, pp. 477-484, 2012.
[7]C.-Y. Wei, H. Wen-Chieh, Y. Chih-Kai, C. Yen-Yu, and W. Yeong-Her, “Low-operating-voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators, Electron Device Letters, IEEE, vol. 32, no. 12, pp. 1755-1757, 2011.
[8]K. H. Cherenack, A. Z. Kattamis, B. Hekmatshoar, J. C. Sturm, and S. Wagner, “Amorphous-silicon thin-film transistors fabricated at 300 ° c on a free-standing foil substrate of clear plastic, Electron Device Letters, IEEE, vol. 28, no. 11, pp. 1004-1006, 2007.
[9]P. Sung Kyu, J. E. Anthony, and T. N. Jackson, “Solution-processed tips-pentacene organic thin-film-transistor circuits, Electron Device Letters, IEEE, vol. 28, no. 10, pp. 877-879, 2007.
[10]H. Klauk, U. Zschieschang, and M. Halik, “Low-voltage organic thin-film transistors with large transconductance, Journal of Applied Physics, vol. 102, no. 7, pp. 074514, 2007.
[11]G. R. Team, “Organic transistor/memory devices to reach $21.6 bil in 2015, Electro Manufacturing, vol. 21, pp. 1, 2008.
[12]http://en.wikipedia.org/wiki/Electronic_paper
[13]P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry, Applied Physics Letters, vol. 82, no. 22, pp. 3964-3966, 2003.
[14]P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors, Applied Physics Letters, vol. 78, no. 23, pp. 3592-3594, 2001.
[15]R. Müller, S. Smout, C. Rolin, J. Genoe, and P. Heremans, “High mobility short-channel p-type organic transistors with reduced gold content and completely gold-free source/drain bottom contacts, Organic Electronics, vol. 12, no. 7, pp. 1227-1235, 2011.
[16]S.-W. Liu, C.-C. Lee, H.-L. Tai, J.-M. Wen, J.-H. Lee, and C.-T. Chen, “In situ electrical characterization of the thickness dependence of organic field-effect transistors with 1−20 molecular monolayer of pentacene, ACS Applied Materials & Interfaces, vol. 2, no. 8, pp. 2282-2288, 2010.
[17]K. D. Kim, and C. K. Song, “Low voltage pentacene thin film transistors employing a self-grown metal-oxide as a gate dielectric, Applied Physics Letters, vol. 88, no. 23, pp. 233508, 2006.
[18]X.-H. Zhang, S. P. Tiwari, S.-J. Kim, and B. Kippelen, “Low-voltage pentacene organic field-effect transistors with high-kappa HfO2 gate dielectrics and high stability under bias stress, Applied Physics Letters, vol. 95, no. 22, pp. 223302, 2009.
[19]R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol. 97, no. 12, pp. 121301-52, 2005.
[20]F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors, Small, vol. 8, no. 1, pp. 73-79, 2012.
[21]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-performance bottom electrode organic thin-film transistors, Electron Devices, IEEE Transactions on, vol. 48, no. 6, pp. 1060-1064, 2001.
[22]D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors, Journal of Applied Physics, vol. 100, no. 2, pp. 024509-13, 2006.
[23]S. Rentenberger, A. Vollmer, E. Zojer, R. Schennach, and N. Koch, “UV/ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics, Journal of Applied Physics, vol. 100, no. 5, pp. 053701-6, 2006.
[24]S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han, and W. A. Goddard, “First-principles investigation of anistropic hole mobilities in organic semiconductors, The Journal of Physical Chemistry B, vol. 113, no. 26, pp. 8813-8819, 2009.
[25]I. Kymissis, “Organic field effect transistors: theory, fabrication and characterization, Springer, pp. 6, 7, 21, 2008.
[26]K. R. C. Vollhardt, “Organische chemie, VCH-Verlag, Weinheim, 1990.
[27]H. Klauk, “Organic electronics: material, manufacturing and applications, Wiley-Vch, pp. 8, 2006.
[28]Z. Bao, and J. Locklin, “Organic field-effect transistors, CRC Press, pp. 162, 164, 2007.
[29]H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors, Journal of Applied Physics, vol. 92, no. 9, pp. 5259-5263, 2002.
[30]C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, “Hole mobility in organic single crystals measured by a ``flip-crystal' field-effect technique, Journal of Applied Physics, vol. 96, no. 4, pp. 2080-2086, 2004.
[31]M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals, Clarendon Press, Oxford, 1982.
[32]J. Puigdollers, “Pentacene thin-film transistors with polymeric gate dielectric, Organic Electronics, vol. 5, no. 1-3, pp. 67-71, 2004.
[33]W. S. Wong, and A. Salleo, “Flexible electronics: materials and applications, Springer Science+Business Media, 2009.
[34]S. Lee, D.-J. Yun, S.-W. Rhee, and K. Yong, “Atomic layer deposition of hafnium silicate film for high mobility pentacene thin film transistor applications, Journal of Materials Chemistry, vol. 19, no. 37, pp. 6857, 2009.
[35]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, IEEE Transactions on, vol. 27, no. 3, pp. 606-608, 1980.
[36]Credited to Twinson International Co., Ltd.
[37]J. Park, R. D. Yang, C. N. Colesniuc, A. Sharoni, S. Jin, I. K. Schuller, W. C. Trogler, and A. C. Kummel, “Bilayer processing for an enhanced organic-electrode contact in ultrathin bottom contact organic transistors, Applied Physics Letters, vol. 92, no. 19, pp. 193311, 2008.
[38]S. M. Mukhopadhyay, and T. C. S. Chen, “Surface chemical states of barium titanate: Influence of sample processing, Journal of Materials Research, vol. 10, no. 06, pp. 1502-1507, 1995.
[39]L. L. Jiang, X. G. Tang, S. J. Kuang, and H. F. Xiong, “Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition, Applied Surface Science, vol. 255, no. 21, pp. 8913-8916, 2009.
[40]J. Yan-ping, T. Xin-gui, L. Qiu-xiang, C. Tie-dong, and Z. Yi-chun, “XPS study of BZT thin film deposited on Pt/Ti/SiO2/Si substrate by pulsed laser deposition, vol. 17, pp. s862-s865, 2007.
[41]M. Francisco, S. Z. Alexandre, R. S. Carla, Z. A. Maria, V. A. Jose, and L. Elson, “Effect of oxidizing and reducing atmospheres on Ba(Ti0.90 Zr0.10)o3:2V ceramics as characterized by piezoresponse force microscopy, Processing and Application of Ceramics, vol. 5, no. 3, pp. 139-147, 2011.
[42]W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric, Microelectronic Engineering, vol. 85, no. 2, pp. 414-418, 2008.
[43]T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, V. R. Rao, R. Lal, Z. H. Huang, G. J. Qi, Z. K. Chen, and C. M. Ng, “Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer, Applied Physics Letters, vol. 90, no. 12, pp. 122112-3, 2007.
[44]M. Zhu, G. Liang, T. Cui, and K. Varahramyan, “Temperature and field dependent mobility in pentacene-based thin film transistors, Solid-State Electronics, vol. 49, no. 6, pp. 884-888, 2005.
[45]A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors, Applied Physics Letters, vol. 86, no. 26, pp. 263501-3, 2005.
[46]T. Li, P. P. Ruden, I. H. Campbell, and D. L. Smith, “Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling, Journal of Applied Physics, vol. 93, no. 7, pp. 4017, 2003.
[47]W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, “Molecular orientation of evaporated pentacene films on gold:  alignment effect of self-assembled monolayer, Langmuir, vol. 21, no. 6, pp. 2260-2266, 2005.
[48]G. E. Thayer, J. T. Sadowski, F. Meyer zu Heringdorf, T. Sakurai, and R. M. Tromp, “Role of surface electronic structure in thin film molecular ordering, Physical Review Letters, vol. 95, no. 25, pp. 256106, 2005.
[49]J. H. Kang, and X. Y. Zhu, “Pi-stacked pentacene thin films grown on Au(111), Applied Physics Letters, vol. 82, no. 19, pp. 3248-3250, 2003.
[50]D. Gupta, M. Katiyar, and D. Gupta, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation, Organic Electronics, vol. 10, no. 5, pp. 775-784, 2009.
[51]D. S. Park, W. C. Jang, S. W. Cho, J. H. Seo, I. S. Jeong, T. W. Kim, G. S. Chang, A. Moewes, K. H. Chae, K. Jeong, K. H. Yoo, and C. N. Whang, “Influence of 2-mercapto-5-nitrobenzimidazole treatment on the electronic characteristics of bottom-contact organic field-effect transistors, Organic Electronics, vol. 9, no. 6, pp. 1010-1016, 2008.
[52]W.-K. Kim, K. Hong, and J.-L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes, Applied Physics Letters, vol. 89, no. 14, pp. 142117-3, 2006.
[53]H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films, Advanced Functional Materials, vol. 17, no. 17, pp. 3639-3649, 2007.
[54]H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, and F.-C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors, Organic Electronics, vol. 10, no. 2, pp. 289-298, 2009.
[55]M. A. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, “Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors, ACS Nano, vol. 5, no. 1, pp. 291-298, 2010.
[56]K. Berke, S. Tongay, M. A. McCarthy, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “Current transport across the pentacene/CVD-grown graphene interface for diode applications, Journal of Physics: Condensed Matter, vol. 24, no. 25, pp. 255802, 2012.
[57]A. Wan, J. Hwang, F. Amy, and A. Kahn, “Impact of electrode contamination on the α-NPD/Au hole injection barrier, Organic Electronics, vol. 6, no. 1, pp. 47-54, 2005.
[58]J. Hwang, A. Wan, and A. Kahn, “Energetics of metal–organic interfaces: New experiments and assessment of the field, Materials Science and Engineering: R: Reports, vol. 64, no. 1-2, pp. 1-31, 2009.
[59]L.-J. Pegg, and R. A. Hatton, “Nanoscale geometric electric field enhancement in organic photovoltaics, ACS Nano, vol. 6, no. 6, pp. 4722-4730, 2012.
[60]G. Horowitz, “Interface modification for tuning the contact resistance of metal/organic semiconductor junctions, The Open Applied Physics Journal, vol. 4, no. 1, pp. 2-7, 2011.
[61]S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “High-performance low voltage organic thin-film transistors, Materials Research Society Symposium Proceedings, vol. 870E, pp. H1.4.1-H1.4.5, 2005.
[62]W.-K. Kim, K. Hong, and J.-L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes, Applied Physics Letters, vol. 89, no. 14, pp. 142117, 2006.
[63]T. Nagai, S. Naka, H. Okada, and H. Onnagawa, “Organic field-effect transistor integrated circuits using self-alignment process technology, Japanese Journal of Applied Physics, vol. 46, no. 4B, pp. 2666-2668, 2007.
[64]S. Gowrisanker, Y. Ai, H. Jia, M. A. Quevedo-Lopez, H. N. Alshareef, I. Trachtenberg, H. Stiegler, H. Edwards, R. Barnett, and B. E. Gnade, “Organic thin-film transistors with low threshold voltage variation on low-temperature substrates, Electrochemical and Solid-State Letters, vol. 12, no. 3, pp. H50, 2009.
[65]M. Kitamura, Y. Kuzumoto, S. Aomori, and Y. Arakawa, “High-frequency organic complementary ring oscillator operating up to 200 kHz, Applied Physics Express, vol. 4, no. 5, pp. 051601, 2011.
[66]M. Rockelé, D.-V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Müller, B. van der Putten, J. Genoe, and P. Heremans, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs, Organic Electronics, vol. 12, no. 11, pp. 1909-1913, 2011.
[67]C.-L. Fan, Y.-Z. Lin, W.-D. Lee, S.-J. Wang, and C.-H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors, Organic Electronics, vol. 13, no. 12, pp. 2924-2928, 2012.
[68]K. Sung Hoon, L. Sun Hee, K. Youn Goo, and J. Jin, “Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOX gate insulator, Electron Device Letters, IEEE, vol. 34, no. 2, pp. 307-309, 2013.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王美雅、吳思華(2011)。從複雜理論觀點探索創新擴散的動態過程:一個新概念擴散實驗 。科技管理學刊,16(2),81-120。
2. 王淑娟、李元恕、黃怡仁、方國定(2008)。建構資訊系統持續使用意圖模式:以中部某大學為實證對象。科技管理學刊,13(4),1-30。
3. 江志卿、黃興進、嚴紀中(2005)。中小企業採用網路科技之比較:創新擴散通用模式的整合觀點。資訊管理學報,12(2),103-139。
4. 朱碧靜(2002)。從使用者特性、使用者參與及科技接受度探討圖書館自動化系統之採用。圖書資訊學刊,17,95-121。
5. 李仲彬(2006)。電子化政府的公民使用行為:數位資訊能力與資訊素養之影響分析。資訊社會研究,11,177-218。
6. 李國瑋、李應註(2010)。電腦使用者界面的改良設計與科技接受模式之驗證。資訊管理學報, 17(4),1-30。
7. 邱郁文、方國定(2005)。整合知覺玩興構面擴充資訊科技接受模式--以入口網站為例。資訊管理展望,7(1),37-54。
8. 林信志、湯凱雯、賴信志(2010)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊, 2(1),60-78。
9. 洪新原、張碩毅、許凱筑、張益誠(2009)。從創新擴散觀點探討影響企業採用協同商務技術之因素 。臺大管理論叢,20(S1),29-68。
10. 陳芷瑛(2001)。中文報紙檢索的技巧。國立中央大學圖書館通訊, 33,16-19。
11. 馬漢光、陳建昇(2012)。以TAM模式探討醫院電子公文系統使用者接受程度─以北部某地區教學醫院為例。醫院,45(2),8-20。
12. 張紹勳(2002)。兩性採用資訊科技的徑路比較。管理評論,21(4),19-45。
13. 鄭光廷、徐士傑、林東清(2012)。影響使用者持續使用Web 2.0傳遞與分享知識之研究。資訊管理學報,19(2),249-274。
14. 趙雅麗(2001)。從台灣明日報的停刊看中文電子報之前景。傳播與管理研究,1(2),173-187。