|
Anthony, M., & Biggs, N. (1997). Computational Learning Theory: Cambridge University Press. Chan, K. Y., Kwong, C. K., & Tsim, Y. C. (2010). A genetic programming based fuzzy regression approach to modelling manufacturing processes. International Journal of Production Research, 48(7), 1967-1982. Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap: New York: Chapmen & Hall. Guo, G. D., & Dyer, C. R. (2005). Learning from examples in the small sample case: Face expression recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 35(3), 477-488. Hong, T. P., Tseng, L. H., & Chien, B. C. (2010). Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications, 37(3), 2644-2653. Huang, C. F. (1997). Principle of information. Fuzzy Sets and Systems, 91(1), 69-90. Huang, C. F., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161. Huang, C. J., Wang, H. F., Chiu, H. J., Lan, T. H., Hu, T. M., & Loh, E. W. (2010). Prediction of the Period of Psychotic Episode in Individual Schizophrenics by Simulation-Data Construction Approach. Journal of Medical Systems, 34(5), 799-808. Ivănescu, V. C., Bertrand, J. W. M., Fransoo, J. C., & Kleijnen, J. P. C. (2006). Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57(1), 2-9. Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685. Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805-820. Kuo, Y., Yang, T., Peters, B. A., & Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963-974. Lanouette, R., Thibault, J., & Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), 1167-1176. Li, D., Gu, H., & Zhang, L. Y. (2010). A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Systems with Applications, 37(10), 6942-6947. Li, D. C., Chang, C. C., & Liu, C. W. (2012a). Using structure-based data transformation method to improve prediction accuracies for small data sets. Decision Support Systems, 52(3), 748-756. Li, D. C., Chang, F. M. M., & Chen, K. C. (2010a). Building reliability growth model using sequential experiments and the Bayesian theorem for small datasets. Expert Systems with Applications, 37(4), 3434-3443. Li, D. C., Chen, C. C., Chang, C. J., & Chen, W. C. (2012b). Employing Box-and-Whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research, 50(6), 1539-1553. Li, D. C., Chen, C. C., Chang, C. J., & Lin, W. K. (2012c). A Tree-based-Trend-Diffusion prediction procedure for small sample sets in the early stages of manufacturing systems. Expert Systems with Applications, 39(1), 1575-1581. Li, D. C., Chen, C. C., Chen, W. C., & Chang, C. J. (2012d). Employing dependent virtual samples to obtain more manufacturing information in pilot runs. International Journal of Production Research, 50(23), 6886-6903. Li, D. C., Chen, L. S., & Lin, Y. S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024. Li, D. C., Fang, Y. H., Lai, Y. Y., & Hu, S. C. (2009a). Utilization of virtual samples to facilitate cancer identification for DNA microarray data in the early stages of an investigation. Information Sciences, 179(16), 2740-2753. Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., & Hu, S. C. (2007a). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424. Li, D. C., Huang, W. T., Chen, C. C., & Chang, C. J. (2013). Employing virtual samples to build early high-dimensional manufacturing models. International Journal of Production Research. doi: 10.1080/00207543.2012.746795 Li, D. C., & Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434. Li, D. C., & Liu, C. W. (2010). Extending Attribute Information for Small Data Set Classification. IEEE Transactions on Knowledge and Data Engineering, 24(3), 452-464. Li, D. C., Liu, C. W., Fang, Y. H., & Chen, C. C. (2010b). A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. International Journal of Production Research, 48(18), 5481-5496. Li, D. C., Liu, C. W., & Hu, S. C. (2010c). A learning method for the class imbalance problem with medical data sets. Computers in Biology and Medicine, 40(5), 509-518. Li, D. C., Tsai, T. I., & Shi, S. (2009b). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69. Li, D. C., Wu, C. S., & Chang, F. M. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology, 27(3-4), 321-328. Li, D. C., Wu, C. S., Tsai, T. I., & Chang, F. M. M. (2006). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869. Li, D. C., Wu, C. S., Tsai, T. I., & Lina, Y. S. (2007). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982. Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209. Oniśko, A., Druzdzel, M. J., & Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2), 165-182. Papari, M. M., Yousefi, F., Moghadasi, J., Karimi, H., & Campo, A. (2011). Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. International Journal of Thermal Sciences, 50(1), 44-52. Thomas, M., Kanstein, A., & Goser, K. (1997). Rare fault detection by possibilistic reasoning. Paper presented at the In Proceedings of Fuzzy Days, Reusch, Bernd, Berlin. Tsai, T. I., & Li, D. C. (2008a). Approximate modeling for high order non.-linear functions using small sample sets. Expert Systems with Applications, 34(1), 564-569. Tsai, T. I., & Li, D. C. (2008b). Utilize bootstrap in small data set learning for pilot run modeling of manufacturing systems. Expert Systems with Applications, 35(3), 1293-1300. Tukey, J. W. (1977). Exploratory data analysis: Reading (MA): Addison-Wesley. Vapnik, V. N. (2000). The Nature of Statistical Learning Theory: Springer, New York. Wang, F. K., Du, T., & Wen, F. C. (2007). Product mix in the TFT-LCD industry. Production Planning & Control, 18(7), 584-591. Wang, H. F., & Huang, C. J. (2009). Data construction method for the analysis of the spatial distribution of disastrous earthquakes in Taiwan. International Transactions in Operational Research, 16(2), 189-212. Wang, Y., Song, Q. B., MacDonell, S., Shepperd, M., & Shen, J. Y. (2009). Integrate the GM(1,1) and Verhulst Models to Predict Software Stage Effort. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 39(6), 647-658. Wang, Y., & Witten, I. (1997). Inducing Model Trees for Continuous Classes. Paper presented at the Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague, Czech Republic. Wang, Y. F. (2003). On-demand forecasting of stock prices using a real-time predictor. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1033-1037. Willemain, T. R., Bress, R. A., & Halleck, L. S. (2003). Enhanced simulation inference using bootstraps of historical inputs. IIE Transactions, 35(9), 851-862. Wolpert, D. H. (1992). Stacked Generalization. Neural Networks, 5(2), 241-259. Wu, C. W., Shu, M. H., Pearn, W. L., & Liu, K. H. (2008). Bootstrap approach for supplier selection based on production yield. International Journal of Production Research, 46(18), 5211-5230. Zhang, J. (1999). Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks, 12(6), 927-938.
|