跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鴻文
研究生(外文):Hung-WenWang
論文名稱:梯度光子晶體應用於光學黑洞及光能吸收器之研究
論文名稱(外文):The study of the optical black hole and optical absorber with graded photonic crystals
指導教授:陳聯文
指導教授(外文):Lien-Wen Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:梯度光子晶體光學黑洞光能吸收器彎曲波導
外文關鍵詞:graded photonic crystalsoptical black holeoptical absorberwaveguide bend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
光子晶體是由材料折射率或介電常數以週期性排列而組成的結構,此週期性排列的結構會產生光子的能帶結構。由於光子晶體獨特的色散特性,例如負折射現象和自我準直效應,使得其具有控制光波傳導的能力,已被應用在許多光學元件的設計上。特別的是,為了能更有效地控制光波,光子晶體被運用在含有梯度折射率變化的元件設計,並引領我們進入一嶄新的應用層面。
本文主要著重在利用梯度光子晶體來設計光學黑洞及大面積範圍的廣角光能吸收器。為了使光子晶體能有效地實現梯度折射率介質,我們先探討梯度光子晶體的均質化特性,並利用平面波展開法來計算其色散曲線和等效折射率;最後以有限元素法模擬分析其電磁波傳行為與光學特性,數值結果證明光學黑洞能有效地吸收來自任意方向的入射光。此種具有寬頻的高效率吸收器可以應用在未來的太陽能量擷取裝置中。
除此之外,我們透過保角映射方法提出無損耗之任意彎曲光波導,接著利用梯度光子晶體結構來實現它,最後引入抗反射層結構以增進波導的傳輸效率,以數值模擬印證結構設計的可行性。此種高穿透效率之彎曲型光波導可以應用在積體光迴路中。

Photonic crystals are formed by periodically modulated dielectric structures, which have the capacity to prohibit the propagation of electromagnetic waves in certain frequency ranges. The diffraction of photonic crystals can produce negative refraction and self-collimation. Photonic crystals can control the propagation of light and thus have been applied to design numerous optical devices. Specifically, the ability of photonic crystals in controlling the electromagnetic wave propagation can be further improved by introducing the idea of graded refractive index. It introduces us to develop the new application of photonic crystals.
This research focuses on designing the optical black hole and wide-angle optical absorber by using graded photonic crystals. We study the homogenization of photonic crystals for the implementation of the desired graded refractive index medium with graded photonic crystals. The dispersion relations and its effective refractive index of photonic crystals are calculated by the plane wave expansion method. The finite element method is employed to simulate the wave propagation and analyze the optical properties of the proposed devices. As a result, the artificial optical black hole can effectively absorb the incident waves from all directions. Such a mechanism of a broadband high-efficiency light absorber could provide more potential applications in solar energy harvesting.
Besides, we theoretically propose the arbitrary waveguide bends by using conformal mapping. Then, the graded refractive index medium is realized using graded photonic crystals. Finally, we propose the antireflection structures to enhance the transmission efficiency of light beams and confirm the feasibility of the designed structures. Such waveguide bend device with a high efficiency may provide novel application in the photonic integrated circuits.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 基本的光子晶體 3
1-2-2 光子晶體負折射 4
1-2-3 梯度光子晶體 5
1-2-4 轉換光學 7
1-2-5 光學黑洞 8
1-3 本文架構 9
第二章 數值方法 12
2-1 前言 12
2-2 固態物理學中的晶格 12
2-2-1 真實空間與倒晶格空間 12
2-2-2 布洛赫定理(Bloch theorem) 14
2-3 平面波展開法 15
2-3-1正方晶格(square lattice) 17
2-3-2三角晶格(triangular lattice) 17
2-4 有限元素法 18
2-4-1 Galerkin Method 18
2-4-2 邊界條件 22
第三章 梯度光子晶體 28
3-1 前言 28
3-2 梯度光子晶體的均質化 28
3-3梯度折射率元件的設計 31
第四章 光學黑洞及廣角光能吸收器 42
4-1 前言 42
4-2 含梯度光子晶體之光學黑洞 43
4-2-1 光學黑洞的設計 43
4-2-2 數值模擬結果與討論 44
4-3 含週期性光學黑洞之廣角光能吸收器 46
4-3-1 廣角光能吸收器的設計 46
4-3-2 數值模擬結果與討論 47
第五章 高效率之彎曲型光波導 71
5-1 前言 71
5-2 保角映射(conformal mapping) 72
5-3 含梯度光子晶體之彎曲型光波導 75
5-3-1 彎曲型光波導的設計 75
5-3-2 數值模擬結果 76
5-4 抗反射層結構的設計與分析 77
第六章 綜合結論與未來展望 93
6-1 綜合結論 93
6-2 未來展望 94
參考文獻 96
自述 108

[1]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, Vol.58, pp.2058-2062 (1987).
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, Vol.58, pp.2486-2489 (1987).
[3]E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case, Physical Review Letters, Vol.63, pp.1950-1953 (1989).
[4]J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the flow of light (Princeton University Press, Princeton, New Jersey, 1995).
[5]V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp, Vol.10, pp.509-514 (1968).
[6]J. B. Pendry, “Negative refraction makes a perfect lens, Physical Review Letters, Vol.85, pp.3966-3969 (2000).
[7]E. W. Marchand, Gradient Index Optics (Academic, New York, 1978).
[8]C. Gomez-Reino, M. V. Perez and C. Bao, Gradient-index optics: Fundamentals and applications (Springer, New York, 2002).
[9]K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures, Physical Review Letters, Vol.65, pp.3152-3155 (1990).
[10]E. Yablonovitch, T. J. Gmitter and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Physical Review Letters, Vol.67, pp.2295-2298 (1991).
[11]M. Plihal, A. Shambrook, A. A. Maradudin and P. Sheng, “Two-dimensional photonic band structures, Optics Communications, Vol.80, pp.199-204 (1991).
[12]M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice, Physical Review B, Vol.44, pp.8565-8571 (1991).
[13]H. S. J. W. Haus and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method, Physical Review B, Vol.45, pp.13962-13972 (1992).
[14]J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations, Physical Review Letters, Vol.69, pp.2772-2775 (1992).
[15]R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap material, Physical Review B, Vol.48, pp.8434-8437 (1993).
[16]T. Hass, A. Hesse and T. Doll, “Omnidirectional two-dimensional photonic crystal band gap structures, Physical Review B, Vol.73, p.045130 (2006).
[17]K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures, Solid State Communications, Vol.89, pp.413-416 (1994).
[18]J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, Vol.21, pp.1547-1549 (1996).
[19]R. A. Shelby, D. R .Smith and S. Schultz, “Experimental verification of a negative index of refraction, Science, Vol.292, pp.77-79 (2001).
[20]J. F. Woodley and M. Mojahedi, “Negative group velocity and group delay in left-handed media,’’ Physical Review E, Vol.70, p.046603 (2004).
[21]M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Physical Review B, Vol.62, pp.10696-10705 (2000).
[22]B. Gralak, S. Enoch and G. Taybe, “Anomalous refractive properties of photonic crystals, Journal of the Optical Society of America A, Vol.17, pp.1012-1020 (2000).
[23]S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals, Physical Review B, Vol.67, p.235107 (2003).
[24]S. Foteinopoulou, E. N. Economou and C.M. Soukoulis, “Refraction in Media with a Negative Refractive Index, Physical Review Letters, Vol.90, p.107402 (2003).
[25]S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects, Physical Review B, Vol.72, p.165112 (2005).
[26]R. Gajić, R. Meisels, F. Kuchar and K. Hingerl, “Refraction and rightness in photonic crystals, Optics Express, Vol.13, pp. 8596-8605 (2005).
[27]Z. C. Ruan, M. Qiu, S. S. Xiao, S. L. He and L. Thylén, “Coupling between plane waves and Bloch waves in photonic crystals with negative refraction, Physical Review B, Vol.71, p.045111 (2005).
[28]A. Martínez, H. Míguez, A. Griol and J. Martí, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens, Physical Review B, Vol.69, p.165119 (2004).
[29]Y. Y. Wang and L. W. Chen, “Tunable negative refraction photonic crystals achieved by liquid crystals, Optics Express, Vol.14, pp.10580-10587 (2006).
[30]D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan,“Electro-optic control of the superprism effect in photonic crystal, Applied Physics Letters, Vol.82, pp.3176-3178 (2003).
[31]S. Xiong and H. Fukshima, “Analysis of light propagation in index-tunable photonic crystals, Journal of Applied Physics, Vol. 94, pp.1286-1288 (2003).
[32]J. Li, M. H. Lu, L. Feng, X. P. Liu and Y. F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals, Journal of Applied Physics, Vol. 101, pp.013516 (2007).
[33]W. Park and J. B. Lee, “Mechanically tunable photonic crystal structure, Applied Physics Letters, Vol.85, No.21, pp.4845-4847 (2004)
[34]C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, “All-angle negative refraction without negative effective index, Physical Review B, Vol. 65, p.201104 (2002).
[35]P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, “Imaging by flat lens using negative refraction, Nature, Vol.426, p.404 (2003).
[36]Z. Lu, S. Shi, C. A. Schuetz and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase, Optics Express, Vol.13, pp.2007-2012 (2005).
[37]A. Berrier, M. Mulot, M. Swillo, M. Qu, L.Thylén, A. Talneau and S. Anand, “Negative refraction at infrared wavelength in a two-dimensional photonic crystal, Physical Review Letters, Vol.93, pp.073902 (2004).
[38]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1 and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Physical Review Letters, Vol.91, No.20, pp.207401 (2003).
[39]S. Feng, Z. Y. Li, Z. F. Feng, K. Ren, B. Y. Cheng and D. Z. Zhang, “Focusing properties of a rectangular-rod photonic-crystal slab, Journal of Applied Physics, Vol.98, p.063102 (2005).
[40]S. Feng, Z. Y. Li, Z. F. Feng, B. Y. Cheng and D. Z. Zhang, “Imaging properties of an elliptical-rod photonic-crystal slab lens, Physical Review B, Vol. 72, p.075101 (2005).
[41]X. Wang, Z. F. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal, Optics Express, Vol.12, pp.2919-2924 (2004).
[42]R. Zengerle and P. C. Hoang, “Wide-angle beam refocusing using negative refraction in non-uniform photonic crystal waveguides, Optics Express, Vol.13, pp.5719-5730 (2005).
[43]R. Zengerle and P. C. Hoang, “All-angle beam refocusing in nonuniform triangular photonic crystal slabs, Journal of the Optical Society of America B, Vol.24, pp.997-1003 (2007).
[44]A. Martinez and J. Marti, “Analysis of wave focusing inside a negative-index photonic-crystal slab,’’ Optics Express, Vol.13, pp.2858-2868 (2005).
[45]S. Xiao, M. Qiu, Z. Ruan and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction, Applied Physics Letters, Vol.85, pp.4269-4271 (2004).
[46]X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs, Physical Review B, Vol. 71, p.085101 (2005).
[47]G. Sun, A. S. Jugessur and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances, Optics Express, Vol.14, pp.6755-6765 (2006).
[48]H. Zhang, L. Shen, L. Ran and Y. Yuan, “Layered superlensing in two-dimensional photonic crystals, Optics Express, Vol.14, pp.11178-11183 (2006).
[49]Z. Tang, R. Peng, Y. Ye, C. Zhao, D. Fan, H. Zhang and S. Wen, “Optical properties of a square-lattice photonic crystal within the partial bandgap,’’ Journal of the Optical Society of America A , Vol.24, pp.379-384 (2007).
[50]G. Sun and A. G. Kirk, “Analyses of negative refraction in the partial bandgap of photonic crystals,’’ Optics Express, Vol.16, pp.4330-4336 (2008).
[51]X. Sun, X. Tao and K. Kwan, “Effects of material composition on the superlens frequency of photonic crystals,’’ Journal of the Optical Society of America B, Vol.25, pp.571-575 (2008).
[52]J. Li, M. H. Lu, T. Fan, X. K. Liu, L. Feng, Y. F. Tang and Y. F. Chen, “All-angle negative refraction imaging effect with complex two-dimensional hexagonal photonic crystals, Journal of Applied Physics, Vol.102, p.073538 (2007).
[53]K. Ren, Z. Y. Li, X. Ren, B. Cheng and D. Zhang, “Tunable negative refraction by electro-optical control in two-dimensional photonic crystal, Applied Physics A, Vol.87, pp.181-185 (2007).
[54]E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals, Physical Review B, Vol.73, pp.235119 (2006).
[55]E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect, Applied Physics Letters, Vol.92, p.133501 (2008).
[56]E. Centeno, E. Akmansoy, K. Vynck, D. Cassagne, J. M. Lourtioz, “Light bending and quasi-transparency in metallic graded photonic crystals, Photonics and Nanostructures-Fundamentals and Applications, Vol.8, pp.120-124 (2010).
[57]H. Kurt and D. S. Citrin, “Graded index photonic crystals, Optics Express, Vol.15, pp.1240-1253 (2007).
[58] H. T. Chien and C. C. Chen, “Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii, Optics Express, Vol.14, pp. 10759-10764 (2006)
[59]F. S. Roux and I. D. Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method, Physical Review B, Vol.74, pp.113103 (2006).
[60]H. Kurt, E. Colak, O. Cakmak, H. Caglayan and E. Ozbay, “The focusing effect of graded index photonic crystals, Applied Physics Letters, Vol.93, p.171108 (2008).
[61]Q. Wu, J. M. Gibbons and W. Park, “Graded negative index lens by photonic crystals, Optics Express, Vol.16, pp.16941-16949 (2008).
[62]C. Tan, T. Niemi, C. Peng and M. Pessa, “Focusing effect of a graded index photonic crystal lens, Optics Communications, Vol.284, pp.3140-3143 (2011).
[63]F. Gaufillet and É. Akmansoy, “Graded photonic crystals for graded index lens, Optics Communications, Vol.285, pp.2638-2641 (2012).
[64]S. Chen, J. Du, S. Liu, Z. Lin and S. T. Chui, “Focusing the electromagnetic wave with a magnetic field, Optics Letters, Vol.33, pp.2476-2478 (2008).
[65]A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler, Journal of Applied Physics, Vol.105, pp.103708 (2009).
[66]M. I. Kotlyar, Y. R. Triandaphilov, A. A. Kovalev, V. A. Soifer, M. V. Kotlyar and L. O’Faolain, “Photonic crystal lens for coupling two waveguides, Applied Optics, Vol.48, pp.3722-3730 (2009).
[67]M. Lu, B. K. Juluri, S. S. Lin, B. Kiraly, T. Gao and T. J. Huang, “Beam aperture modifier and beam deflector using gradient-index photonic crystals, Journal of Applied Physics, Vol.108, pp.103505 (2010).
[68]B. Vasic, G. Isic, R. Gajic and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime, Optics Express, Vol.18, pp. 20321-20333 (2010).
[69]B. Vasic, R. Gajic and K. Hingerl, “Graded photonic crystals for implementation of gradient refractive index media, Journal of Nanophotonics, Vol.5, p.051806 (2011).
[70]B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking, Journal of Applied Physics, Vol.110, p.053103 (2011).
[71]B. Vasic and R. Gajic, “Tunable gradient refractive index optics using graded plasmonic crystals with semiconductor rods, Journal of the Optical Society of America B, Vol.29, pp.79-87 (2012).
[72]E. Cassan and K. V. Do, “Analytic design of graded photonic crystals in the metamaterial regime, Journal of the Optical Society of America B, Vol.28, pp.1905-1910 (2011).
[73]E. Cassan, K. V. Do, C. Caer, D. Marris-Morini and L. Vivien, “Short-Wavelength Light Propagation in Graded Photonic Crystals, Journal of Lightwave Technology, Vol.29, pp. 1937-1943 (2011).
[74]K. V. Do, X. L. Roux, D. Marris-Morini, L. Vivien and E. Cassan, “Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal, Optics Express, Vol.20, pp.4776-4783 (2012).
[75]H. Gao, B. Zhang, S. G. Johnson and G. Barbastathis, “Design of thin–film photonic metamaterial Lüneburg lens using analytical approach, Optics Express, Vol.20, pp.1617-1628 (2012).
[76]M. Yin, X. Y. Tian, H. X. Han and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime, Applied Physics Letters, Vol.100, p.124101 (2012).
[77]U. Leonhardt, “Optical conformal mapping, Science, Vol.312, pp.1777-1780 (2006).
[78]J. B. Pendry, D. Schurig and D. R. Smith, “Controlling electromagnetic fields, Science, Vol.312, pp.1780-1782 (2006).
[79]H. Chen, C. T. Chan and P. sheng, “transformation optics and metamaterials, Nature Materials, Vol.9, pp.387-396 (2010).
[80]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith and J. B. Pendry, ‘‘Full–wave simulations of electromagnetic cloaking structures,’’ Physical Review E, Vol.74, p.036621 (2006).
[81]J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking, Physical Review Letters, Vol.101, p.203901 (2008).
[82]X. Xu, Y. Feng, Y. Hao, J. Zhao and T. Jiang “Infrared carpet cloak designed with uniform silicon grating structure, Applied Physics Letters, Vol.95, p.184102 (2009).
[83]M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation, Physical Review B, Vol.77, p.035122 (2008).
[84]L. Lin, W. Wang, J. H. Cui, C. L. Du and X. G. Luo, “Design of electromagnetic refractor and phase transformer using coordinate transformation theory, Optics Express 16, pp.6815-6821 (2008).
[85]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photonics and Nanostructures - Fundamentals and Applications, Vol.6, pp.87-95 (2008).
[86]F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology, Applied Physics Letters, Vol.91, p.253509 (2007).
[87]H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields, Applied Physics Letters, Vol.90, p.241105 (2007).
[88]P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology, Optics Express, Vol.18, pp.767-772 (2010).
[89]W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang and Q. Cheng, “Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials, Physical Review E, Vol.78, p.066607 (2008).
[90]D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners, Applied Physics Letters, Vol.93, p.251111 (2008).
[91]J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. I. Wu, L. Ran and J. A. Kong, “Application of coordinate transformation in bent waveguides, Journal of Applied Physics, Vol.104, p.014502 (2008).
[92]Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials, Journal of Applied Physics, Vol.105, p.104913 (2009).
[93]J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices, Optics Express, Vol. 18, pp. 244-252 (2010).
[94]K. Yao and X. Jiang, “Designing feasible optical devices via conformal mapping, Journal of the Optical Society of America B, Vol.28, pp.1037-1042 (2011).
[95]D. A. Genov, S. Zhang and X. Zhang, “Mimicking celestial mechanics in metamaterials, Nature Physics, Vol.5, pp.687-692 (2009).
[96]E. E. Narimanov and A. V. Kildishev, ‘‘Optical black hole: broadband omnidirectional light absorber,’’ Applied Physics Letters, Vol.95, p.041106 (2009).
[97]A. V. Kildishev, L. J. Prokopeva and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description, Optics Express, Vol.18, pp.16646-16662 (2010).
[98]C. Argyropoulos, E. Kallos and Y. Hao, “FDTD analysis of the optical black hole, Journal of the Optical Society of America B, Vol.27, pp.2020-2025 (2010).
[99]Q. Cheng, T. J. Cui, W. X. Jiang and B. G. Cai, ‘‘An omnidirectional electromagnetic absorber made of metamaterials,’’ New Journal of Physics, Vol.12, p.063006 (2010).
[100]W. Lu, J. F. Jin, Z. Lin and H. Chen, ‘‘A simple design of an artificial electromagnetic black hole,’’ Journal of Applied Physics, Vol.108, p.064517 (2010).
[101]J. Zhou, X. Cai, Z. Chang and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber, Journal of Optics, Vol.13, p.085103 (2011).
[102]Y. Yang, L. Y. Leng, N. Wang, Y. Ma and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials, Journal of the Optical Society of America A, Vol.29, pp. 473-475 (2012).
[103]J. Qiu, L. H. Liu, P. F. Hsu, “Radiative properties of optical board embedded with optical black holes, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.112, pp.832-838 (2011).
[104]S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations, Optics Express, Vol.11, pp.167-175 (2003).
[105]J. N. Reddy, An introduction to the finite element method 3rd ed. (McGraw-Hill, New York, 2006).
[106]J. P. Berenger, “A perfectly matched layer for absorption of electromagnetic waves, Journal of Computational Physics, Vol.114, pp.185-200 (1994).
[107]A. Sihvola, Electromagnetic mixing formulas and applications (Institution of Electrical Engineers, London, United Kingdom, 1999).
[108]R. K. Lüneburg, The mathematical theory of optics (University of California Press, Los Angeles, CA, 1944).
[109]A. D. Falco, S. C. Kehr and U. Leonhardt, “Luneburg lens in silicon photonics, Optics Express, Vol.19, pp.5156-5162 (2011).
[110]M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R.W. Alexander and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Applied Optics, Vol.22, pp.1099-1119 (1983).
[111]B. Vasic, G. Isic, R. Gajic and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures, Physical Review B, Vol.79, p.085103 (2009).
[112]X. Wu, Z. Lin, H. Chen and C. T. Chan, “Transformation optical design of a bending waveguide by use of isotropic materials, Applied Optics, Vol.48, pp. G101-G105 (2009).
[113]S. G. Lee, J. S. Choi, J. E. Kim, H. Y. Park and C. S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces, Optics Express, Vol.16, pp.4270-4277 (2008).
[114]T. T. Kim, S. G. Lee, M. W. Kim, H. Y. Park and J. E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures, Applied Physics Letters, Vol.95, p.011119 (2009).
[115]M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top