|
Chapter 1 [1] J. M. Kahn and K. P. Ho, “A bottleneck for optical fibres, Nature vol.411, pp. 1007- 1010, 2001. [2] T. R. Chen, W. Hsin, and N. Bar-Chaim, “Very high power InGaAsP/InP distributed feedback lasers at 1550 nm wavelength, Appl. Phys. Lett. vol. 72, pp. 1269- 1271, 1998. [3] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, Peter F. Hallemeier, David Maack, Daniel V. Attanasio, Daniel J. Fritz, Gregory J. McBrien, and Donald E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems, IEEE J. Sel. Top. Quantum Electron. vol. 6, pp. 69-82, 2000. [4] B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, Michal Lipson, and Keren Bergman, “High-Speed 2 2 Switch for Multiwavelength Silicon-Photonic Networks–On-Chip, J. Lightwave Technol. vol. 27, pp.2900-2907, 2009. [5] M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Yuki Taniguchi, and Takeshi Yagi, “Low-Loss and Low-Dispersion-Slope Highly Nonlinear Fibers, J. Lightwave Technol. vol. 23, pp. 3615-3624, 2005. [6] M. A. Mahdi, S. J. Sheih, “Gain-flattened extended L-band EDFA with 43 nm bandwidth suitable for high signal powers, Opt. Commun. vol. 234, pp. 229–233, 2004. [7] P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides, Opt. Express vol. 15, pp. 2299- 2306, 2007. [8] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors, Opt. Express vol. 17, pp. 15248- 15256, 2009. [9] D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference , Los Angeles, 2011, pp. 1-3, 2011. [10] M. Minakata, “Recent Progress of 40 GHz high-speed LiNbO3 optical modulator. Proc. SPIE vol. 4532, pp. 16-27, 2001. [11] R. A. Soref, “Silicon-Based Optoelectronics, Proc. IEEE, vol. 81, pp. 1687- 1706, 1993. [12] M. Asghari and A. V. Krishnamoorthy, “Energy-Efficient Communication, Nat. Photonics vol. 5, pp. 268-270, 2011. [13] R. A. Soref, and B. R. Bennett, “Electrooptical Effects in Silicon, IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987. [14] G. T. Reed and A. P. Knights, “Silicon Photonics An Introduction, John Wiley & Sons, New York, 2004. [15] M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities, Opt. Express vol. 15, pp. 7557- 7563, 2007. [16] G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, “silicon optical modulators, Nat. Photonics vol. 4, pp. 518-526, 2010. [17] X. Chen, C. Li and H. K. Tsang, “Device engineering for silicon photonics, NPG Asia Mater. vol. 3, pp. 34-40, 2011. [18] H. C. Huang, S. Yee, R. B. Darling, and C. H. Chan, “A silicon diverging beam modulator fabricated by part of metal-oxide-silicon process modules, J. Appl. Phys. vol. 72, pp. 791-793, 1992. [19] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator, J. Lightwave Technol. vol. 21, pp. 228-235, 2003. [20] T. Hirata, K. Kajikawa, T. Tabei, and H. Sunami, “Proposal of a Metal–Oxide–Semiconductor Silicon Optical Modulator Based on Inversion-Carrier Absorption, Jpn. J. Appl. Phys. vol. 47, pp. 2906–2909, 2008. [21] K. Kajikawa, T. Tabei, and H. Sunami, “An Infrared Silicon Optical Modulator of Metal–Oxide–Semiconductor Capacitor Based on Accumulation-Carrier Absorption, Jpn. J. Appl. Phys. vol. 48, pp. 04C107, 2009. [22] M. Liu, X. Yin, E. U. Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator, Nature vol. 474, pp. 64-67, 2011. [23] S. A. Clark, B. Cuishaw, E. J. C. Dawnay and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material, Proc. SPIE. vol. 3936, pp. 16-24, 2000. [24] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor, Nature vol. 427, pp. 615-618, 2004. [25] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide, Opt. Express vol. 15, pp. 660- 668, 2007. [26] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator, Opt. Express vol. 15, pp. 17106-17113, 2007. [27] Kensuke Ogawa, Kazuhiro Goi, Yong Tsong Tan, Tsung-Yang Liow, Xiaoguang Tu, Qing Fang, Guo-Qiang Lo, and Dim-Lee Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps, Opt. Express vol. 19, pp. B26- B31, 2011. [28] N. N. Feng, S. Liao, D. Feng, P. Dong, Dawei Zheng, Hong Liang, Roshanak Shafiiha, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides, Opt. Express vol. 18, pp. 7994- 7999, 2010. [29] X. Tu, T. Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Q. Lo, “50-Gbps silicon optical modulator with traveling-wave electrodes, Opt. Express vol. 21, pp. 12776- 12782, 2013. [30] M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry–Perot modulator with two grating Bragg reflectors, Appl. Phys. Lett. vol. 68, pp. 170-172, 1996. [31] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator, Nature vol. 435, pp. 325- 327, 2005. [32] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators, Opt. Express vol. 15, pp. 430- 436, 2007. [33] C. Li, L. Zhou and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling, Opt. Express vol. 15, pp. 5069- 5076, 2007. [34] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios, J. Lightwave Technol. vol. 19, pp. 700-707, 2001. [35] J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks, Opt. Express vol. 17, pp. 24020- 24029, 2009. [36] Y. Vlasov, W. M. J. Green and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks, Nat. Photonics vol. 2, pp. 242-246, 2008. [37] M. Y., William M. J. Green, S. A., Joris V. Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash and Y. A. Vlasov, “Non-Blocking 4x4 Electro-Optic Silicon Switch for On-Chip Photonic Networks, Opt. Express vol. 19, pp. 47- 54, 2011. [38] N. S. Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, “Optical 4x4 hitless silicon router for optical Networks-on-Chip (NoC), Opt. Express vol. 16, pp. 15915- 15922, 2008.
Chapter 2 [1] A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-Loss Planar Optical Waveguides Fabricated in SIMOX Material, IEEE Photonics Technol. Lett. vol.4, pp.633-635, 1992. [2] J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications, Opt. Fiber Technol. vol. 7, pp. 101-140, 2001. [3] R. A. Soref, “Silicon-Based Optoelectronics, Proc. IEEE. vol. 81, pp. 1687-1706, 1993. [4] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides, Electron. Lett. vol. 31, pp. 451-452, 1995. [5] S. A. Clarke, B. Culshaw, E. J. C. Dawney, and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material, Proc. SPIE. vol. 3936, pp. 16-24, 2000. [6] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon, IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987. [7] G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect, Appl. Phys. Lett. vol. 59, pp. 771-773, 1991. [8] R. A. Soref and B. R. Bennett, “Kramers-Kronig Analysis of Electro-Optical Switching in Silicon, SPIE Integrated Opt. Circuit Eng. vol. 704, pp.32-303, 1986. [9] G. Cocorullo and I. Rendina, “Thermo-Optical Modulation at 1.5μm in silicon etalon, Electron. Lett. vol. 28, pp. 83 – 85, 1992.
Chapter 3 [1] D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference , Los Angeles, 2011, pp. 1-3, 2011. [2] G. T. Reed, “The optical age of silicon, Nature vol. 427, pp. 595-596, 2004. [3] International Technology Roadmap for Semiconductors (ITRS), Edition, Interconnect topic, 2006. [4] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon, IEEE J. Quantum Electron. vol. 23, pp. 123-129, 1987. [5] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SO1 waveguides, Electron. Lett. vol. 31, pp. 451-452, 1995. [6] R. W. Chuang and M. T. Hsu, “Silicon Optical Modulators in Silicon-on-Insulator Substrate Based on the p–i–n Waveguide Structure, Jpn. J. Appl. Phys. Vol. 46 pp. 2445-2449, 2007. [7] R. D. Lareau, L. Friedman and R. A. Soref, “Waveguided Electro-Optical Intensity Modulation in A Si/GexSi1-x/Si Heterojunction Bipolar Transistor, Electron. Lett. vol. 26, pp. 1653-1655, 1990. [8] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator, J. Lightwave Technol. vol. 21, pp. 228-235, 2003. [9] A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 μm, Appl. Phys. Lett. vol. 86, pp. 201115, 2005. [10] R. W. Chuang, Z. L. Liao, M. T. Hsu, J. C. Liao and C. C. Cheng, “Silicon Electro-Optic Modulator Fabricated on Silicon Substrate Utilizing the Three-Terminal Transistor Waveguide Structure, Jpn. J. Appl. Phys. vol. 47, pp. 2945-2949, 2008. [11] R. A. Soref, J. Schmidtchen and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2, IEEE J. Quantum Electron. vol. 27, pp. 1971-1974, 1991. [12] S. Pogossian, L. Vescan and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section, J. Lightwave Technol. vol. 16, pp. 1851-1853, 1998.
Chapter 4 [1] R. A. Soref, “Silicon-based optoelectronics, Proc. IEEE vol. 81, pp. 1687–1706, 1993. [2] R. A. Soref, “Silicon photonics technology: past, present, and future, Proc. SPIE. vol. 5730, pp. 19–28, 2005. [3] P. Koonath, T. Indukuri and B. Jalali, “Monolithic 3-D silicon photonics, J. Lightwave Technol. vol. 24, pp. 1796–1804, 2006. [4] T. Indukuri, P. Koonath and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon, Appl. Phys. Lett. vol. 88, pp. 121108-1–121108-3, 2006. [5] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications, J. Lightwave Technol. vol. 13, pp. 615–627, 1995. [6] D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov and S. Forrest, “Fabrication of ultracompact 3 dB 2 × 2 MMI power splitters, IEEE Photonics Technol. Lett. vol. 11, pp. 1009–1011, 1999. [7] D. J. Thomson, Y. Hu, G. T. Reed, J. M. Fedeli, Low loss MMI couplers for high performance MZI modulators, IEEE Photonics Technol. Lett. vol. 22, pp. 1485–1487, 2010. [8] Y. Zhang, L. Liu, X. Wu, L. Xu, “Splitting-on-demand optical power splitters using multimode interference (MMI) waveguide with programmed modulations, Opt. Commun. vol. 281, pp. 426–432, 2008. [9] X. Wang, J. Liu, Q. Yan, S. Chen, J. Yu, “SOI thermo-optic modulator with fast response, Chin. Opt. Lett. vol. 1, pp. 527–528, 2003. [10] A. A. House, R. R. Whiteman, L. Kling, et al. “Silicon waveguide integrated optical switching with microsecond switching speed, Proc. Opt. Fiber Commun. (OFC), vol. 2, pp. 449–450, 2003. [11] O. Bryngdahl, “Image formation using self-imaging techniques, J. Opt. Soc. Am. vol. 63, pp. 416–419, 1973. [12] R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides, Appl. Phys. Lett. vol. 27, pp. 337–339, 1975. [13] P. Dainesi, L. Thevenaz, Ph. Robert, “Intensity modulation in two Mach–Zehnder interferometers using plasma dispersion in silicon-on-insulator, Appl. Phys. B, vol. 73, pp. 475–478, 2001. [14] F. Sun, J. Yu, S. Chen, “Directional-coupler-based Mach–Zehnder interferometer in silicon-on-insulator technology for optical intensity modulation, Opt. Eng. vol. 46, pp. 025601-1–025601-5, 2007. [15] F. Sun, J. Yu, S. Chen, “A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator, Opt. Commun. vol. 262, pp. 164–169, 2006. [16] R.W. Chuang, M. T. Hsu, S. H. Chou, Y. J. Lee, “Silicon Mach–Zehnder waveguide interferometer on silicon-on-silicon (SOS) substrate incorporating the integrated three-terminal field-effect device as an optical signal modulation structure, IEICE Trans. Electron.vol. E94-C, pp. 1173–1178, 2011.
Chapter 5 [1]M. Minakata, “Recent Progress of 40 GHz high-speed LiNbO3 optical modulator, Proc. SPIE. vol. 4532, pp. 16-27, 2001. [2]G. Cocorullo, F. G. D. Corte, M. I. I. Rendina and P. M. Sarro, “Silicon-on-Silicon Rib Waveguide with a High-Confining Ion-Implanted Lower Cladding, IEEE J. Sel. Top. Quantum Electron. vol. 4, pp. 983–989, 1998. [3]A. Sciuto, S. Libertino, A. Alessandria, S. Coffa and G. Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator, J. Lightwave Technol. vol. 21, pp.228-235, 2003. [4]R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon, IEEE J. Quantum Electron. vol. 23, pp.123-129, 1987. [5]C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm, Appl. Phys. Lett. vol. 67, pp. 2448-2449, 1995. [6]S. A. Clark, B. Cuishaw, E. J. C. Dawnay and I. E. Day, “Thermo-Optic Phase Modulators in SIMOX Material, Proc. SPIE. vol. 3936, pp. 16-24, 2000. [7]Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator, Nature vol. 435, pp. 325-327, 2005. [8]M. Xin, A. J. Danner, C. E. Png and S. T. Lim, “Theoretical study of a cross-waveguide resonator-based silicon electro-optic modulator with low power consumption, J. Opt. Soc. Am. B vol. 26, pp. 2176-2180, 2009. [9]R. A. Soref and J. P. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm, IEEE J. Quantum Electron. vol. 22, pp. 873-879, 1986.
Chapter 6 [1]G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, “silicon optical modulators, Nat. Photonics vol. 4, pp. 518-526, 2010. [2]N. S. Droz, H. Wang, L. Chen and B. G. Lee, Aleksandr Biberman, Keren Bergman, and Michal Lipson, “Optical 4×4 hitless silicon router for optical Networks-on-Chip (NoC). Opt. Express vol. 16, pp. 15915-15922, 2008. [3]R. A. Soref and P. J. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm, IEEE J. Quantum Electron. vol. 22, pp. 873-879, 1986. [4]R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon, IEEE J. Quantum Electron vol. 23, pp. 123-129, 1987. [5]C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides, Electron. Lett. vol. 31, pp. 451-452, 1995. [6]A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor, Nature vol. 427, pp. 615-618, 2004. [7]L. Liao, D. S. Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil and T. Franck, “High speed silicon Mach-Zehnder modulator, Opt. Express vol. 13, pp. 3129-3135, 2005. [8]L. Friedman, R. A. Soref and J. P. Lorenzo, “Silicon double injection electrooptic modulator with junction gate control, J. Appl. Phys. vol. 63, pp. 1831- 1839, 1988. [9] F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator, Opt. Express vol. 13, pp. 8845-8853, 2006.
Chapter 7 [1] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications, J. Lightwave Technol. vol. 13, pp. 615-627, 1995. [2] S. Nagai, G. Morishima, M. Yagi and K. Utaka, “InGaAs/InP Multi-Mode Interference Photonic Switches for Monolithic Photonic Integrated Circuits, Jpn. J. Appl. Phys. vol. 38, pp. 1269-1272, 1999. [3] X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu and S. Ishikawa, “Compact Variable Optical Attenuator Based on Multimode Interference Coupler, IEEE Photonics Technol. Lett. vol. 17, pp. 2361-2363, 2005. [4] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios, J. Lightwave Technol. vol. 19, pp. 700-707, 2001. [5] R. W. Chuang, Z. L. Liao, and C. K. Chang, “Integrated Optical Beam Splitters Employing Symmetric Mode Mixing in SiO2/SiON/SiO2 Multimode Interference Waveguides, Jpn. J. Appl. Phys. vol. 46, pp. 2440-2444, 2007. [6] Q. Lai, W. Hunziker and H. Melchior, “Low-Power Compact 2×2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response, IEEE Photonics Technol. Lett. vol. 10, pp. 681-683, 1998. [7] R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator, IEEE Photonics Technol. Lett. vol. 15, pp. 1366-1368, 2003. [8] Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers, Electron. Lett. vol. 38, pp. 1701-1702, 2002. [9] R. V. Roijen, E. C. M. Pennings, M. J. N. Van Stalen, T. V. Dongen, B. H. Verbeek, and J. M. M. V. D. Heijden, “Compact InP based ring lasers employing multimode interference couplers and combiners, Appl. Phys. Lett. vol. 64, pp. 1753-1755, 1994. [10] M. L. Masˇanovic´, E. J. Skogen, J. S. Barton, J. M. Sullivan, D. J. Blumenthal, and L. A. Coldren, “Multimode Interference-Based Two-Stage 1×2 Light Splitter for Compact Photonic Integrated Circuits, IEEE Photonics Technol. Lett. vol. 15, pp. 706-708, 2003.
Chapter 8 [1] Vilson R. Almeida, Roberto R. Panepucci, and Michal Lipson, “Nanotaper for compact mode conversion, Opt. Lett., vol. 28, pp. 1302-1304, 2003. [2] Zhe Xiao, Tsung-Yang Liow, Jing Zhang, Ping Shum, and Feng Luan, “Bandwidth analysis of waveguide grating coupler, Opt. Express, vol. 21, pp. 5688-5700, 2013. [3] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C . P. Chao, H. L. Tsai, S . Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 With Low Diode Leakage and Low Sheet Resistance at 0.065pm Gate Length, IEDM, pp. 107-110, 1997. [4] X. Tu, T. Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Q. Lo, “50-Gbps silicon optical modulator with traveling-wave electrodes, Opt. Express vol. 21, pp. 12776- 12782, 2013. [5] H. Yu and W. Bogaerts, “An Equivalent Circuit Model of the Traveling Wave Electrode for Carrier-Depletion-Based Silicon Optical Modulators, J. Lightwave Technol. vol. 30, pp. 1602-1609. 2012. [6] W. H. Chang, “Analytical IC Metal-Line Capacitance Formulas, IEEE Trans. Microw. Theory Tech., vol. 24, pp. 608–611, 1976. [7] G. Ghione, Semiconductor Devices for High-Speed Optoelectronics. New York: Cambridge Univ. Press, 2009, ch. 6.
|