跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李冠文
研究生(外文):Kuan-WenLee
論文名稱:高功因無電解電容之發光二極體驅動電路
論文名稱(外文):A High-Power-Factor Non-Electrolytic-Capacitor LED Driver
指導教授:梁從主
指導教授(外文):Tsorng-Juu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:66
中文關鍵詞:無電解電容功因修正發光二極體驅動電路電流漣波消除
外文關鍵詞:Non-electrolytic-capacitorpower factor correction (PFC)LED drivercurrent ripple eliminator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研製一無電解電容發光二極體驅動電路。本驅動電路架構結合單級返馳式功因修正電路與電流漣波消除器。返馳式功因修正電路以準諧振模式操作,藉由波谷電壓切換以降低開關之切換損失。由於電解電容為限制發光二極體系統壽命之主要元件,故使用無電解電容之電流漣波消除器取代電解電容,藉由高頻切換降低所需電容容值,將帶有兩倍線頻率之輸出電流漣波最小化為直流,並提升系統壽命。本文分析與探討固定責任週期與脈寬調變兩種電流漣波消除器控制方法之特性,將兩倍線頻率之輸出電流漣波最小化。最後,本文實際研製一可操作於輸入電壓90~264 VAC,於24~32 VDC輸出電壓範圍內,輸出定電流700 mA / 20 W之無電解電容發光二極體驅動電路。本電路之輸出電流漣波低於25.76%,且於滿載到20%負載輸出皆無光閃爍現象。功率因數於全域輸入電壓範圍為皆高於0.94,並滿足IEC 61000-3-2 Class C之國際規範。
In this thesis, a non-electrolytic-capacitor AC-DC LED driver is proposed, which includes an AC-DC PFC flyback converter and an AC current ripple eliminator. The flyback converter is operated with the quasi-resonant (QR) control technique to reduce the switching loss of the switch in the flyback converter. The AC current ripple eliminator is used to replace the short lifetime electrolytic capacitors to improve the lifetime and reliability of the LED system. Film or ceramic capacitors can be used in the proposed LED driver, while the AC current ripple eliminator minimizes the double-line-frequency output current ripple. In addition, the proposed driver can supply the LEDs with a constant output current. Also, constant duty ratio control and PWM control methods for the AC current ripple eliminator are proposed and analyzed, which can achieve the minimum output current ripple without complex feedback control. Finally, the hardware prototype with an input voltage of 90~264 VRMS, output voltage of 24~32 VDC, and constant output current of 700 mA/20 W is implemented to verify the proposed control schemes and the feasibility of the system. Under universal input voltage range, the output current ripple is between 25.76% and 17.04% without electrolytic capacitor, and there is no visible flicker in the LED light output from 20% load to full load conditions. The power factor of the system is higher than 0.94, and the system also meets the IEC 61000-3-2 Class C standard requirements.
1 Introduction ...................................................................1
1.1 Background and Motivation....................................1
1.2 Organization................................................................6
2 Characteristics of LED and Drivers..........................7
2.1 Characteristics and Equivalent Circuits of LED.....7
2.2 Types of LED Drivers................................................10
2.2.1 Two-stage AC-DC Converter...............................10
2.2.2 Single-stage AC-DC Converter............................11
2.2.3 QR Flyback Converter............................................13
3 Operating Principles of the Proposed LED Driver....15
3.1 Single-stage AC-DC QR Flyback Converter with
the AC Current Ripple Eliminator.....................................15
4 Steady State Analysis and Parameter Design...........26
4.1 Flyback Converter......................................................26
4.2 AC Current Ripple Eliminator..................................29
4.2.1 Constant duty ratio control..............................30
4.2.2 PWM control........................................................36
4.2.3 Discussion of constant duty ratio control and PWM control...................................................................................43
5 Experimental Results of the Hardware Prototype...45
5.1 Specification of the Hardware Prototype.............45
5.2 Experimental Waveforms and Analysis.................47
5.3 Line Regulation Analysis...........................................49
5.3.1 Line regulation under different line frequencies ................................................................................................49
5.3.2 Line regulation under various output voltages ................................................................................................51
5.4 Load Regulation under Different Input Voltages ................................................................................................54
5.5 Hardware Prototype Parameters and Standard Compliance..........................................................................57
6 Conclusions and Future Works.....................................61
6.1 Conclusions...................................................................61
6.2 Future Works................................................................63
References.............................................................................64

[1]R. Mehta, D. Deshpande, K. Kulkarni, S. Sharma, and D. Divan, “LEDs, A Competitive Solution for General Lighting Applications, in Energy 2030 Conference, 2008. ENERGY 2008. IEEE, pp. 1-5, Nov. 2008.
[2]H. Liu, Y. Yu, and X. Liu, “The Research of Humanized Design of the LED Landscape Lighting Lamp, in Proc. IEEE Comput.-Aided Ind. Design Conceptual Design, pp. 499-502, Nov. 2009.
[3]U.S. Department of Energy. (2011, April 12). Lifetime of White LEDs [Online]. Available: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lifetime_white_leds.pdf
[4]U.S. Department of Energy. (2010, May). LED Luminaire Lifetime Recommendations for Testing and Reporting (1st ed.)[Online]. Available: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led_luminaire-lifetime-guide_june2011.pdf
[5]Y. Hu, L. Huber, and M. M. Jovanovic, “Single-stage flyback power factor-correction front-end for HB LED application, in Proc. IEEE Ind. Appl. Soc. Annual Meeting, pp. 1-8, Oct. 2009.
[6]Limits for Harmonic Current Emissions, IEC IEC 61000-3-2 Class C Standards, 2005.
[7]T. J. Liang, S. C. Kang, C. A. Cheng, R. L. Lin, and J. F. Chen, Analysis and design of single-stage electronic ballast with bridgeless PFC configuration, IEEE Proc. IECON'03, pp. 503-508, 2003.
[8]Y. Hu, L. Huber, and M. M. Jovanovic, “Single-Stage, Universal Input AC/DC LED Driver with Current-Controlled Variable PFC Boost Inductor, IEEE Trans. on Power Electronics. Early access, 2011.
[9]Philips Color Kinetics. (2010, February). Understanding LM-80, Lumen Maintenance, and LED Fixture Lifetime (1st ed.) [Online].
Available: http://www.colorkinetics.com/support/whitepapers/LEDLifetime.pdf
[10]W. Chen and S. Y. R. Hui, “Elimination of electrolytic capacitor in an AC/DC light-emitting diode (LED) driver with high input power factor and constant output current, IEEE Trans. on Power Electron., vol. 27, no. 3, pp. 1598-1607, Mar. 2012.
[11]S. Y. R. Hui, S. Li, W. Chen, X. H. Tao, and W. M. Ng, “A novel passive LED drivers with long lifetime, IEEE Trans. on Power Electron., vol. 25, no. 10, pp. 2665-2672, Oct. 2010.
[12]L. Han and N. Narendran, “An Accelerated Test Method for Predicting the Useful Life of an LED Driver, IEEE Trnas. on Power Electron., vol. 26, no. 8, pp 2249-2257, Aug. 2011.
[13]D. G. Lamar, J. Sebastian, M. Arias, A. Fernandez, “On the Limit of the Output Capacitor Reduction in Power-Factor Correctors by Distorting the Line Input Current, IEEE Trnas. on Power Electron., vol. 27, no. 3, pp 1168-1176, Mar. 2012.
[14]X. Ruan, B. Wang, K. Yao, and S. Wang, “Optimum Injected Current Harmonics to Minimize Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC–DC Drivers, IEEE Trans. on Power Electron., vol. 26, no. 7, pp. 1820-1825, Jul. 2011.
[15]L. Gu, X. Ruan, M. Xu, K. Yao, “Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings, IEEE Trans. on Power Electron., vol. 24, no. 5, pp. 1399-1408, May 2009.
[16]S. Wang, X. Ruan, K. Yao, S. Tan, Y. Yang, and Z. Ye, “A Flicker-Free Electrolytic Capacitor-Less AC–DC LED Driver, IEEE Trans. on Power Electron., vol. 27, no. 11, pp. 4540-4548, Nov. 2012.
[17]M. Hongbo, L. Jih-Sheng, F. Quanyuan, Y. Wensong, Z. Cong, Z. Zheng, “A Novel Valley-Fill SEPIC-derived Power Supply Without Electrolytic Capacitors for LED Lighting Application, IEEE Trans. on Power Electron., vol. 27, no. 6, pp. 3057-3071, Jun. 2012.
[18]M. Arias, D. G. Lamar, J. Sebastian, D. Balocco, A. Diallo, “High-Efficiency LED Driver Without Electrolytic Capacitor for Street Lighting, IEEE Trans. on Power Electron., vol. 49, no. 1, pp. 127-137, Jun./Feb. 2013.
[19]B. Wang, X. Ruan, K. Yao, M. Xu, “A Method of Reducing the Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC–DC Drivers, IEEE Trans. on Power Electron., vol. 25, no. 3, pp. 592-601, Mar. 2010.
[20]E. M. Sa, C. S. Postiglione, F. L. M. Antunes, A. J. Perin, “Low Cost ZVS PFC Driver for Power LEDs, in IECON '09. 35th Annual Conference of IEEE, pp. 3551-3556, 2009.
[21]K. W. Lee, Y. H. Hsieh, and T. J. Liang, “A Current Ripple Cancellation Circuit for Electrolytic Capacitor-less AC-DC LED Driver, in Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1058 - 1061, 2013.
[22]U.S. Department of Energy. (2012, Jan). Using LEDs to Their Best Advantage [Online]. Available: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led_advantage.pdf
[23]T. J. Liang, C. M. Huang, and J. F. Chen, Two-stage high power factor electronic ballast for metal-halide lamps, IEEE Proc. IAS'08, pp. 1-8, 2008.
[24]R. L. Lin, Y. F. Chen, “Equivalent Circuit Model of Light-Emitting-Diode for System Analyses of Lighting Drivers, in Industry Applications Society Annual Meeting, 2009. IAS 2009. IEEE, pp. 1-5, 2009.
[25]U.S. Department of Energy. (2012, Jan). LED Color Characteristics [Online]. Available: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led-color-characteristics-factsheet.pdf
[26]Fairchild Semiconductor, “Application Note AN-4147 Design Guidelines for RCD Snubber of Flyback Converters, 2006.
[27]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, John Wiley & Sons, Inc., 2003.
[28]ST Microelectronics, Design Equations of High-Power-Factor Flyback Converters Based on L6561, 2003.
[29]Y. J. Chen, “Optimal Design of a Flyback Converter with Dual-Mode Control, 2011.
[30]ST Microelectronics, L6561 Enhanced Transition Mode Power Factor Corrector, 2011.
[31]Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, Springer, 2nd edition, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top