跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾昱瑋
研究生(外文):Yu-WeiTseng
論文名稱:低損耗微波介電共振器之開發及應用
論文名稱(外文):Development and Applications of Low-Loss Microwave Dielectric Resonators
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:123
中文關鍵詞:微波介電特性微波介電共振天線
外文關鍵詞:Microwave dielectric propertiesMicrowave resonator antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微波介電共振器具有高介電常數、高品質因素及趨近於零的溫度頻率飄移係數等特性,適合用於介質共振天線、濾波器、震盪器和雙工器。近年來,由於微波通訊系統的演進及發展,微型化、高效能和低成本已經成為微波元件的主要需求。因此,高品質因素介電材料常應用於通訊系統中。由於具有低損耗的特性表現,也常設計於高效能微波元件上。然而,高介電常數陶瓷材料亦可達到微型化的目的,所以材料的選擇也是相當重要的課題。針對以上所述,本論文將以三個部分加以探討及研究:

一、高品質因素介質共振器之開發
[a]鈦酸鎂陶瓷之研究:
(1)二元的鈦酸鎂(Mg1.8Ti1.1O4)介電陶瓷擁有 er~15.7,Q×f~141,000 GHz,τf~–52.4 ppm/°C的微波介電特性,並且具有極低的介電損耗和低成本的特色,適用於全球衛星定位系統和無線區域網路上。因此,尖晶石結構的鈦酸鎂是非常值得研究及探討其微波介電性質。
(2)在本論文中,嘗試開發具有更高Q值的尖晶石陶瓷系統,分別利用Co或Zn部分取代Mg原子,可得到具有更佳微波介電特性的 (Mg0.95Co0.05)1.8Ti1.1O4 (Q×f~207,500 GHz)及(Mg0.94Zn0.06)1.8Ti1.1O4 (Q×f~210,700 GHz)。
(3)Mg1.8Ti1.1O4雖有極佳的Q×f值,但其共振頻率溫度飄移係數仍然為負值,無法有效運用於微波元件上。因此,予以加入具有正溫度飄移係數的陶瓷材料碳酸鈣(CaTiO3),形成(1–x)Mg1.8Ti1.1O4–xCaTiO3陶瓷系統,以獲得具有高溫度穩定性的微波陶瓷材料。針對上述研究,並使用XRD、EDX及SEM來加以鑑定及分析。作為實際的應用,0.91Mg1.8Ti1.1O4–0.09CaTiO3陶瓷材料燒結在1330°C,持溫4小時,擁有良好的微波介電特性(er~19.6,Q×f~72,700 GHz,τf~–3.7 ppm/°C),可以應用於微波介質共振天線上。

[b]鈦酸鋰陶瓷之研究:
(1)岩鹽結構的Li2MgTiO4 介電陶瓷是利用傳統的混合氧化物方法合成,透過SEM分析來觀察其表面微結構,並研究其微波介電特性。然而,陶瓷材料的燒結條件及晶體結構皆會影響其介電性質。在本論文中,一個新穎的微波介電材料Li2MgTiO4燒結在1360°C,擁有er~17.3,Q×f~97,300 GHz,τf~–27.2 ppm/°C的微波介電特性。
(2)(1–x)Li2TiO3–xZnO (x = 0.1–0.5)陶瓷系統是利用傳統的混合氧化物方法合成,透過XRD分析來作為相的鑑定、SEM分析來觀察其表面微結構,並研究其微波介電特性。然而,陶瓷材料的緻密化及表面微結構皆會影響其介電性質。除此之外,Q×f降低的原因,由於高比例ZnO添加量(x 〉 0.3),將使得超晶格繞射面(002)的強度下降,且晶體結構將會轉變為無序化排列的岩鹽結構。作為實際的應用,一個新穎的0.7Li2TiO3–0.3ZnO陶瓷材料擁有良好的微波介電特性(er~23,Q×f~99,800 GHz,τf~0 ppm/°C),可以應用於微波介質共振天線上。在本論文中,將設計與製造一個低損耗隙縫耦合介電共振天線,並研究其微波特性表現。

二、高介電常數微波材料之研究
高介電常數和低損耗(1–x)Ca4MgNb2TiO12–xCaTiO3陶瓷系統是利用傳統的固態反應法合成,透過XRD分析來作為相的鑑定並測量晶格參數的變化。當添加比例x = 0.1–0.9時,晶格參數呈線性變化,分別為a = 5.5478 Å、b = 7.7710 Å和 c = 5.4543 Å 下降至a = 5.4718 Å、b = 7.6799 Å和 c = 5.4262 Å。而且,當添加比例x = 0.3時,具有一趨近於零的τf 值(~–6.9 ppm/°C),低損耗的Q×f 值(~20,200 GHz)及較高的介電常數(er~ 43.9)值。

三、微波介質共振天線之設計與製作
一個新穎的三頻介質共振天線(簡稱為DRA),是由一高介電常數之介質共振器放置於FR4纖維基板上,並透過50 Ω的共平面波導(簡稱CPW)傳輸線饋入而組成。為了達到寬頻的應用,天線使用兩段寄生倒L型的微帶線產生兩個共振頻率,並覆蓋於3.5和5.2 GHz。最後,測量結果顯示,介質共振天線覆蓋的頻率範圍為2.30–2.72,3.45–3.61和 5.05–6.23 GHz,可以應用於無線通訊系統上。在本論文中,模擬與實作結果之頻率響應也呈現一致性。除此之外,良好的天線增益,輻射效率和輻射場型也將於論文中詳細敘述及討論。
The microwave dielectric resonators (DR) having a high dielectric constant, high quality factor and near-zero temperature coefficient of resonant frequency and other features, suitable for a dielectric resonator antennas, filters, oscillators, and duplexers. In recent years, due to the evolution and development of microwave communication system, miniaturized, high performance and low cost has become the main demand of the microwave components. Therefore, the high quality factor dielectric material often used in communications systems. With low loss characteristics performance, often designed for high-performance microwave components. However, the high dielectric constant ceramic material can also achieve the purpose of miniaturization, so the choice of material is also a very important issue. As mentioned above, the main study of this dissertation is divided three parts which preparation of high dielectric constant, high quality factor, design and fabrication of the microwave dielectric resonator antennas.

1.Development of High Q Microwave Dielectric Materials
[a]Study of Mg1.8Ti1.1O4 Ceramics:
(1)Binary titanate microwave dielectric ceramic Mg1.8Ti1.1O4 (er~ 15.7, Q×f~141,000 GHz at 10.57 GHz, and τf~–52.4 ppm/°C), having an extremely low dielectric loss and a low cost, were reported as suitable materials for global positioning system (GPS) and wireless local area network (WLAN). Therefore, the spinel-structured Mg1.8Ti1.1O4 is worthy to investigate its microwave properties.
(2)In this dissertation, with partial replacement of Mg by Co or Zn, the Q×f of the dielectrics (Mg0.95Co0.05)1.8Ti1.1O4 (er~ 16.1, Q×f~207,500 GHz at 10.72 GHz, and τf~–52.6 ppm/°C) and (Mg0.94Zn0.06)1.8Ti1.1O4 (er~16.5, Q×f~210,700 GHz at 10.52 GHz, and τf~–62.3 ppm/°C) can be easily boosted to a value higher than 200,000 GHz and retain compatible and τf.
(3)In order to achieve temperature-stable materials, CaTiO3 was added to form the (1–x) Mg1.8Ti1.1O4–xCaTiO3 ceramic system. A three-phase system was confined by X-ray diffraction patterns and EDX analysis. The microstructures of the ceramics were characterized by SEM. The microwave dielectric properties of the ceramics can be effectively controlled by varying the x value. For practical applications, a fine combination of microwave dielectric properties (er~19.6, Q×f~72,700 GHz at 9.03 GHz, τf~–3.7 ppm/°C) was achieved for 0.91Mg1.8Ti1.1O4–0.09CaTiO3 ceramics sintered at 1330°C for 4 h, which makes it is a very promising candidate material for applications in dielectric resonator antenna.

[b]Study of Li2TiO3 Ceramics:
(1)Development of Li2MgTiO4 Ceramics
Rock-salt-structured Li2MgTiO4 ceramic was prepared by the conventional mixed oxide route and its microwave dielectric properties were investigated. The microstructures of the ceramics were characterized by SEM. The dielectric properties of the ceramics exhibited a significant dependence on the sintering condition and crystal structure. A new microwave dielectric material, Li2MgTiO4 sintered at 1360°C has a dielectric constant (er) of ~17.3, a Q×f of ~97,300 GHz (where f = 9.86 GHz, is the resonant frequency) and a τf of ~–27.2 ppm/°C. The microwave dielectric properties of the ceramic are reported for the first time.
(2)Partial replacement of Li2TiO3 by ZnO
The microwave dielectric properties of the (1–x)Li2TiO3–xZnO (x = 0.1–0.5) ceramic system prepared by mixed oxide route have been investigated. The rock-salt structured (1–x)Li2TiO3–xZnO were confirmed by using X-ray diffraction spectra, scanning electron microcopy (SEM). The dielectric properties are strongly dependent on the compositions, the densifications and the microstructures of the specimens. The decrease of Q×f value at high-level ZnO addition (x 〉 0.3) was owing to the intensity of the (002) superstructure reflection decreased and became disordered rock-salt structure. For practical applications, a new microwave dielectric material 0.7Li2TiO3–0.3ZnO is suggested and it possesses a good combination of dielectric properties with an er of ~ 23, a Q×f of ~99,800 GHz (measured at 8.91 GHz), and a τf of ~0 ppm/°C. A low-loss dielectric resonant antenna using aperture-coupled cylindrical dielectric resonant was designed and fabricated using the proposed dielectric to study its performance.

2.Research of High K Microwave Dielectric Materials
High-dielectric-constant and low-loss ceramics in (1–x)Ca4MgNb2TiO12–xCaTiO3 system have been prepared by the conventional solid-state route. The forming of complete (1–x)Ca4MgNb2TiO12–xCaTiO3 solid solutions were confirmed by the X-ray diffraction pattern analysis and the measured lattice parameters,which linearly varied from a = 5.5478 Å, b = 7.7710 Å, and c = 5.4543 Å for x = 0.1 to a = 5.4718 Å, b = 7.6799 Å, and c = 5.4262 Å for x = 0.9. By increasing x, not only could the τf of the ceramics be turned to a near-zero value (~ –6.9 ppm/°C) at x = 0.3, a substantial Q×f (~ 20,200 GHz) and er (~ 43.9) could aslo be achieved simultaneously.

3. Design and Fabrication of Microwave Dielectric Resonator Antennas
A new triple-band dielectric resonator antenna (DRA) fed by a coplanar waveguide (CPW) is presented. The proposed antenna, composed of a high permittivity dielectric resonator and printed on FR4 substrate, is fed by a 50 Ω coplanar waveguide transmission line. In order to achieve wideband applications, the antenna with two parasitic inverted-L strips is demonstrated to generate two resonant frequencies covering 3.5- and 5.2-GHz. The measured results show that the antenna covers the frequency bands 2.30–2.72, 3.45–3.61, and 5.05–6.23 GHz with less than –10 dB of S11. The frequency response of the simulation results shows good agreement with the measured data. Good antenna gain, radiation efficiency and radiation patterns of the proposed antenna have also been observed across the operation band. Details of the proposed antenna design and experimental results are presented and discussed.
Abstract I
Contents XII
Table Captions XIV
Figure Captions XVI
Chapter 1 Introduction 1
Chapter 2 Theory 8
2-1 Theory of Microwave Dielectric Properties 8
2-2 Measurement of Dielectric Resonator 11
2-3 Basic Theory of Microwave Dielectric Resonator Antenna 12
2-3-1 Overview of dielectric resonator antenna 13
2-3-2 Characteristics of the cylindrical dielectric resonator antenna 14
2-3-2-1 A resonant frequency and quality factor 14
2-3-2-2 Near-field of the dielectric resonator antenna 22
2-3-2-3 Far-field of the dielectric resonator antenna 26
Chapter 3 Development of High Q Microwave Dielectric Materials 28
3-1 Mg1.8Ti1.1O4 Ceramics 28
3-1-1 Introduction 28
3-1-2 Experimental Procedures 30
3-1-3 Results and Discussion 32
3-1-3-1 Mg1.8Ti1.1O4 Ceramics 32
3-1-3-2 (1–x)Mg1.8Ti1.1O4–xCaTiO3 Ceramic System 37
3-1-3-3 Partial Replacement of Mg2+ by Co2+ in Mg1.8Ti1.1O4 Ceramics 45
3-1-3-4 Partial Replacement of Mg2+ by Zn2+ in Mg1.8Ti1.1O4 Ceramics 53
Chapter 4 Dielectric Properties of Rock Salt Li2MgTiO4 Ceramics at Microwave Frequency 63
4-1 Introduction 63
4-2 Experimental Procedures 63
4-3 Results and Discussion 65
Chapter 5 High-Q Dielectrics Using ZnO-Modified Li2TiO3 Ceramics for Microwave Applications 70
5-1 Introduction 70
5-2 Experimental Procedures 71
5-3 Results and Discussion 73
Chapter 6 Structure, Dielectric Properties and Applications of CaTiO3-Modified Ca4MgNb2TiO12 Ceramics at Microwave Frequency 86
6-1 Introduction 86
6-2 Experimental Procedures 87
6-3 Results and Discussion 88
Chapter 7 Wideband CPW-Fed Dielectric Resonator Antenna with Parasitic Inverted-L Strips for Wireless Communication Applications 96
7-1 Introduction 96
7-2 Antenna description 97
7-3 Results and discussions 100
Chapter 8 Conclusions 107
References 111
Publication List 122
[1]C. L. Huang, J. Y. Chen, and C. Y. Jiang, “Dielectric Characteristics and Sintering Behavior of Mg2TiO4–(Ca0.8Sr0.2)TiO3 Ceramic System at Microwave Frequency, J. Alloys Compd., 487 (2009) 420–424.
[2]Y. B. Chen, C. L. Huang, and S. T. Tasi, “New Dielectric Material System of x(Mg0.95Zn0.05)TiO3–(1–x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency, Mater. Lett., 62 (2008) 2454–2457.
[3]I. M. Reaney and D. Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks, J. Am. Ceram. Soc., 89 (2006) 2063–2072.
[4]C. L. Huang, J. Y. Chen, and B. J. Li, “A New Dielectric Material System Using (1–x)(Mg0.95Co0.05)2TiO4–xCa0.8Sm0.4/3TiO3 at Microwave Frequencies, Mater. Chem. Phys., 120 (2010) 217–220.
[5]A. Kan, H. Ogawa, and H. Ohsato, “Influence of Microstructure on Microwave Dielectric Properties of ZnTa2O6 Ceramics with Low Dielectric Loss, J. Alloys Compd., 337 (2002) 303–308.
[6]B. Jancar, D. Suvorov, M. Valant, and G. Drazic, “Characterization of CaTiO3–NdAlO3 Dielectric Ceramics, J. Eur. Ceram. Soc., 23 (2003) 1391–1400.
[7]C. L. Huang, J. Y. Chen, and Y. W. Tseng, “High-Dielectric-Constant and Low-Loss Microwave Dielectric in the Ca(Mg1/3Ta2/3)O3–(Ca0.8Sr0.2)TiO3 Solid Solution System, Mater. Sci. Eng. B, 167 (2010) 142–146.
[8]W. W. Cho, K. I. Kakimoto, and H. Ohsato, “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency, Jpn. J. Appl. Phys., 43 (2004) 6221–6224.
[9]J. J. Wang, “Study of (1–x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 Microwave Dielectrics, J. Alloys Compd., 486 (2009) 423–426.
[10]W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, “Microwave Dielectric Properties of ZnAl2O4–TiO2 Spinel-Based Composites, Mater. Lett., 61 (2007) 4066–4069.
[11]Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, “Improvement of the Dielectric Properties of Rutile-Doped Al2O3 Ceramics by Annealing Treatment, J. Eur. Ceram. Soc., 26 (2006) 2093–2096.
[12]H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, “Crystal Structure of Corundum Type Mg4(Nb2–xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss, J. Eur. Ceram. Soc., 23 (2003) 2485–2488.
[13]A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4, J. Am. Ceram. Soc., 89 (2006) 3441–3445.
[14]C. L. Huang and Y. W. Tseng, “Microwave Dielectric Properties of Mg1.8Ti1.1O4 Ceramics, Mater. Lett., 64 (2010) 885–887.
[15]C. L. Huang, J. J. Wang, and Y. P. Chang, “Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency, J. Am. Ceram. Soc., 90 (2007) 858–862.
[16]Y. C. Chen, S. M. Tsao, C. S. Lin, S. C. Wang, and Y. H. Chien, “Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 for Application in Dielectric Resonator Antenna, J. Alloys Compd., 471 (2009) 347–351.
[17]H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb, Ta), Jpn. J. Appl. Phys., 36 (1997) L1318–L1320.
[18]C. L. Huang and J. Y. Chen, “Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+, J. Am. Ceram. Soc., 92 (2009) 1845–1848.
[19]H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies, Jpn. J. Appl. Phys., 33 (1994) 5463–5465.
[20]S. Y. Cho, C. H. Kim, D. W. Kim, K. S. Hong, and J. H. Kim, “Dielectric Properties of Ln(Mg1/2Ti1/2)O3 as Substrates for High-Tc Superconductor Thin Films, J. Mater. Res., 14 (1999) 2484–2487.
[21]C. L. Huang and J. Y. Chen, “Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1–xCox)Ta2O6 Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 470–473.
[22]M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by the Polymeric Precursor Method, J. Eur. Ceram. Soc., 22 (2002) 1693–1698.
[23]C. L. Huang and J. Y. Chen, “Phase Relation and Microwave Dielectric Properties of (Zn1–xCox)Ta2O6 System, J. Am. Ceram. Soc., 93 (2010) 1248–1251.
[24]S. I. Hirano, T. Hayashi, and A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics, J. Am. Ceram. Soc., 74 (1991) 1320–1324.
[25]P. V. Bijumon and M. T. Sebastian, “Influence of Glass Additives on the Microwave Dielectric Properties of Ca5Nb2TiO12 Ceramics, Mater. Sci. Eng. B, 123 (2005) 31–40.
[26]L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan, and R. Dronskowski, “Preparation, Structure and Dielectric Properties of Ba4LaMNb3O15 (M = Ti, Sn) Ceramics, Mater. Res. Bull., 39 (2004) 1649–1654.
[27]H. Zhang, L. Fang, R. Dronskowski, P. Müller, and R. Z. Yuan, “Some A6B5O18 Cation-Deficient Perovskites in the BaO–La2O3–TiO2–Nb2O5 System, J. Solid State Chem., 177 (2004) 4007–4012.
[28]N. Santha and M. T. Sebastian, “Low Temperature Sintering and Microwave Dielectric Properties of Ba4Sm9.33Ti18O54 Ceramics, Mater. Res. Bull., 43 (2008) 2278–2284.
[29]K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO–PbO–Nd2O3–TiO2 Dielectric Resonators, J. Am. Ceram. Soc., 67 (1984) 278–281.
[30]K. Ezaki, Y. Baba, H. Takahashi, K. Shibata, and S. Nakano, “Microwave Dielectric Properties of CaO–Li2O–Ln2O3–TiO2 Ceramics, Jpn. J. Appl. Phys., 32 (1993) 4319–4322.
[31]Y. J. Gu, J. L. Huang, Q. Li, D. M. Sun, and H. Xu, “Low-Temperature Firing and Microwave Dielectric Properties of 16CaO–9Li2O–12Sm2O3–63TiO2 Ceramics with V2O5 Addition, J. Eur. Ceram. Soc., 28 (2008) 3149–3153.
[32]K. Wakino, “Recent Development of Dielectric Resonator Materials and Filters in Japan, Ferroelectrics., 91 (1989) 69–86.
[33]A. Belous, O. Ovchar, D. Durylin, M. Valant, M. M. Krzmanc, and D. Suvorov, “Microwave Composite Dielectrics Based on Magnesium Titanates, J. Eur. Ceram. Soc., 27 (2007) 2963–2966.
[34]H. Shin, H. K. Shin, H. S. Jung, S. Y. Cho, and K. S. Hong, “Phase Evolution and Dielectric Properties of MgTi2O5 Ceramic Sintered with Lithium Borosilicate Glass, Mater. Res. Bull., 40 (2005) 2021–2028.
[35]C. L. Huang and C. H. Shen, “Phase Evolution and Dielectric Properties of (Mg0.95M2+0.05)Ti2O5 (M2+ = Co, Ni, and Zn) Ceramics at microwave frequencies, J. Am. Ceram. Soc., 92 (2009) 384–388.
[36]M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, “Spinel Solid Solutions in the Systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4, J. Mater. Res., 12 (1997) 2584–2588.
[37]R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperatures-Stable Ceramic Dielectrics with Low Microwave Loss, J. Am. Ceram. Soc., 56 (1973) 352–354.
[38]C. L. Huang and S. H. Liu, “Low-Loss Microwave Dielectric in the (Mg1–xZnx)2TiO4 Ceramics, J. Am. Ceram. Soc., 91 (2008) 3428–3430.
[39]C. L. Huang and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1–xCox)2TiO4 Ceramics, J. Am. Ceram. Soc., 92 (2009) 379–383.
[40]L. Sebastian and J. Gopalakrishnan, “Li2MTiO4 (M = Mn, Fe, Co, Ni): New Cation-Disordered Rocksalt Oxides Exhibiting Oxidative Deintercalation of Lithium. Synthesis of an Ordered Li2NiTiO4, Solid State Chem., 172 (2003) 171–177.
[41]M.V.V. M. Satya Kishore, S. Marinel, V. Pralong, V. Caignaert, S. D. Astorg, and B. Raveau, “The Rock Salt Oxide Li2MgTiO4: Type I Dielectric and Ionic Conductor, Mater. Res. Bull., 41 (2006) 1378–1384.
[42]J. J. Bian, L. Wang, and L. L. Yuan, “Microwave Dielectric Properties of Li2+xTi1–4xNb3xO3 (0 ≤ x ≤ 0.1), Mater. Sci. Eng. B., 164 (2009) 96–100.
[43]J. Liang and W. Z. Lu, “Microwave Dielectric Properties of Li2TiO3 Ceramics Doped with ZnO–B2O3 Frit, J. Am. Ceram. Soc., 92 (2009) 952–954.
[44]L. X. Pang and D. Zhou, “Microwave Dielectric Properties of Low-Firing Li2MO3 (M = Ti, Zr, Sn) Ceramics with B2O3–CuO Addition, J. Am. Ceram. Soc., 93 (2010) 3614–3617.
[45]J. Liang, W. Z. Lu, J. M. Wu, and J. G. Guan, “Microwave Dielectric Properties of Li2MO3 Ceramics Sintered at Low Temperatures, Mater. Sci. Eng. B., 176 (2011) 99–102.
[46]D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu, “Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver, J. Am. Ceram. Soc., 91 (2008) 4115–4117.
[47]M. Castellanos and A. R. West, “Order–Disorder Phenomena in Oxides with Rock Salt Structures: The System Li2TiO3–MgO, J. Mater. Sci., 14 (1979) 450–454.
[48]J. J. Bian and Y. F. Dong, “New High Q Microwave Dielectric Ceramics with Rock Salt Structures: (1–x)Li2TiO3+xMgO System (0 ≤ x ≤ 0.5), J. Eur. Ceram. Soc., 30 (2010) 325–330.
[49]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A, 32 (1976) 751–767.
[50]R. J. Cava, J. J. Krajewski, and R. S. Roth, “Ca5Nb2TiO12 and Ca5Ta2TiO12: Low Temprature Coefficient Low Loss Dielectric Materials, Mater. Res. Bull., 34 (1999) 355–362.
[51]L. A. Bendersky, J. J. Krajewski, and R. J. Cava, “Dielectric Properties and Microstructure of Ca5Nb2TiO12 and Ca5Ta2TiO12, J. Eur. Ceram. Soc., 21 (2001) 2653–2658.
[52]P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “High Dielectric Constant Low Loss Microwave Dielectric Ceramics in the Ca5Nb2–xTaxTiO12 System, Mater. Lett., 57 (2003) 1380–1384.
[53]P. V. Bijumon, M. T. Sebastian, and P. Mohanan, “Exprimental Investigations and Three-Dimensional Transmission Line Matrix Simulation of Ca5–xAxB2TiO12 (A = Mg, Zn, Ni, and Co; B = Nb and Ta) Ceramic Resonators, J. Appl. Phys., 98 (2005) 124105.
[54]P. V. Bijumon and M. T. Sebastian, “Doped Ca(Ca1/4A2/4Ti1/4)O3 (A = Nb, Ta) Dielectrics for Microwave Telecommunication Applications, Int. J. Appl. Ceram. Technol., 4 (2007) 60–74.
[55]P. V. Bijumon and M. T. Sebastian, “Tailoring the Microwave Dielectric Properties of Ca5Ta2TiO12 Ceramics through Glass Addition, J. Am. Ceram. Soc., 88 (2005) 3433–3439.
[56]P. V. Bijumon and M. T. Sebastian, “Microwave Dielectric Properties of Temperature Stable Ca5A2Ti1–xHfxO12 (A = Nb, Ta) Ceramics, J. Electroceram., 16 (2006) 239–245.
[57]P. V. Bijumon and M. T. Sebastian, “Temperature-Stable Microwave Dielectric Ceramics in the Ca5A2Ti1–xZrxO12 (A = Nb, Ta) Systems, J. Mater. Res., 19 (2004) 2922–2928.
[58]Y. C. Chen, K. H. Chen, K. C. Chen, and J. Y. Lin, “Dual Band Hybrid Dielectric Resonator Antenna for Application in ISM and UNNI Band, IEICE Trans. Commun., E93-B (2010) 2662–2665.
[59]J. Y. Chiou, J. Y. Sze, and K. L. Wong, “A Broad-Band CPW-Fed Strip-Loaded Square Slot Antenna, IEEE Trans. Antennas Propag., 51 (2003) 719–721.
[60]H. D. Chen, “Broadband CPW-Fed Square Slot Antennas with a Widened Tuning Stub, IEEE Trans. Antennas Propag., 51 (2003) 1982–1986.
[61]J. William and R. Nakkeeran, “Development of CPW-Fed UWB Printed Slot Antenna, Communications (NCC), 2010 national conference on., (2010) 1–5.
[62]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, (1976).
[63]D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, (1986).
[64]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IRE Trans. Microwave Theory Tech., 8 (1960) 402–410.
[65]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators, IEEE Trans. Microwave Theory Tech., 18 (1970) 476–485.
[66]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method, IEEE Trans. Microwave Theory Tech., 33 (1985) 586–592.
[67]R. D. Richtinger, “Dielectric Resonator, J. Appl. Phys., 10 (1939) 391–398.
[68]A. Okay and L. F. Barash, “The Dielectric Microwave Resonator, Proc. IRE., 50 (1962) 2081–2092.
[69]O. Sager and F. Tisi, “On Eigenmodes and Forced Resonator-Modes of Dielectric Spheres, Proc. IEEE., 56 (1968) 1593–1594.
[70]J. Van Bladel, “On the Resonances of a Dielectric Resonator of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 23 (1975) 199–208.
[71]J. Van Bladel, “The Excitation of Dielectric Resonator of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 23 (1975) 208–217.
[72]S. A. Long, M. W. McAllister, and L. C. Shen, “The Resonant Cylindrical Dielectric Cavity Antenna, IEEE Trans. Antennas Propag., 31 (1983) 406–412.
[73]M. W. McAllister and S. A. Long, “Resonant Hemispherical Dielectric Antenna, Electron. Lett., 20 (1984) 657–659.
[74]M. W. McAllister, S. A. Long, and G. L. Conway, “Rectangular Dielectric Resonator Antenna, Electron. Lett., 19 (1983) 218–219.
[75]R. K. Mongia, P. Bhartia, A. Ittipiboon, and M. Cuhaci, “Electric-Monopole Antenna Using a Dielectric Ring Resonator, Electron. Lett., 29 (1983) 1530–1531.
[76]A. A. Kishk, A. Ittipiboon, Y.M.M. Antar, and M. Cuhaci, “Slot Excitation of the Dielectric Disk Radiator, IEEE Trans. Antennas Propag., 43 (1995) 198–201.
[77]R. Chair, A. A. Kishk, and K. F. Lee, “Wideband Simple Cylindrical Dielectric Resonator Antenna, IEEE Microw. Wireless Compon. Lett., 15 (2005) 241–243.
[78]A. A. Kishk, A. W. Glisson, and G. P. Junker, “Study of Broadband Dielectric Resonator Antennas, Proc. 1999 Antenna Appl. Symp., Allerton, Illinois, (1999) 45–68.
[79]R. K. Mongia and P. Bhartia, “Dielectric Resonator Antenna–A Review and General Design Relations for Resonant Frequency and Bandwidth, Int. J. Microw. Millimeter-Wave Computer-Aided Eng., 4 (1994) 230–247.
[80]M. Verplanken and J. Van Bladel, “The Magnetic-Dipole Resonance of Ring Resonators of Very High Permittivity, IEEE Trans. Microwave Theory Tech., 27 (1979) 328–333.
[81]L. Fang, C. Li, X. Peng, C. Hu, and B. Wu, “Sr4–mLamTim–1Ta4–mO12 (m = 1, 2, 3): A Novel Series of A4B3O12-Type Microwave Ceramics with a High Q and Low τf, J. Am. Ceram. Soc., 93 (2010) 1884–1887.
[82]L. Fang, C. Li, X. Peng, C. Hu, B. Wu, and H. Zhou, “Ba4LiNb3–xTaxO12 (x = 0–3): A Series of High-Q Microwave Dielectrics from the Twinned 8H Hexagonal Perovskites, J. Am. Ceram. Soc., 93 (2010) 1229–1231.
[83]S. Butee, A. Kulkarni, O. Prakash, R. P. R. C. Aiyar, S. George, and M. Sebastian, “High Q Microwave Dielectric Ceramics in (Ni1–xZnx)Nb2O6 System, J. Am. Ceram. Soc., 92 (2009) 1047–1053.
[84]C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using Mg2(Ti1–xSnx)O4 (x = 0.01–0.09) Solid Solution, J. Am. Ceram. Soc., 92 (2009) 2237–2241.
[85]H. Zhang, L. Fang, H. Su, Q. Yu, and B. Wu, “Improved Microwave Dielectric Properties of Ba6Ti1–xSnxNb4O18 Ceramics, J. Am. Ceram. Soc., 92 (2009) 238–240.
[86]J. J. Bian, Y. F. Dong, and G. X. Song, “Microwave Dielectric Properties of A-Site Modified Ba(Co0.7Zn0.3)1/3Nb2/3O3 by La3+, J. Am. Ceram. Soc., 91 (2008) 1182–1187.
[87]A. C. Larson and R. B. Von Dreele, “General Structure Analysis System, Los Alamos Laboratory Report LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM, 1994.
[88]A. Feteira, D. C. Sinclair, and M. T. Lanagan, “Structure and Microwave Dielectric Properties of Ca1-xYxTi1-xAlxO3 (CYTA) Ceramics, J. Mater. Res., 20 (2005) 2391–2399.
[89]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values, Jpn. J. Appl. Phys., 33 (1994) 5466–5470.
[90]C. L. Huang and S. S. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency, Jpn. J. Appl. Phys., 46 (2007) 283–285.
[91]E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, “Effects of Packing Fraction and Bond Valence on Microwave Dielectric Properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) Ceramics, J. Eur. Ceram. Soc., 30 (2010) 1731–1736.
[92]Q. Liao, L. Li, X. Ren, and X. Ding, “New Low-Loss Microwave Dielectric Material ZnTiNbTaO8, J. Am. Ceram. Soc., 94 (2011) 3237–3240.
[93]R. Umemura, H. Ogawa, and A. Kan, “Low Temperature Sintering and Microwave Dielectric Properties of (Mg3-xZnx)(VO4)2 Ceramics, J. Eur. Ceram. Soc., 26 (2006) 2063–2068.
[94]S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the Relations between Structure and Microwave Dielectric Properties of Divalent Metal Tungstate Compounds, J. Eur. Ceram. Soc., 26 (2006) 2051–2054.
[95]C. L. Huang and W. R. Yang, “Low-Loss Microwave Dielectric Using (Mg1-xZnx)4Nb2O9 (x = 0.02–0.08) Solid Solutions, J. Alloys Compd., 509 (2011) 2269–2272.
[96]L. Wang and J. J. Bian, “Effect of Na2W2O7 Addition on Low-Temperature Sintering and Microwave Dielectric Properties of CaWO4, Mater. Lett., 65 (2011) 726–728.
[97]N. Lamrani, B. Itaalit, S. Marinel, and M. Aliouat, “Influence of Strontium Substitution on the Dielectric Properties of Ca(1-x)SrxTi0.9Zr0.1O3 Solid Solutions, Mater. Lett., 65 (2011) 346–349.
[98]C. L. Huang, J. Y. Chen, Y. W. Tseng, C. Y. Jiang, and G. S. Huang, “High Dielectric Constant and Low-Loss Microwave Dielectric Ceramics Using (Zn0.95M2+0.05)Ta2O6 (M2+ = Mn, Mg, and Ni) Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 3299–3304.
[99]C. L. Huang, C. Y. Tai, C. Y. Huang, and Y. H. Chien, “Low-Loss Microwave Dielectrics in the Spinel-Structured (Mg1-xNix)Al2O4 Solid Solutions, J. Am. Ceram. Soc., 93 (2010) 1999–2003.
[100]J. Y. Chen and C. L. Huang, “A New Low-Loss Microwave Dielectric Using (Ca0.8Sr0.2)TiO3–Doped MgTiO3 Ceramics, Mater. Lett., 64 (2010) 2585–2588.
[101]C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator, J. Am. Ceram. Soc., 92 (2009) 119–124.
[102]I. S. Ghosh, A. Hilgers, T. Schlenker, and R. Porath, “Ceramic Microwave Antennas for Mobile Applications, J. Eur. Ceram. Soc., 21 (2001) 2621–2628.
[103]H. Zhou, X. Liu, X. Chen, L. Fang, and Y. Wang, “ZnLi2/3Ti4/3O4: A New Low Loss Spinel Microwave Dielectric Ceramic, J. Eur. Ceram. Soc., 32 (2012) 261–265.
[104]S. George and M. T. Sebastian, “Microwave Dielectric Properties of Novel Temperature Stable High Q Li2Mg1–xZnxTi3O8 and Li2A1–xCaxTi3O8 (A = Mg, Zn) Ceramics, J. Eur. Ceram. Soc., 30 (2010) 2585–2592.
[105]M. Y. Chen, C. Y. Chiu, C. T. Chia, J. F. Lee, and J. J. Bian, “Raman Spectra and Extended X-Ray Absorption Fine Structure Characterization of La(2−x)/3NaxTiO3 and Nd(2−x)/3LixTiO3 Microwave Ceramics, J. Eur. Ceram. Soc., 30 (2010) 335–339.
[106]Y. Zhou, S. Meng, H. Wu, and Z. Yue, “Microwave Dielectric Properties of Ba2Ca1–xSrxWO6 Double Perovskites, J. Am. Ceram. Soc., 94 (2011) 2933–2938.
[107]J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, S. I. Gu, J. H. Paik, and B. H. Choi, “Effect of B2O3 Addition on the Sintering Temperature and Microwave Dielectric Properties of Zn2SiO4 Ceramics, J. Eur. Ceram. Soc., 30 (2010) 375–379.
[108]C. L. Huang and Y. C. Chen, “Influence of V2O5 Additions to NdAlO3 Ceramics on Sintering Temperature and Microwave Dielectric Properties, J. Eur. Ceram. Soc., 23 (2003) 167–173.
[109]A. Borisevich and P. K. Davies, “Microwave Dielectric Properties of Li1+x-yM1-x-3yTix+4yO3 (A = Nb5+, Ta5+) Solid Solutions, J. Eur. Ceram. Soc., 21 (2001) 1719–1722.
[110]H. Zhou, X. Chen, L. Fang, C. Hu, and H. Wang, “Preparation and Characterization of a New Microwave Dielectric Ceramic Ba4ZnTi11O27, J. Am. Ceram. Soc., 93 (2010) 1537–1539.
[111]J. F. Dorrian and R. E. Newnham, “Refinement of the Structure of Li2TiO3, Mater. Res. Bull., 4 (1969) 179–183.
[112]R. D. Shannon, “Dielectric Polarizabilities of Ions in Oxides and Fluorides, J. Appl. Phys., 73 (1993) 348–366.
[113]W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase Evolution and Microwave Dielectric Properties of (1–x)ZnAl2O4–xMg2TiO4 Ceramics, J. Am. Ceram. Soc., 92 (2009) 105–109.
[114]B. D. Silverman, “Microwave Absorption in Cubic Strontium Titanate, Phys. Rev., 125 (1962) 1921–1930.
[115]S. J. Penn, N. McN. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina, J. Am. Ceram. Soc., 80 (1997) 1885–1888.
[116]H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects, J. Eur. Ceram. Soc., 26 (2006) 1775–1780.
[117]C. L. Huang, C. H. Su, and C. M. Chang, “High Q Microwave Dielectric Ceramics in the Li2(Zn1–xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) System, J. Am. Ceram. Soc., 94 (2011) 4146–4149.
[118]C. L. Huang, C. F. Tseng, W. R. Yang, and T. J. Yang, “High Dielectric Constant Low Loss Microwave Dielectric in the (1–x)Nd(Zn1/2Ti1/2)O3–xSrTiO3 System with Zero Temperature Coefficient of Resonant Frequency, J. Am. Ceram. Soc., 91 (2008) 2201–2204.
[119]L. Fang, H. Zhang, Q. Yu, H. Su, B. Wu, and X. Cui, “Sr3LaNb3O12: A New Low Loss and Temperature Stable A4B3O12-Type Microwave Dielectric Ceramic, J. Am. Ceram. Soc., 92 (2009) 556–558.
[120]C. L. Huang, H. L. Chen, and C. C. Wu, “Improved High Q Value of CaTiO3–Ca(Mg1/3Nb2/3)O3 Solid Solution with Near Zero Temperature Coefficient of Resonant Frequency, Mater. Res. Bull., 36 (2001) 1645–1652.
[121]C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 Microwave Dielectric Ceramics by Zn Substitution, J. Am. Ceram. Soc., 90 (2007) 1483–1486.
[122]C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1–xMnx)2TiO4 (x = 0.02–0.1) Solid Solution, J. Am. Ceram. Soc., 92 (2009) 675–678.
[123]C. Yoon, W. J. Lee, S. P. Kang, S.Y. kang, H. C. Lee, and H. D. Park, “A Planar CPW-Fed Slot Antenna on Thin Substrate for Dual-Band Operation of WLAN Applications, Microwave Opt. Technol. Lett., 51 (2009) 2799–2802.
[124]S. C. Basaran and Y. E. Erdemli, “A Dual-Band Split-Ring Monopole Antenna for WLAN Applications, Microwave Opt. Technol. Lett., 51 (2009) 2685–2688.
[125]C. Y. Pan, C. H. Huang, and T. S. Horng, “A New Printed G-Shaped Monopole Antenna for Dual-Band WLAN Applications, Microwave Opt. Technol. Lett., 45 (2005) 295–297.
[126]Q. Y. Zhang and Q. X. Chu, “Triple-Band Dual Rectangular Ring Printed Monopole Antenna for WLAN/WiMAX Applications, Microwave Opt. Technol. Lett., 51 (2009) 2845–2848.
[127]X. Li, Y. F. Wang, X. W. Shi, W. Hu, and L. Chen, “Compact Triple-Band Antenna with Rectangular Ring for WLAN and WiMAX Applications, Microwave Opt. Technol. Lett., 54 (2012) 286–289.
[128]J. H. Lu and Y. H. Liu, “Planar Dual-Band Dipole Array for Long-Term Evolution/Worldwide Interoperability for Microwave Access Points, Microwave Opt. Technol. Lett., 54 (2012) 811–815.
[129]C. L. Hu, W. F. Lee, Y. E. Wu, C. F. Yang, and S. T. Lin, “A Compact Multiband Inverted-F Antenna for LTE/WWAN/GPS/WiMAX/WLAN Operations in the Laptop Computer, IEEE Antennas Wireless Propag. Lett., 9 (2010) 1169–1173.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top