跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾冠瑄
研究生(外文):Kuan-HsuanTseng
論文名稱:具有區間時變獨立與分佈式延遲之不確定性T-S模糊類神經網路控制
論文名稱(外文):Control of T-S Fuzzy Uncertain Neural Networks with both Discrete and Distributed Interval Time-Varying Delays
指導教授:蔡聖鴻
指導教授(外文):Jason Sheng-Hong Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:120
中文關鍵詞:T-S模糊遞迴類神經網路時延系統線性矩陣不等式混合田口基因演算法穩定性控制分析耗散性分析狀態估測器設計
外文關鍵詞:Time-delay T-S fuzzy recurrent neural networkslinear matrix inequalityhybrid Taguchi-genetic algorithmstability control analysispassivity analysisstate estimator design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在使用線性矩陣不等式與混合田口基因演算法(hybrid Taguchi-genetic algorithm, HTGA)來探討時延Takagi-Sugeno(T-S)模糊遞迴類神經網路系統之控制。研究主題包括一系列不確定性時延T-S模糊遞迴類神經網路之穩定化控制器設計、耗散性及狀態估測器設計,其中假設參數的不確定性為有界且時延為時變區間延遲。在穩定化分析方面,藉由Lyapunov-Krasovskii泛函及結合線性矩陣不等式法,可求得時延相關的充分條件,以保證閉迴路時延模糊遞迴類神經網路之整體指數強健穩定度。耗散性分析為針對時延模糊遞迴類神經網路系統,經由Lyapunov-Krasovskii泛函與結合線性矩陣不等式法,求得時延相關充分條件,以保證強健耗散性之穩定性。至於,狀態估測器設計,則提出一種創新整合技巧以改善推導過程的複雜性,利用Lyapunov-Krasovskii泛函與線性矩陣不等式法求得充分條件,並且使用混合田口基因演算法,以獲得狀態估測增益值,並滿足Lyapunov-Krasovskii泛函之穩定性不等式,以保證充分條件之穩定。最後,在本論文中,將以多個例題來說明所提方法之有效性與可應用性。
A complete study of the control of time-delay Takagi-Sugeno fuzzy recurrent neural networks via the linear matrix inequality (LMI) approach and hybrid Taguchi-genetic algorithm (HTGA) is proposed in this dissertation. This includes the developments of the stabilization control design/passivity analysis/state estimator design for a class of time-delay Takagi-Sugeno (T-S) fuzzy uncertain recurrent neural networks, where the parameters uncertainties are assumed to be norm-bounded and time delays are interval time-varying delays. For the stabilization analysis, based on Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI) technique, delay-dependent sufficient conditions are derived to guarantee the globally robustly exponential stability for the closed-loop time-delay T-S fuzzy recurrent neural networks. For the passivity analysis, the delay-dependent sufficient conditions are obtained by using Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI) technique guarantees this stability of robust passivity for time-delay T-S fuzzy recurrent neural networks. Also, for state estimator design, we develop a new integrative technique to reduced remarkably and facilitate the design task of the estimator for computational complexity, a new hybrid Taguchi-genetic algorithm (HTGA) method is integrated with a linear matrix inequality (LMI) method to seek the estimator gains that satisfy the Lyapunov-Krasovskii functional stability inequalities. Finally, some illustrative examples are presented to demonstrate the effectiveness and applicability of our methodologies.
中文摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Time-Delay Systems 1
1.2 Delay-Independent/Delay-Dependent Conditions 4
1.3 Takagi-Sugeno (T-S) Fuzzy Model 5
1.4 Linear Matrix Inequality (LMI) 8
1.5 Recurrent Neural Networks 14
1.6 Hybrid Taguchi-Genetic Algorithm (HTGA) 16
1.7 Contributions of the Dissertation 20
1.8 Brief Sketch of the Contents 21
Chapter 2 Robust Stabilization for T-S Fuzzy Neural Network with Time Delays 22
2.1 Introduction 23
2.2 Model Description and Preliminaries 26
2.3 Main Results 31
2.4 Illustrative Examples 41
2.5 Summary 47
Chapter 3 Passivity Analysis for T-S Fuzzy Neural Network with Time Delays 48
3.1 Introduction 49
3.2 Model Description and Preliminaries 52
3.3 Main Results 56
3.4 Illustrative Examples 66
3.5 Summary 73
Chapter 4 State Estimator for T-S Fuzzy Neural Network with Time Delays 74
4.1 Introduction 75
4.2 Model Description and Preliminaries 78
4.3 Main Results 82
4.4 Illustrative Examples 93
4.5 Summary 104
Chapter 5 Conclusions and Future Research 105
5.1 Conclusions 105
5.2 Future Research Directions 107
References 108
Biography 119
Publication List 120

[1]Ahn, C. K., “Delay-dependent state estimation for T-S fuzzy delayed Hopfield neural networks, Nonlinear Dynam, vol. 61, pp. 483-489, 2010.
[2]Ali, M. S. and Balasubramaniam, P., “Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays, Chaos, Solitons and Fractals, vol. 42, pp. 2191-2199, 2009.
[3]Anderson, B. D. O. and Vongpanitlerd, S., Network Analysis Synthesis-A Modern Systems Theorem Approach, Englewood Cliffs, NJ: Prentice Hall, 1973.
[4]Balasubramaniam, P. and Ali, M. S., “Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, vol. 161, pp. 608-618, 2010.
[5]Balasubramaniam, P., Vembarasan, V., and Rakkiyappan, R., “Delay-dependent robust asymptotic state estimation of Takagi–Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays, Expert Systems with Applications, vol. 39(1), pp. 472-481, 2011.
[6]Baldi, P. and Atiya, A. F., “How delays affect neural dynamics and learning, IEEE Trans. Neural Networks, vol. 5(4), pp. 612-621, 1994.
[7]Boukas, E. K. and Liu, Z. K., Deterministic and Stochastic Time Delay System, Birkhauser, Boston, 2002.
[8]Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[9]Calcev, G., Gorez, R., and Neyer, M. De., “Passivity approach to fuzzy control systems, Automatica, vol. 34, pp. 339-344, 1998.
[10]Cao, J. and Wang, J., “Global asymptotic stability of a general class of recurrent neural networks with time-varying delays, IEEE Transactions on Circuits and Systems I, vol. 50(1), pp. 34-44, 2003.
[11]Cao, J., Yuan, K., and Li, H. X., “Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Transactions on Neural Networks, vol. 17, pp. 1646-1651, 2006.
[12]Cao, Y. Y. and Frank, P. M., “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach, IEEE Transactions on Fuzzy Systems, vol. 8, pp. 200-211, 2000.
[13]Cao, Y. Y. and Frank, P. M., “Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems, vol. 124, pp. 213-229, 2001.
[14]Chen, B., Li, H., Lin, C., and Zhou, Q., “Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays, Physics Letters A, vol. 373, pp. 1242-1248, 2009.
[15]Chen, D. and Zhamg, R., “Passivity analysis for fuzzy stochastic neural works with uncertainty and time varying delays, 2008 2nd International Symposium on Intelligent Information Technology Application, vol. 2, pp. 669-672, 2008.
[16]Chen, J. and Chaudhari, N. S., “Segmented-memory recurrent neural networks, IEEE Transactions on Neural Networks, vol. 20(8), pp. 1267-1280, 2009.
[17]Chen, S., Zhang, Q., and Wang, C., “Existence and stability of equilibria of the continuous-time Hopfield neural network, Journal of Computational and Applied Mathematics, vol. 169, pp. 117-125, 2004.
[18]Chou, J. H., Liao, W. H., and Li, J. J., “Application of Taguchi-genetic method to design optimal grey-fuzzy controller of a constant turing force systems, in Proc. 15th CSME Annu. Conf., Tainan, Taiwan, R.O.C., pp. 31-38, 1998.
[19]Cohen, M. and Grossberg, S., “Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man and Cybernetics, vol. 13(5), pp. 815-826, 1983.
[20]Draye, J. P., Pavisic, D., Cheron, G., and Libert, G., “Dynamic recurrent neural networks: a dynamical analysis, IEEE Transactions on Systems Man, and Cybernetics, vol. 26(5), pp. 692-706, 1996.
[21]Forti, M. and Tesi, A., “New conditions for global stability neural networks with application to linear and quadratic programming problems, IEEE Transactions on Circuits and Systems I, vol. 42, pp. 354-365, 1995.
[22]Fridman, E. and Shaked, U., “On delay-dependent passivity, IEEE Transaction on Automatic Control, vol. 47, pp. 664-669, 2002.
[23]Fu, J., Zhang, H., Ma, T., and Zhang, Q., “On passivity analysis for stochastic neural networks with interval time-varying delay, Neurocomputing, vol. 73, pp. 795-801, 2010.
[24]Gahinet, P., Nemirovski, A., Laub, A. J., and Chilai, M., LMI Control Toolbox, The Math Works, Inc., Boston, 1995.
[25]Gen, M. and Cheng, R., Genetic Algorithms and Engineering Design, New York: Wiley, 1997
[26]Gorecki, H., Fuksa, S., Grabowski, P., and Korytowski, A., Analysis and Synthesis of Time Delay System, John Wiley and Sons, Warszawa, 1989.
[27]Hahnloser, R. L. T., “On the piecewise analysis of linear threshold neural networks, Neural Networks, vol. 11(4), pp. 691-697, 1998.
[28]Haykin, S., Neural Networks: A Comprehensive Foundation, Englewood Cliffs, NJ: Prentice-Hall, Bergen, 1999.
[29]He, Y., Wang, Q. G., Wu, M., and Lin, C., “Delay-dependent state estimation for delayed neural networks, IEEE Transactions on Neural Networks, vol. 17, pp. 1077-1081, 2006.
[30]Ho, W. H., Chen, S. H., Liu, T. K., and Chou, J. H., “Design of robust-optimal output feedback controllers for linear uncertain systems using LMI-based approach and genetic algorithm, Information Sciences, vol. 180(23), pp. 4529-4542, 2010.
[31]Ho, W. H., Chou, J. H., and Guo, C. Y., “Parameter identification of chaotic systems using improved differential evolution algorithm, Nonlinear Dynamics, vol. 61, pp. 29-41, 2010.
[32]Hochreiter, S., “The vanishing gradient problem during learning recurrent neural nets and problem solutions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6(2), pp. 107-116, 1988.
[33]Hopfield, J., “Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.
[34]Hopfield, J., “Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences of the United States of America, vol. 81, pp. 3088-3092, 1984.
[35]Hou, Y. Y., Liao, T. L., and Yan, J. J., “Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 37(3), pp. 720-726, 2007.
[36]Hu, S., Liao, X., and Mao, X., “Stochastic Hopfield neural network, Joural of Physics A: Mathematical and General, vol. 9, pp. 47-53, 2004.
[37]Huang, H., Feng, G., and Cao, J., “Robust state estimation for uncertain neural networks with time-varying delay, IEEE Transactions on Neural Networks, vol. 19(8), pp. 1329-1339, 2008.
[38]Huang, H., Ho, D., and Lam, J., “Stochastic stability analysis of fuzzy Hopfield neural networks with Time-Varying Delays, IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 52, pp. 251-255, 2005.
[39]Huang, T., “Exponential stability of fuzzy cellular neural networks with distributed delay, Physics Letters A, vol. 351, pp. 48-52, 2006.
[40]Huang, Z. and Xia, Y., “Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses, Chaos, Solitons Fractals, vol. 38, pp. 489-498, 2008.
[41]Kickert, W. J. and Mamdani, E. H., “Analysis of a fuzzy logic controller, Fuzzy Sets and Systems, vol. 1, pp. 29-44, 1978.
[42]Kuang, Y., Smith, H. L., and Martin, R. H., “Global stability for infinite-delay, dispersive Lotka-Volterra systems: Weakly interacting populations in nearly identical patches, Journal of Dynamics and Differential Equations, vol. 3, pp. 339-360, 1991.
[43]Kolmanovskii, V. B. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht, Kluwer Academic Publishers, 1999.
[44]Li, C. and Liao, X., “Passivity analysis of neural networks with time delay, IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 52, pp. 471-475, 2005.
[45]Li, C., Zhang, H., and Liao, X., “Passivity and passification of fuzzy systems with time delays, Computer & Mathematics with Applications, vol. 52, pp. 1067-1078, 2006.
[46]Li, H., Chen, B., Zhou, Q., and Qian, W., “Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jump parameters, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 39, pp. 94-102, 2009.
[47]Li, T., Fei, S. M., and Zhu, Q., “Design of exponential state estimator for neural networks with distributed delays, Nonlinear Analysis: Real World Applications, vol. 10, pp. 1229-1242, 2009.
[48]Li, W. and Lee, T., “Hopfield neural networks for affine invariant matching, IEEE Transactions on Neural Networks, vol. 12, pp. 1400-1410, 2001.
[49]Liang, J., Wang, Z., and Liu, X., “Robust passivity and passification of stochastic fuzzy time-delay systems, Information Sciences, vol. 180, pp. 1725-1737, 2010.
[50]Liao, X. F., Wang, K. W., and Li, C. G., “Global exponential stability for a class of generalized neural networks with distributed delays, Nonlinear Analysis.: Real World Applications., vol. 5, pp. 527-547, 2004.
[51]Lien, C. H. and Chung, L. Y., “Global asymptotic stability for cellular neural networks with discrete and distributed time varying delays, Chaos, Solitons, Fractals, vol. 34, pp. 1213-1219, 2007.
[52]Liu, Y. R., Wang, Z. D., and Liu, X., “Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural Networks, vol. 19, pp. 667-675, 2006.
[53]Liu, Y., Wang, Z., and Liu, X., “Design of exponential state estimators for neural networks with mixed time delays, Physics Letters A, vol. 364(5), pp. 401-412, 2007.
[54]Lou, X. Y. and Cui, B. T., “Robust asymptotic stability problem of fuzzy BAM neural networks with time-varying delays, Fuzzy Sets and Systems, vol. 158, pp. 2746-2756, 2007.
[55]Lozano, R., Brogliato, B., Egeland, O., and Maschke, B., “Dissipative systems analysis and control theory and applications, Measurement Science and Technology, vol. 12, 2001.
[56]Lu, C. Y., Tsai, H. H., Su, T. J., Tsai, J. S. H., and Liao, C. W., “A delay-dependent approach to passivity analysis for uncertain neural networks with time-varying delay, Neural Processing Letters, vol. 51, pp. 237-246, 2008.
[57]Mahmoud, M. S. and Ismail, A., “Passivity and passification of time-delay systems, Journal of Mathematical Analysis and Applications, vol. 292, pp. 247-258, 2004.
[58]Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, New York: Marcel Dekker, 2000.
[59]Malek-Zavarei, M. and Jamshidi, M., Time-Delay System, Analysis, Optimization and Application, North-Holl and System and Control Series, 1987.
[60]Meyer-Bäse, A., Roberts, R., and Yu, H. G., “Robust stability analysis of competitive neural networks with different time-scales under perturbations, Neurocomputing, vol. 71, pp. 417-420, 2007.
[61]Mohamad, S., Gopalsamy, K., and Akqa, H., “Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear Analysis.: Real World Applications., vol. 9, pp. 872-888, 2008.
[62]Niculescu, S. I. and Lozano, R., “On the passivity of linear delay systems, IEEE Transaction on Automatic Control, vol. 46, pp. 460-464, 2001.
[63]Niculescu, S. I., Delay Effects on Stability, Springer-Verlag, London, 1991.
[64]Niculescu, S. I., Verriest, E. I., Dugard, L., and Dugard, J. M., “Stability of linear systems with delayed state, a guide tour in Stability and Control of Time-Delay Systems, Dugard L. and Verriest E. I., Eds, Lecture Notes in Control and Information Sciences, vol. 228, pp. 1-71, Springer-Verlag, London, 1997.
[65]Park, J. H. and Cho, H. J., “A delay-dependent asymptotic stability criterion of cellular neural networks with discrete and distributed time varying delays, Chaos, Solitons & Fractals, vol. 33, pp. 436-442, 2007.
[66]Park, J. H., “Further results on passivity analysis of delayed cellular neural networks, Chaos, Solitons and Fractals, vol. 34, pp. 1546-1551, 2007.
[67]Principle, J. C., Kuo, J. M., and Celebi, S., “An analysis of the gamma memory in dynamic neural networks, IEEE Transaction on Neural Networks, vol. 5, pp. 337-361, 1994.
[68]Rakkiyappan, R. and Balasubramaniam, P., “LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays, Applied Mathematics and Computation, vol. 204, pp. 317-324, 2008.
[69]Ruan, S. and Filfil, R. S., “Dynamics of two-neuron system with discrete and distributed delays, Physica D: Nonlinear Phenomena, vol. 191, pp. 323-342, 2004.
[70]Rutkowski, L., “Adaptive probabilistic neural networks for pattern classification in time-varying environment, IEEE Transaction on Neural Networks, vol. 15, pp. 811-827, 2004.
[71]Sheng, L. and Yang, H., “Delay-dependent exponential stability analysis of fuzzy delayed Hopfield neural networks: a fuzzy Lyapunov-Krasovskii functional approach, 2009 American Control Conference, USA, June, 10-12, pp. 4296-4301, 2009.
[72]Sheng, L., Gao, M., and Yang, H., “Delay-dependent robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-varying delays, Fuzzy Sets and Systems, vol. 160, pp. 3503-3517, 2009.
[73]Song, Q., Liang, J., and Wang, Z., “Passivity analysis of discrete-time stochastic neural networks with time-varying, Neurocomputing, vol. 72, pp. 1782-1788, 2009.
[74]Squartini, S., Hussain, A., and Piazza, F., “Attempting to reduce the vanishing gradient effect through a novel recurrent multiscale architecture, International Joint Conference on Neural Networks, vol. 4, pp. 2819-2824, 2003.
[75]Sugeno, M., Industrial Applications of Fuzzy Control, New York: Elsevier, 1985.
[76]Taguchi, G., Chowdhury, S., and Taguchi, S., Robust Engineering, New York: McGraw-Hill, 2000.
[77]Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, pp. 116-132, 1985.
[78]Takagi, T. and Sugeno, M., “Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.
[79]Tank, D. W. and Hopfield, J. J., “Neural computation by concentrating information in time, Proceedings of the National Academy of Sciences of the United States of America, vol. 84, pp. 1896-1991, 1987.
[80]Tong, R. M., “A control engineering review of fuzzy systems, Automatica, vol. 13, pp. 559-568, 1977.
[81]Tsai, J. T., Chou, J. H., and Liu, T. K., “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm, IEEE Transactions on Neural Networks, vol. 17(1), pp. 69-80, 2006.
[82]Tsai, J. T., Liu, T. K., and Chou, J. H., “Hybrid Taguchi-genetic algorithm for global numerical optimization, IEEE Transactions on Evolutionary Computation, vol. 8(4), 2004.
[83]Tseng, K. H., Tsai, J. S. H., and Lu, C. Y., “ A delay-dependent approach to robust control of Takagi-Sugeno fuzzy uncertain recurrent neural networks with discrete and distributed interval time-varying delays, Journal of Circuits, Systems, and Computers, vol. 20(8), pp. 1571-1589, 2011.
[84]Tseng, K. H., Tsai, J. S. H., and Lu, C. Y., “ A delay-dependent approach to robust passivity analysis for Takagi-Sugeno fuzzy uncertain recurrent neural networks with mixed interval time-varying delays, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012 (Accepted for publication).
[85]Tseng, K. H., Tsai, J. S. H., and Lu, C. Y., “ Design of delay-dependent exponential estimator for T-S fuzzy neural networks with mixed time-varying interval delays using hybrid Taguchi-genetic algorithm, Neural Processing Letters, vol. 36, no. 1, pp. 49-67, 2012.
[86]Wang, H. O., Tanaka, K., and Griffin, M. F., “An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14-23, 1996.
[87]Wang, Z. D., Ho, D. W. C., and Liu, X. H., “State estimation for delayed neural networks, IEEE Transactions on Neural Netw, vol. 16(1), pp. 279-284, 2005.
[88]Wang, Z., Liu, Y., and Liu, X., “On global asymptotic stability of neural networks with discrete and distributed delays, Physics Letters, vol. 345, pp. 299-305, 2005.
[89]Wu, Y., Taguchi Methods for Robust Design, New York: Amer. Soc. Mech. Eng., 2000.
[90]Yang, H. and Sheng, L., “Robust stability of uncertain stochastic fuzzy cellular neural networks, Neurocomputing, vol. 73, pp. 133-138, 2009.
[91]Yang, R., Gao, H., Lam, J., and Shi, P., “New stability criteria for neural networks with distributed and probabilistic delays, Circuits Systems Singal Process, vol. 28, pp. 505-522, 2009.
[92]Yao, X., Wu, L., Wang, W. X., and Wang, C., “Passivity analysis and passification of Markovian jump systems, Circuits Systems Singal Process, vol. 29, pp. 709-725, 2010.
[93]Yu, G. J., Lu, C. Y., Tsai, J. S. H., Su, T. J., and Liu, B. D., “Stability of Cellular Neural Networks with Time-varying Delay, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50(5), pp. 677-679, 2003.
[94]Zadeh, L. A., “Outline of a new approach to analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, pp. 28-44, 1973.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊