跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭泓元
研究生(外文):Hong-YuanPeng
論文名稱:具可切換式蝴蝶架構之高速語者辨識晶片設計
論文名稱(外文):High Speed Speaker Recognition Chip Design Based on Switchable Butterfly Architecture
指導教授:王駿發
指導教授(外文):Jhing-Fa Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:66
中文關鍵詞:語者辨識線性預估係數支援向量機特殊應用晶片
外文關鍵詞:Speaker RecognitionApplication-Specific Integrated Circuit (ASIC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了一特殊應用晶片語者辨識系統架構,本架構共分三大模組,分別為:特徵擷取模組、訓練模組以及辨識模組。
特徵擷取模組採用線性預估係數(Linear Predictive Cepstral Coefficients)作為語者聲紋之特徵,在此模組中,我們設計一個可切換式蝴蝶狀的架構,並利用資料傳遞的重複性,使得此模組具有高通量的特性,另外,可切換式的設計,也可針對線性預估係數的某些運算作加速,且提高運算單元的使用率,有效的節省晶片面積,並提供良好的效能。訓練模組採用本實驗室開發之依序最佳化演算法之可重組式硬體架構,其平行式網狀的架構,可藉由改變運算單元間的資料傳遞路徑,來最佳化整體的效能及運算速度。辨識模組採用支援向量機的概念,以訓練後的分類平面作為分類依據,為二元分類器,但是為了達到多人分類的目標,本模組加入了投票機制的分析運算電路,可完成6人的語者辨識,使本晶片擁有更高的應用彈性,並且是目前第一顆完整的特殊應用晶片語者辨識系統。

This paper proposed an application-specific integrated circuit (ASIC) architecture for speaker recognition. There are three parts of this proposed system, which is including: feature extraction module, training module, and recognition module. LPCC (Linear Predictive Cepstral Coefficients) is adopted into the proposed feature extraction module. As the characteristics of symmetrical and periodical data transmission, we design a switchable butterfly architecture to optimize the efficiency of data accessing. Moreover, this module employs the reusable mechanism to perform two modes for achieving high speed and low chip area requirement. Reconfigurable hardware design for sequential minimal optimization (SMO) is applied in the proposed training module. Overall, this training module is a parallel-mesh architecture which contains 16 processing elements (PEs).We can switch the proposed training module into different mode by changing the datapath to speed up various training tasks. The last part of the proposed ASIC architecture is recognition module which is utilized Support Vector Machine (SVM) algorithm as classifier. For SVM, we design a voting analysis circuit so that we can achieve multi-class speaker recognition demand. The proposed design has been send to National Applied Research Laboratories (NAR Labs), and be manufactured by Taiwan Semiconductor Manufacturing Company Limited (TSMC).
摘要 IV
Abstract V
誌謝 VI
Contents VII
Table List IX
Figure List X
Chapter1 Introduction 1
1.1 Background 1
1.2 Related Work 1
1.3 Motivation 2
1.4 Thesis Organization 3
Chapter2 Speaker Recognition System Overview 5
2.1 System Overview of Speaker Recognition 5
2.2 Feature Extraction Algorithm 6
2.3 Training Algorithm 12
2.4 Recognition Algorithm 21
Chapter3 Speaker Recognition System Hardware Design 24
3.1 Top Level Architecture 24
3.1.1 Proposed System Flow 24
3.1.2 Operation Mode of Proposed System 24
3.1.3 Memory Requirement evaluation 26
3.1.4 Fixed-point Analysis 27
3.2 SMO Training Block 28
3.2.1 Overview of SMO Training Block 28
3.2.2 Processing Element 30
3.2.3 SMO Computing Unit 31
3.2.4 Distributed Memory 33
3.3 LPCC Feature Extraction Block 35
3.3.1 Overview of LPCC Feature Extraction Block 35
3.3.2 Controller Design 37
3.3.3 Multiply-Accumulate-Tree Mode 38
3.3.4 Butterfly-Architecture Mode 45
3.4 SVM Recognition Block 46
Chapter4 Speaker Recognition System Implementation 49
4.1 Cell-based Chip Implementation 49
4.2 Simulation Results 51
4.3 Measurement Consideration 59
Chapter5 Conclusion 61
5.1 Specification Comparison and Conclusion 61
5.2 Future Work 63
References 64

[1]D. Reynold and R.C. Rose, “Robust Text Independent Speaker Identification Using Gaussian Mixture Speaker Models, Proc. IEEE Tran. Speech and Audio Processing, vol. 3, Jan. 1995, pp. 72-83.
[2]Lukáˇs Burget, Pavel Matˇejka, Petr Schwarz, Member, Ondrˇej Glembek, Student, and Jan Honza Cˇ ernocký, “Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System, IEEE transactions on speech, audio and language processing, vol. 15, no. 7, pp. 1979-1985, september 2007.
[3]Mikyong Ji, Sungtak Kim, Hoirin Kim, Member, IEEE, Keun-Chang Kwak, and Young-Jo Cho, “Reliable Speaker Identification Using Multiple Microphones in Ubiquitous Robot Companion Environment, 16th IEEE International Conference on Robot & Human Interactive Communication, 2007.
[4]Qin Jin, Tanja Schultz, and Alex Waibel, “Far-Field Speaker Recognition, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 7, Sep. 2007.
[5]Wan Vincent and Renals Steve, “Speaker verification using sequence discriminant support vector machines, IEEE transactions on speech and audio processing, vol. 13, No. 2, march 2005.
[6]William M. Campbell, Joseph P. Campbell, Terry P. Gleason, Douglas A. Reynolds, and Wade Shen, “Speaker Verification Using Support Vector Machines and High-Level Features, IEEE transactions on speech , audio and language processing, vol. 15, no. 7, september 2007.
[7]J.C. Wang, C.H.Yang, J.F. Wang, and H.P. Lee, “Robust speaker identification and verification, IEEE Compu. Intell. Mag., pp.52-59, May 2007.
[8]S. N. Kim, I. C. Hwang, Y. W. Kim, and S. W. Kim, “A VLSI chip for isolated speech recognition system, IEEE Trans. Consumer Electronics, vol. 42, no. 3, pp.458–467, Aug. 1996.
[9]G. D. Wu and Z. W. Zhu, Chip design of LPC-cepstrum for speech recognition, in Proc. 6th IEEE/ACIS Int. Conf. Computer and Information Science, Melbourne, Australia, 2007, Jul. 11–13, pp.43–47.
[10]B. Fazlali, and M. Eshghi, A pipeline design for implementation of LPC feature extraction system based on Levinson-Durbin algorithm, in Proc. 19th Iranian Conference Electrical Engineering, Tehran, Iran, 2011, May 17–19, pp. 1–5.
[11]Gin-Der Wu and Kuei-Ting Kuo, “System-on-chip architecture for speech recognition, Journal of Information Science and Engineering 26, 1073-1089, 2010.
[12]R. Genov and G. Cauwenberghs, “Kerneltron: Support vector machinein silicon, IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1426–1434, May 2003.
[13]T.-W. Kuan, J.-F. Wang, J.-C. Wang, P.-C. Lin, and G.-H. Gu, “VLSI design of an SVM learning core on sequential minimal optimization algorithm, IEEE Trans. Very Large Scale Integration Systems, vol. 20, no. 4, pp. 673–683, Apr. 2012.
[14]S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog VLSI trainable pattern classifier, IEEE Trans. Solid-State Circuits, vol. 42, no. 5, pp. 1169–1179, May 2007.
[15]N. S. Shih, “A Reconfigurable Hardware Design for SMO to Improve Speaker Training Efficiency and Memory Reduction, Master thesis, NCKU 2012
[16]J.C.Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.
[17]J.F.Wang, T.W. Kuan, and T.W.Sun, “Dynamic Fixed-Point Arithmetic Design of Embedded SVM-Based Speaker Identification , ISNN2010
[18]J. C. Platt, “Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998.
[19]C. Cortes and V. Vapnik, “ Support vector networks, Machine Learning, vol. 20, pp. 273-297, 1995.
[20]S. Dey, M. Kedia, N. Agarwal and A. Basu, Embedded Support Vector Machine : Architectural Enhancements and Evaluation, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), pp.685-690, 2007

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃宗潔,〈遠方的戰爭:論《睡眠的航線》中的生態、夢境與記憶〉,《東華漢學》第13期(2011年6月),頁173-194。
2. 黃宗潔,〈遠方的戰爭:論《睡眠的航線》中的生態、夢境與記憶〉,《東華漢學》第13期(2011年6月),頁173-194。
3. 莊裕安,〈長夜漫漫夢迢迢:評吳明益長篇小說《睡眠的航線》〉,《文訊》第261期(2007年7月)頁102-103。
4. 莊裕安,〈長夜漫漫夢迢迢:評吳明益長篇小說《睡眠的航線》〉,《文訊》第261期(2007年7月)頁102-103。
5. 莊裕安,〈長夜漫漫夢迢迢:評吳明益長篇小說《睡眠的航線》〉,《文訊》第261期(2007年7月)頁102-103。
6. 張瑞芬,〈幻術‧奇譚‧飛天象:評吳明益《天橋上的魔術師》〉,《文訊》第315期(2012年1月)頁110-111。
7. 張瑞芬,〈幻術‧奇譚‧飛天象:評吳明益《天橋上的魔術師》〉,《文訊》第315期(2012年1月)頁110-111。
8. 郝譽翔,〈新鄉土小說的誕生──解讀台灣六年級小說家〉,《文訊》第230期(2004年12月),頁25-30。
9. 黃宗潔,〈遠方的戰爭:論《睡眠的航線》中的生態、夢境與記憶〉,《東華漢學》第13期(2011年6月),頁173-194。
10. 張瑞芬,〈幻術‧奇譚‧飛天象:評吳明益《天橋上的魔術師》〉,《文訊》第315期(2012年1月)頁110-111。
11. 郝譽翔,〈大自然的交響詩:評吳明益《複眼人》〉,《文訊》第308期(2011年6月),頁100-101。
12. 郝譽翔,〈大自然的交響詩:評吳明益《複眼人》〉,《文訊》第308期(2011年6月),頁100-101。
13. 郝譽翔,〈大自然的交響詩:評吳明益《複眼人》〉,《文訊》第308期(2011年6月),頁100-101。
14. 郝譽翔,〈新鄉土小說的誕生──解讀台灣六年級小說家〉,《文訊》第230期(2004年12月),頁25-30。
15. 郝譽翔,〈新鄉土小說的誕生──解讀台灣六年級小說家〉,《文訊》第230期(2004年12月),頁25-30。