|
[1]C. L. Huang, J. Y. Chen, and C. Y. Jiang, “Dielectric Characteristics and Sintering Behavior of Mg2TiO4–(Ca0.8Sr0.2)TiO3 Ceramic System at Microwave Frequency, J. Alloys Compd., 487 (2009) 420–424. [2]Y. B. Chen, C. L. Huang, and S. T. Tasi, “New Dielectric Material System of x(Mg0.95Zn0.05)TiO3–(1–x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency, Mater. Lett., 62 (2008) 2454–2457. [3]I. M. Reaney and D. Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks, J. Am. Ceram. Soc., 89 (2006) 2063–2072. [4]C. L. Huang, J. Y. Chen, and B. J. Li, “A New Dielectric Material System Using (1–x)(Mg0.95Co0.05)2TiO4–xCa0.8Sm0.4/3TiO3 at Microwave Frequencies, Mater. Chem. Phys., 120 (2010) 217–220. [5]A. Kan, H. Ogawa, and H. Ohsato, “Influence of Microstructure on Microwave Dielectric Properties of ZnTa2O6 Ceramics with Low Dielectric Loss, J. Alloys Compd., 337 (2002) 303–308. [6]B. Jancar, D. Suvorov, M. Valant, and G. Drazic, “Characterization of CaTiO3–NdAlO3 Dielectric Ceramics, J. Eur. Ceram. Soc., 23 (2003) 1391–1400. [7]C. L. Huang, J. Y. Chen, and Y. W. Tseng, “High-Dielectric-Constant and Low-Loss Microwave Dielectric in the Ca(Mg1/3Ta2/3)O3–(Ca0.8Sr0.2)TiO3 Solid Solution System, Mater. Sci. Eng. B, 167 (2010) 142–146. [8]W. W. Cho, K. I. Kakimoto, and H. Ohsato, “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency, Jpn. J. Appl. Phys., 43 (2004) 6221–6224. [9]J. J. Wang, “Study of (1–x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 Microwave Dielectrics, J. Alloys Compd., 486 (2009) 423–426. [10]W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, “Microwave Dielectric Properties of ZnAl2O4–TiO2 Spinel-Based Composites, Mater. Lett., 61 (2007) 4066–4069. [11]Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, “Improvement of the Dielectric Properties of Rutile-Doped Al2O3 Ceramics by Annealing Treatment, J. Eur. Ceram. Soc., 26 (2006) 2093–2096. [12]H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, “Crystal Structure of Corundum Type Mg4(Nb2–xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss, J. Eur. Ceram. Soc., 23 (2003) 2485–2488. [13]A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4, J. Am. Ceram. Soc., 89 (2006) 3441–3445. [14]C. L. Huang and Y. W. Tseng, “Microwave Dielectric Properties of Mg1.8Ti1.1O4 Ceramics, Mater. Lett., 64 (2010) 885–887. [15]C. L. Huang, J. J. Wang, and Y. P. Chang, “Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency, J. Am. Ceram. Soc., 90 (2007) 858–862. [16]Y. C. Chen, S. M. Tsao, C. S. Lin, S. C. Wang, and Y. H. Chien, “Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 for Application in Dielectric Resonator Antenna, J. Alloys Compd., 471 (2009) 347–351. [17]H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb, Ta), Jpn. J. Appl. Phys., 36 (1997) L1318–L1320. [18]C. L. Huang and J. Y. Chen, “Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+, J. Am. Ceram. Soc., 92 (2009) 1845–1848. [19]H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies, Jpn. J. Appl. Phys., 33 (1994) 5463–5465. [20]S. Y. Cho, C. H. Kim, D. W. Kim, K. S. Hong, and J. H. Kim, “Dielectric Properties of Ln(Mg1/2Ti1/2)O3 as Substrates for High-Tc Superconductor Thin Films, J. Mater. Res., 14 (1999) 2484–2487. [21]C. L. Huang and J. Y. Chen, “Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1–xCox)Ta2O6 Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 470–473. [22]M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by the Polymeric Precursor Method, J. Eur. Ceram. Soc., 22 (2002) 1693–1698. [23]C. L. Huang and J. Y. Chen, “Phase Relation and Microwave Dielectric Properties of (Zn1–xCox)Ta2O6 System, J. Am. Ceram. Soc., 93 (2010) 1248–1251. [24]S. I. Hirano, T. Hayashi, and A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics, J. Am. Ceram. Soc., 74 (1991) 1320–1324. [25]P. V. Bijumon and M. T. Sebastian, “Influence of Glass Additives on the Microwave Dielectric Properties of Ca5Nb2TiO12 Ceramics, Mater. Sci. Eng. B, 123 (2005) 31–40. [26]L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan, and R. Dronskowski, “Preparation, Structure and Dielectric Properties of Ba4LaMNb3O15 (M = Ti, Sn) Ceramics, Mater. Res. Bull., 39 (2004) 1649–1654. [27]H. Zhang, L. Fang, R. Dronskowski, P. Müller, and R. Z. Yuan, “Some A6B5O18 Cation-Deficient Perovskites in the BaO–La2O3–TiO2–Nb2O5 System, J. Solid State Chem., 177 (2004) 4007–4012. [28]N. Santha and M. T. Sebastian, “Low Temperature Sintering and Microwave Dielectric Properties of Ba4Sm9.33Ti18O54 Ceramics, Mater. Res. Bull., 43 (2008) 2278–2284. [29]K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO–PbO–Nd2O3–TiO2 Dielectric Resonators, J. Am. Ceram. Soc., 67 (1984) 278–281. [30]K. Ezaki, Y. Baba, H. Takahashi, K. Shibata, and S. Nakano, “Microwave Dielectric Properties of CaO–Li2O–Ln2O3–TiO2 Ceramics, Jpn. J. Appl. Phys., 32 (1993) 4319–4322. [31]Y. J. Gu, J. L. Huang, Q. Li, D. M. Sun, and H. Xu, “Low-Temperature Firing and Microwave Dielectric Properties of 16CaO–9Li2O–12Sm2O3–63TiO2 Ceramics with V2O5 Addition, J. Eur. Ceram. Soc., 28 (2008) 3149–3153. [32]K. Wakino, “Recent Development of Dielectric Resonator Materials and Filters in Japan, Ferroelectrics., 91 (1989) 69–86. [33]A. Belous, O. Ovchar, D. Durylin, M. Valant, M. M. Krzmanc, and D. Suvorov, “Microwave Composite Dielectrics Based on Magnesium Titanates, J. Eur. Ceram. Soc., 27 (2007) 2963–2966. [34]H. Shin, H. K. Shin, H. S. Jung, S. Y. Cho, and K. S. Hong, “Phase Evolution and Dielectric Properties of MgTi2O5 Ceramic Sintered with Lithium Borosilicate Glass, Mater. Res. Bull., 40 (2005) 2021–2028. [35]C. L. Huang and C. H. Shen, “Phase Evolution and Dielectric Properties of (Mg0.95M2+0.05)Ti2O5 (M2+ = Co, Ni, and Zn) Ceramics at microwave frequencies, J. Am. Ceram. Soc., 92 (2009) 384–388. [36]M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, “Spinel Solid Solutions in the Systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4, J. Mater. Res., 12 (1997) 2584–2588. [37]R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperatures-Stable Ceramic Dielectrics with Low Microwave Loss, J. Am. Ceram. Soc., 56 (1973) 352–354. [38]C. L. Huang and S. H. Liu, “Low-Loss Microwave Dielectric in the (Mg1–xZnx)2TiO4 Ceramics, J. Am. Ceram. Soc., 91 (2008) 3428–3430. [39]C. L. Huang and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1–xCox)2TiO4 Ceramics, J. Am. Ceram. Soc., 92 (2009) 379–383. [40]L. Sebastian and J. Gopalakrishnan, “Li2MTiO4 (M = Mn, Fe, Co, Ni): New Cation-Disordered Rocksalt Oxides Exhibiting Oxidative Deintercalation of Lithium. Synthesis of an Ordered Li2NiTiO4, Solid State Chem., 172 (2003) 171–177. [41]M.V.V. M. Satya Kishore, S. Marinel, V. Pralong, V. Caignaert, S. D. Astorg, and B. Raveau, “The Rock Salt Oxide Li2MgTiO4: Type I Dielectric and Ionic Conductor, Mater. Res. Bull., 41 (2006) 1378–1384. [42]J. J. Bian, L. Wang, and L. L. Yuan, “Microwave Dielectric Properties of Li2+xTi1–4xNb3xO3 (0 ≤ x ≤ 0.1), Mater. Sci. Eng. B., 164 (2009) 96–100. [43]J. Liang and W. Z. Lu, “Microwave Dielectric Properties of Li2TiO3 Ceramics Doped with ZnO–B2O3 Frit, J. Am. Ceram. Soc., 92 (2009) 952–954. [44]L. X. Pang and D. Zhou, “Microwave Dielectric Properties of Low-Firing Li2MO3 (M = Ti, Zr, Sn) Ceramics with B2O3–CuO Addition, J. Am. Ceram. Soc., 93 (2010) 3614–3617. [45]J. Liang, W. Z. Lu, J. M. Wu, and J. G. Guan, “Microwave Dielectric Properties of Li2MO3 Ceramics Sintered at Low Temperatures, Mater. Sci. Eng. B., 176 (2011) 99–102. [46]D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu, “Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver, J. Am. Ceram. Soc., 91 (2008) 4115–4117. [47]M. Castellanos and A. R. West, “Order–Disorder Phenomena in Oxides with Rock Salt Structures: The System Li2TiO3–MgO, J. Mater. Sci., 14 (1979) 450–454. [48]J. J. Bian and Y. F. Dong, “New High Q Microwave Dielectric Ceramics with Rock Salt Structures: (1–x)Li2TiO3+xMgO System (0 ≤ x ≤ 0.5), J. Eur. Ceram. Soc., 30 (2010) 325–330. [49]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A, 32 (1976) 751–767. [50]R. J. Cava, J. J. Krajewski, and R. S. Roth, “Ca5Nb2TiO12 and Ca5Ta2TiO12: Low Temprature Coefficient Low Loss Dielectric Materials, Mater. Res. Bull., 34 (1999) 355–362. [51]L. A. Bendersky, J. J. Krajewski, and R. J. Cava, “Dielectric Properties and Microstructure of Ca5Nb2TiO12 and Ca5Ta2TiO12, J. Eur. Ceram. Soc., 21 (2001) 2653–2658. [52]P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “High Dielectric Constant Low Loss Microwave Dielectric Ceramics in the Ca5Nb2–xTaxTiO12 System, Mater. Lett., 57 (2003) 1380–1384. [53]P. V. Bijumon, M. T. Sebastian, and P. Mohanan, “Exprimental Investigations and Three-Dimensional Transmission Line Matrix Simulation of Ca5–xAxB2TiO12 (A = Mg, Zn, Ni, and Co; B = Nb and Ta) Ceramic Resonators, J. Appl. Phys., 98 (2005) 124105. [54]P. V. Bijumon and M. T. Sebastian, “Doped Ca(Ca1/4A2/4Ti1/4)O3 (A = Nb, Ta) Dielectrics for Microwave Telecommunication Applications, Int. J. Appl. Ceram. Technol., 4 (2007) 60–74. [55]P. V. Bijumon and M. T. Sebastian, “Tailoring the Microwave Dielectric Properties of Ca5Ta2TiO12 Ceramics through Glass Addition, J. Am. Ceram. Soc., 88 (2005) 3433–3439. [56]P. V. Bijumon and M. T. Sebastian, “Microwave Dielectric Properties of Temperature Stable Ca5A2Ti1–xHfxO12 (A = Nb, Ta) Ceramics, J. Electroceram., 16 (2006) 239–245. [57]P. V. Bijumon and M. T. Sebastian, “Temperature-Stable Microwave Dielectric Ceramics in the Ca5A2Ti1–xZrxO12 (A = Nb, Ta) Systems, J. Mater. Res., 19 (2004) 2922–2928. [58]Y. C. Chen, K. H. Chen, K. C. Chen, and J. Y. Lin, “Dual Band Hybrid Dielectric Resonator Antenna for Application in ISM and UNNI Band, IEICE Trans. Commun., E93-B (2010) 2662–2665. [59]J. Y. Chiou, J. Y. Sze, and K. L. Wong, “A Broad-Band CPW-Fed Strip-Loaded Square Slot Antenna, IEEE Trans. Antennas Propag., 51 (2003) 719–721. [60]H. D. Chen, “Broadband CPW-Fed Square Slot Antennas with a Widened Tuning Stub, IEEE Trans. Antennas Propag., 51 (2003) 1982–1986. [61]J. William and R. Nakkeeran, “Development of CPW-Fed UWB Printed Slot Antenna, Communications (NCC), 2010 national conference on., (2010) 1–5. [62]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, (1976). [63]D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, (1986). [64]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IRE Trans. Microwave Theory Tech., 8 (1960) 402–410. [65]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators, IEEE Trans. Microwave Theory Tech., 18 (1970) 476–485. [66]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method, IEEE Trans. Microwave Theory Tech., 33 (1985) 586–592. [67]R. D. Richtinger, “Dielectric Resonator, J. Appl. Phys., 10 (1939) 391–398. [68]A. Okay and L. F. Barash, “The Dielectric Microwave Resonator, Proc. IRE., 50 (1962) 2081–2092. [69]O. Sager and F. Tisi, “On Eigenmodes and Forced Resonator-Modes of Dielectric Spheres, Proc. IEEE., 56 (1968) 1593–1594. [70]J. Van Bladel, “On the Resonances of a Dielectric Resonator of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 23 (1975) 199–208. [71]J. Van Bladel, “The Excitation of Dielectric Resonator of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 23 (1975) 208–217. [72]S. A. Long, M. W. McAllister, and L. C. Shen, “The Resonant Cylindrical Dielectric Cavity Antenna, IEEE Trans. Antennas Propag., 31 (1983) 406–412. [73]M. W. McAllister and S. A. Long, “Resonant Hemispherical Dielectric Antenna, Electron. Lett., 20 (1984) 657–659. [74]M. W. McAllister, S. A. Long, and G. L. Conway, “Rectangular Dielectric Resonator Antenna, Electron. Lett., 19 (1983) 218–219. [75]R. K. Mongia, P. Bhartia, A. Ittipiboon, and M. Cuhaci, “Electric-Monopole Antenna Using a Dielectric Ring Resonator, Electron. Lett., 29 (1983) 1530–1531. [76]A. A. Kishk, A. Ittipiboon, Y.M.M. Antar, and M. Cuhaci, “Slot Excitation of the Dielectric Disk Radiator, IEEE Trans. Antennas Propag., 43 (1995) 198–201. [77]R. Chair, A. A. Kishk, and K. F. Lee, “Wideband Simple Cylindrical Dielectric Resonator Antenna, IEEE Microw. Wireless Compon. Lett., 15 (2005) 241–243. [78]A. A. Kishk, A. W. Glisson, and G. P. Junker, “Study of Broadband Dielectric Resonator Antennas, Proc. 1999 Antenna Appl. Symp., Allerton, Illinois, (1999) 45–68. [79]R. K. Mongia and P. Bhartia, “Dielectric Resonator Antenna–A Review and General Design Relations for Resonant Frequency and Bandwidth, Int. J. Microw. Millimeter-Wave Computer-Aided Eng., 4 (1994) 230–247. [80]M. Verplanken and J. Van Bladel, “The Magnetic-Dipole Resonance of Ring Resonators of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 27 (1979) 328–333. [81]L. Fang, C. Li, X. Peng, C. Hu, and B. Wu, “Sr4–mLamTim–1Ta4–mO12 (m = 1, 2, 3): A Novel Series of A4B3O12-Type Microwave Ceramics with a High Q and Low τf, J. Am. Ceram. Soc., 93 (2010) 1884–1887. [82]L. Fang, C. Li, X. Peng, C. Hu, B. Wu, and H. Zhou, “Ba4LiNb3–xTaxO12 (x = 0–3): A Series of High-Q Microwave Dielectrics from the Twinned 8H Hexagonal Perovskites, J. Am. Ceram. Soc., 93 (2010) 1229–1231. [83]S. Butee, A. Kulkarni, O. Prakash, R. P. R. C. Aiyar, S. George, and M. Sebastian, “High Q Microwave Dielectric Ceramics in (Ni1–xZnx)Nb2O6 System, J. Am. Ceram. Soc., 92 (2009) 1047–1053. [84]C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using Mg2(Ti1–xSnx)O4 (x = 0.01–0.09) Solid Solution, J. Am. Ceram. Soc., 92 (2009) 2237–2241. [85]H. Zhang, L. Fang, H. Su, Q. Yu, and B. Wu, “Improved Microwave Dielectric Properties of Ba6Ti1–xSnxNb4O18 Ceramics, J. Am. Ceram. Soc., 92 (2009) 238–240. [86]J. J. Bian, Y. F. Dong, and G. X. Song, “Microwave Dielectric Properties of A-Site Modified Ba(Co0.7Zn0.3)1/3Nb2/3O3 by La3+, J. Am. Ceram. Soc., 91 (2008) 1182–1187. [87]A. C. Larson and R. B. Von Dreele, “General Structure Analysis System, Los Alamos Laboratory Report LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM, 1994. [88]A. Feteira, D. C. Sinclair, and M. T. Lanagan, “Structure and Microwave Dielectric Properties of Ca1-xYxTi1-xAlxO3 (CYTA) Ceramics, J. Mater. Res., 20 (2005) 2391–2399. [89]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values, Jpn. J. Appl. Phys., 33 (1994) 5466–5470. [90]C. L. Huang and S. S. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency, Jpn. J. Appl. Phys., 46 (2007) 283–285. [91]E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, “Effects of Packing Fraction and Bond Valence on Microwave Dielectric Properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) Ceramics, J. Eur. Ceram. Soc., 30 (2010) 1731–1736. [92]Q. Liao, L. Li, X. Ren, and X. Ding, “New Low-Loss Microwave Dielectric Material ZnTiNbTaO8, J. Am. Ceram. Soc., 94 (2011) 3237–3240. [93]R. Umemura, H. Ogawa, and A. Kan, “Low Temperature Sintering and Microwave Dielectric Properties of (Mg3-xZnx)(VO4)2 Ceramics, J. Eur. Ceram. Soc., 26 (2006) 2063–2068. [94]S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the Relations between Structure and Microwave Dielectric Properties of Divalent Metal Tungstate Compounds, J. Eur. Ceram. Soc., 26 (2006) 2051–2054. [95]C. L. Huang and W. R. Yang, “Low-Loss Microwave Dielectric Using (Mg1-xZnx)4Nb2O9 (x = 0.02–0.08) Solid Solutions, J. Alloys Compd., 509 (2011) 2269–2272. [96]L. Wang and J. J. Bian, “Effect of Na2W2O7 Addition on Low-Temperature Sintering and Microwave Dielectric Properties of CaWO4, Mater. Lett., 65 (2011) 726–728. [97]N. Lamrani, B. Itaalit, S. Marinel, and M. Aliouat, “Influence of Strontium Substitution on the Dielectric Properties of Ca(1-x)SrxTi0.9Zr0.1O3 Solid Solutions, Mater. Lett., 65 (2011) 346–349. [98]C. L. Huang, J. Y. Chen, Y. W. Tseng, C. Y. Jiang, and G. S. Huang, “High Dielectric Constant and Low-Loss Microwave Dielectric Ceramics Using (Zn0.95M2+0.05)Ta2O6 (M2+ = Mn, Mg, and Ni) Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 3299–3304. [99]C. L. Huang, C. Y. Tai, C. Y. Huang, and Y. H. Chien, “Low-Loss Microwave Dielectrics in the Spinel-Structured (Mg1-xNix)Al2O4 Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 1999–2003. [100]J. Y. Chen and C. L. Huang, “A New Low-Loss Microwave Dielectric Using (Ca0.8Sr0.2)TiO3–Doped MgTiO3 Ceramics, Mater. Lett., 64 (2010) 2585–2588. [101]C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator, J. Am. Ceram. Soc., 92 (2009) 119–124. [102]I. S. Ghosh, A. Hilgers, T. Schlenker, and R. Porath, “Ceramic Microwave Antennas for Mobile Applications, J. Eur. Ceram. Soc., 21 (2001) 2621–2628. [103]H. Zhou, X. Liu, X. Chen, L. Fang, and Y. Wang, “ZnLi2/3Ti4/3O4: A New Low Loss Spinel Microwave Dielectric Ceramic, J. Eur. Ceram. Soc., 32 (2012) 261–265. [104]S. George and M. T. Sebastian, “Microwave Dielectric Properties of Novel Temperature Stable High Q Li2Mg1–xZnxTi3O8 and Li2A1–xCaxTi3O8 (A = Mg, Zn) Ceramics, J. Eur. Ceram. Soc., 30 (2010) 2585–2592. [105]M. Y. Chen, C. Y. Chiu, C. T. Chia, J. F. Lee, and J. J. Bian, “Raman Spectra and Extended X-Ray Absorption Fine Structure Characterization of La(2−x)/3NaxTiO3 and Nd(2−x)/3LixTiO3 Microwave Ceramics, J. Eur. Ceram. Soc., 30 (2010) 335–339. [106]Y. Zhou, S. Meng, H. Wu, and Z. Yue, “Microwave Dielectric Properties of Ba2Ca1–xSrxWO6 Double Perovskites, J. Am. Ceram. Soc., 94 (2011) 2933–2938. [107]J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, S. I. Gu, J. H. Paik, and B. H. Choi, “Effect of B2O3 Addition on the Sintering Temperature and Microwave Dielectric Properties of Zn2SiO4 Ceramics, J. Eur. Ceram. Soc., 30 (2010) 375–379. [108]C. L. Huang and Y. C. Chen, “Influence of V2O5 Additions to NdAlO3 Ceramics on Sintering Temperature and Microwave Dielectric Properties, J. Eur. Ceram. Soc., 23 (2003) 167–173. [109]A. Borisevich and P. K. Davies, “Microwave Dielectric Properties of Li1+x-yM1-x-3yTix+4yO3 (A = Nb5+, Ta5+) Solid Solutions, J. Eur. Ceram. Soc., 21 (2001) 1719–1722. [110]H. Zhou, X. Chen, L. Fang, C. Hu, and H. Wang, “Preparation and Characterization of a New Microwave Dielectric Ceramic Ba4ZnTi11O27, J. Am. Ceram. Soc., 93 (2010) 1537–1539. [111]J. F. Dorrian and R. E. Newnham, “Refinement of the Structure of Li2TiO3, Mater. Res. Bull., 4 (1969) 179–183. [112]R. D. Shannon, “Dielectric Polarizabilities of Ions in Oxides and Fluorides, J. Appl. Phys., 73 (1993) 348–366. [113]W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase Evolution and Microwave Dielectric Properties of (1–x)ZnAl2O4–xMg2TiO4 Ceramics, J. Am. Ceram. Soc., 92 (2009) 105–109. [114]B. D. Silverman, “Microwave Absorption in Cubic Strontium Titanate, Phys. Rev., 125 (1962) 1921–1930. [115]S. J. Penn, N. McN. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina, J. Am. Ceram. Soc., 80 (1997) 1885–1888. [116]H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects, J. Eur. Ceram. Soc., 26 (2006) 1775–1780. [117]C. L. Huang, C. H. Su, and C. M. Chang, “High Q Microwave Dielectric Ceramics in the Li2(Zn1–xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) System, J. Am. Ceram. Soc., 94 (2011) 4146–4149. [118]C. L. Huang, C. F. Tseng, W. R. Yang, and T. J. Yang, “High Dielectric Constant Low Loss Microwave Dielectric in the (1–x)Nd(Zn1/2Ti1/2)O3–xSrTiO3 System with Zero Temperature Coefficient of Resonant Frequency, J. Am. Ceram. Soc., 91 (2008) 2201–2204. [119]L. Fang, H. Zhang, Q. Yu, H. Su, B. Wu, and X. Cui, “Sr3LaNb3O12: A New Low Loss and Temperature Stable A4B3O12-Type Microwave Dielectric Ceramic, J. Am. Ceram. Soc., 92 (2009) 556–558. [120]C. L. Huang, H. L. Chen, and C. C. Wu, “Improved High Q Value of CaTiO3–Ca(Mg1/3Nb2/3)O3 Solid Solution with Near Zero Temperature Coefficient of Resonant Frequency, Mater. Res. Bull., 36 (2001) 1645–1652. [121]C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 Microwave Dielectric Ceramics by Zn Substitution, J. Am. Ceram. Soc., 90 (2007) 1483–1486. [122]C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1–xMnx)2TiO4 (x = 0.02–0.1) Solid Solution, J. Am. Ceram. Soc., 92 (2009) 675–678. [123]C. Yoon, W. J. Lee, S. P. Kang, S.Y. kang, H. C. Lee, and H. D. Park, “A Planar CPW-Fed Slot Antenna on Thin Substrate for Dual-Band Operation of WLAN Applications, Microwave Opt. Technol. Lett., 51 (2009) 2799–2802. [124]S. C. Basaran and Y. E. Erdemli, “A Dual-Band Split-Ring Monopole Antenna for WLAN Applications, Microwave Opt. Technol. Lett., 51 (2009) 2685–2688. [125]C. Y. Pan, C. H. Huang, and T. S. Horng, “A New Printed G-Shaped Monopole Antenna for Dual-Band WLAN Applications, Microwave Opt. Technol. Lett., 45 (2005) 295–297. [126]Q. Y. Zhang and Q. X. Chu, “Triple-Band Dual Rectangular Ring Printed Monopole Antenna for WLAN/WiMAX Applications, Microwave Opt. Technol. Lett., 51 (2009) 2845–2848. [127]X. Li, Y. F. Wang, X. W. Shi, W. Hu, and L. Chen, “Compact Triple-Band Antenna with Rectangular Ring for WLAN and WiMAX Applications, Microwave Opt. Technol. Lett., 54 (2012) 286–289. [128]J. H. Lu and Y. H. Liu, “Planar Dual-Band Dipole Array for Long-Term Evolution/Worldwide Interoperability for Microwave Access Points, Microwave Opt. Technol. Lett., 54 (2012) 811–815. [129]C. L. Hu, W. F. Lee, Y. E. Wu, C. F. Yang, and S. T. Lin, “A Compact Multiband Inverted-F Antenna for LTE/WWAN/GPS/WiMAX/WLAN Operations in the Laptop Computer, IEEE Antennas Wireless Propag. Lett., 9 (2010) 1169–1173.
|