跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥儒
研究生(外文):Yen-JuChen
論文名稱:以能量準則進行冷作成形製程之可成形性分析研究
論文名稱(外文):Formability Evaluation in Cold Forming Processes by Energy Criteria
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:107
中文關鍵詞:能量準則可成形性評估成形極限圖應變路徑
外文關鍵詞:Energy criterionFormability evaluationForming limit diagramStrain path
相關次數:
  • 被引用被引用:1
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
冷作成形製程常透過成形極限圖來判斷材料是否會破壞。透過成形極限圖上的成形極限曲線,CAE工程師在設計階段即可評估產品之製造可行性。建構材料之成形極限曲線需透過大量的可成形性實驗及應變量測程序,且不易獲得包含全應變值域的完整曲線。此外,透過成形極限圖判斷破壞是否發生並非總是準確。造成誤判的原因可能為:1.建構成形極限曲線因人為因素導致的誤差、2.材料變形時不遵循線性應變路徑。本論文將能量準則導入成形極限圖的建立過程中,以改善傳統方法評估結果不準確的缺點。以既有之能量準則可評估材料受到拉伸-壓縮狀態之極限應變,但大部分的能量準則無法準確預估材料在雙軸拉伸狀態下的成形極限。因此在本論文中以提出一修正能量準則來解決此問題。
本論文將冷作成形製程問題分為線性應變路徑及非線性應變路徑兩大類。針對線性應變路徑條件下板材之可成形性評估,本論文將應變路徑變化之概念用於修正Cockcroft與Latham提出之能量準則。在準則中加入主應變比值項,可反映材料第二主應變與第三主應變比值對破壞發生之影響。能量準則透過解析解方式,可預估材料在不同應變狀態下之極限應變,進而預估建立材料之完整成形極限曲線。由實驗結果比對證實,本論文提出之修正準則評估結果優於C&L準則,並可適用於不同強度及厚度的板材上。針對線性應變路徑下塊材之可成形性評估,本研究使用圓柱壓縮及圓柱側壓兩種實驗方式,搭配C&L準則亦可預估材料之成形極限曲線。透過實驗及有限元素模擬求得的材料極限能量密度值,可作為判斷破壞發生與否之依據。本論文中針對具凹槽設計之圓柱試件進行分析,發現凹槽設計之所以能加速破壞發生,導因於凹槽處應力集中與應變集中之效應。若僅從應力或應變之觀點無法準確預估材料是否發生破壞,必須以能量密度之概念才能進行完整評估。
若材料變形時遵循非線性應變路徑,利用線性應變路徑建構出的成形極限曲線無法準確預估材料之成形極限。本論文透過試件幾何設計,使試件在變形過程中遵循具有一次轉折的二階段應變路徑。由實驗結果可知,以本研究使用之模具及試件幾何設計,可在變形過程的第一階段產生雙軸拉伸狀態之預應變。在第二階段的應變路徑變化,根據試件幾何設計的不同可造成雙軸拉伸、平面應變及拉伸-壓縮等三種不同狀態。除透過實驗決定材料成形極限外,本論文亦以提出之能量準則進行二階段應變路徑情形下的可成形性分析。
總括而言,進行冷作成形製程之可成形性評估時,應變路徑變化具有相當重要的影響性。在線性及非線性應變路徑情況下,以本論文提出之能量準則進行冷作製程之可成形性評估,評估能力均優於C&L能量準則評估結果。

Formability of material in cold forming processes is often evaluated by the Forming Limit Diagram (FLD) method. CAE engineers can judge if their design succeeds virtually by this tool, and saves the cost of trial-and-error experiments. However, massive formability tests and strain measurements must be conducted in order to obtain the FLD of material, and sometimes the information is not sufficient to plot the complete Forming Limit Curve (FLC). Besides, the predictions made by FLC are not always very accurate. The errors may come from two aspects: 1. Errors in strain measurement caused by human factors. 2. Errors result from complex strain states. In this dissertation, energy criteria were introduced into the procedures for establishing the FLD of material for better prediction accuracy. Most of the existed energy criteria could be used for evaluating the formability under tension-compression conditions, but the predictions made under biaxial tension conditions were not so accurate. Therefore, a modified energy criterion would be proposed in this dissertation.
In this dissertation, problems encountered in cold forming processes were classified as linear strain path problems and non-linear strain path problems. For the formability evaluation under linear strain path conditions, an energy criterion modified from the one proposed by Cockcroft and Latham was proposed. The modified criterion introduced a ratio of the secondary principal stress to the third principal stress for reflecting the influences of strain ratio changes on fracture initiation. The limit strain data under different strain states could be predicted by analytical solutions of energy criteria. Experimental results supported that the modified criterion had better prediction capability than the C&L criterion, and was capable of predicting FLCs of material under different strengths and thicknesses. For the formability evaluation of bulk material under linear strain paths, the predicted FLC could be established by the C&L criterion with limit strain data obtained from cylinder upsetting tests and cylinder side pressing tests. The energy density constant in the C&L criterion could be viewed as a critical value for indicating the fracture initiation. In this dissertation, the energy density constant was used for evaluating the notch designs on cylinder specimens. The notch designs were capable of accelerating fracture initiation because they had created both stress concentration effects and strain concentration effects on cylinder specimens. Since it is a combined phenomenon, the formability evaluation would not be accurate if only the stress terms or strain terms were taken into consideration.
When material deforms under non-linear strain path, engineers could not simply use the FLC obtained under linear strain paths for fracture predictions. Therefore, formability test specimens with special designs were utilized in this dissertation for constructing non-linear strain path conditions. Results showed that the specimens deformed under two-step strain paths. By using the proposed die and specimen designs, pre-strains could be applied on the specimens without unloading the specimens from the die sets. At the first step of strain paths, pre-strains under biaxial tension state were observed. At the second stage of strain paths, three different strain states, namely the biaxial tension state, the plane-strain state, and the tension-compression state, could be created by altering the specimen designs. Also, predictions made by the proposed energy criterion were obtained for formability evaluation.
To sum up, strain paths in cold forming processes played an important role when conducting formability evaluations. The modified energy criterion proposed in this dissertation showed a better prediction capability than the C&L criterion not only under linear strain path conditions, but also under non-linear strain paths.
中文摘要 I
Abstract II
致謝 IV
Table of Contents VI
List of Tables VIII
List of Figures IX
Nomenclature XI
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Literature Review 2
1.2.1 Cold Forming Processes 2
1.2.2 Formability and Forming Limit Diagram 3
1.2.3 Forming Limit Stress Diagram 8
1.2.4 Energy Criteria 9
1.2.5 Hybrid Methods for Formability Evaluation 12
1.3 Objectives and Methodologies of this Dissertation 13
1.3.1 Objective of this dissertation 13
1.3.2 Applicable range of the study 13
1.3.3 Methodologies adopted in the dissertation 15
1.4 Outline of the Dissertation 17
Chapter 2 Theoretical Background 20
2.1 Energy Criteria for Formability Evaluation 20
2.2 Modifications of Energy Criteria 24
2.3 Predicting Forming Limit Curve by Energy Criteria 28
Chapter 3 Experimental and Numerical Methods 33
3.1 Strain Measurement Techniques 33
3.2 Linear Strain Path Formability Tests 41
3.2.1 Experimental Setup for Sheet Material 41
3.2.2 Experimental and Simulation Setup for Bulk Material 46
3.3 Two-step Strain Path Formability Tests 51
3.3.1 Study of Strain Path Effects under Non-linear Strain Path Conditions 51
3.3.2 Experimental Setup for Two-step Strain Path Formability Tests 54
3.3.3 Simulation Setup for Two-step Strain Path Formability Tests 59
Chapter 4 Results and Discussions 64
4.1 Formability Evaluation for Sheet Material 64
4.2 Formability Evaluation for Bulk Material 75
4.3 Formability Evaluation under Two-step Stain Paths 82
4.3.1 Results of Tube Hydroforming Process with Non-linear Strain Paths 82
4.3.2 Results of Two-Step Strain Path Formability Tests with Special Specimen Designs 85
Chapter 5 Conclusions and Future Works 94
5.1 Conclusions 94
5.2 Future Works 95
References 96
Appendix A Derivation of Analytical Forms for Predicting FLC 102
Appendix B Prediction of Limit Strain by Zhuang’s Criterion 106
Alting, L. Manufacturing Engineering Processes, 2nd Edition, Revised and Expended, Marcel Dekker, New York.(1982)

Amodio, D., G. B. Broggiato, F. Campana and G. M. Newaz. Digital Speckle Correlation for Strain Measurement by Image Analysis. Society for Experimental Mechanics 43(4): 396-402.(2003)

Arrieux, R., M. Boivin and F. Le Maître. Determination of the Forming Limit Stress Curve for Anisotropic Sheets. CIRP Annals - Manufacturing Technology 36(1): 195-198.(1987)

ASTM. Standard Test Method forDetermining Forming Limit Curves, American Society for Testing and Materials. ASTM E2218-02.(2008)

Atkins, A. G. Possible Explanation for Unexpected Departures in Hydrostatic Tension-Fracture Strain Relations. Metal Science 15: 81-83.(1981)

Atkins, A. G. and Y. W. Mai. Elastic & Plastic Fracture, Chichester, Ellis Horwood. New York.(1985)

Bao, Y. and T. Wierzbicki. A Comparative Study on Various Ductile Crack Formation Criteria. Journal of Engineering Materials and Technology 126(3): 314.(2004)

Bressan, J. D. and J. A. Williams. The use of a shear instability criterion to predict local necking in sheet metal deformation. International Journal of Mechanical Sciences 25(3): 155-168.(1983)

Chen, J. H. Investigation on Computer-aided Evaluation of Forming Limit in Cold Forging of High Strength Aluminum Alloy. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(2003)

Chen, M. H., L. Gao, D. W. Zuo and M. Wang. Application of the forming limit stress diagram to forming limit prediction for the multi-step forming of auto panels. Journal of Materials Processing Technology 187-188: 173-177.(2007)

Chen, Y. J. Utilizing Different Notch Designs on Upsetting Test for Forgeability Evaluation. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(2005)

Chiu, H. Y. Formability Analysis of HA-188 Cobalt-base Superalloy in Tube Hydroforming. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(2011)

Clift, S. E., P. Hartley, C. E. N. Sturgess and G. W. Rowe. Fracture prediction in plastic deformation processes. International Journal of Solids and Structures 32(1): 1-17.(1990)

Cockcroft, M. G. and D. J. Latham. Ductility and the Workability of Metals. Journal of the Institute of Metals 96: 33-39.(1968)

Frudenthal, A. M. The Inelastic Behavior of Metals, Wiely, New York.(1950)

Geiger, M. and M. Merklein. Determination of forming limit diagrams – a new analysis method for characterization of materials' formability. CIRP Annals - Manufacturing Technology 52(1): 213-216.(2003)

Goodwin, G. M. Application os Strain Analysis to Sheet Metal Forming Problems in Press Shop. Society of Automotive Engineers, Paper No.680093.(1968)

Gouveia, B. P. P. A., J. M. C. Rodrigues and P. A. F. Martins. Fracture predicting in bulk metal forming. International Journal of Mechanical Sciences 38(4): 361-372.(1995)

Gouveia, B. P. P. A., J. M. C. Rodrigues and P. A. F. Martins. Ductile fracture in metalworking experimental and theoretical research. Journal of Materials Processing Technology 101: 52-63.(2000)

Graf, A. and W. Hosford. The Influenceof Strain-path on Forming Limit Changes of Al6111-T4. International Journal of Mechanical Sciences 10: 897-910.(1994)

Hasek, V. Research and theoretical description concerning the influences on FLDs (In German) Blech Rohre Profile 25: 213-220, 285-292, 493-499, 613-617.(1978)

ISO-12004-2. Metallic Materials- Determination of Forming-limit Curves. Part 2: Determination of Forming-limit Curves in Laboratory.(2008)

Jain, M., J. Allin, X. Duan and D. J. Lloyd. Effect of reverse dome stretching on dome height and forming limits of sheet materials. Materials Science and Engineering: A 390(1-2): 210-216.(2005)

Jain, M., J. Allin and D. J. Lloyd. Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet. International Journal of Mechanical Sciences 41: 1273-1288.(1999)

Janciek, L. and B. Marosm. The determination of the cold forgeability for specimens with axial notches of heat resisting and corrosion resisting chromium nickle steels. Journal of Materials Processing Technology 60: 269-274.(1996)

Keeler, S. P. and W. A. Backofen. Plastic Instability and Fracture in Sheets Stretched over Rigid Punches. Transactions of American Society for Metals 56: 25-48.(1963)

Landre, J., A. Pertence, P. R. Cetlin, J. M. C. Rodrigues and P. A. F. Martins. On the utilisation of ductile fracture criteria in cold forging. Finite Element in Analysis and Design 39: 175-186.(2003)

Lange, K. Handbook of Metal Forming, McGraw-Hill, New York.(1985)

Lankford, W. T., S. C. Snyder and J. A. Bausher. New Criteria for Predicting the Press Performance of Deep Drawing Sheets. Transactions of American Society for Metals 42: 1197-1205.(1950)

Lee, R. S., T. C. Cheng, F. W. Luo and C. J. Huang. A novel formability test method for electro-magnetic forming of aluminum sheet. Steel Research International 81(9): 1042-1047.(2010)

Lee, R. S., H. Y. Chiu, Y. J. Chen, Y. C. Lo and C. C. Wang. Evaluation of Fracture Criteria Considering Complex Loading Paths in Cobalt Alloy Tube Hydroforming. Materials Transaction 53(5): 807-811.(2012)

Lee, Y.-W., J. C. Woertz and T. Wierzbicki. Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification. International Journal of Mechanical Sciences 46(5): 751-781.(2004)

Lin, Q. F. 應用有限元素法於板金成形極限能量及應變路徑之模擬. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(1991)

Liu, B., L. Lang, P. Du, Y. Zeng and K. Liu. Effect of through thickness normal stress on forming limit at elevated temperature investigated by using modified M–K model. International Journal of Mechanical Sciences.(2012)

Marciniak, Z. and K. Kuczynski. Limit Strains in the Processof Stretch-forming Sheet Metal. International Journal of Mechanical Sciences 9: 609-620.(1967)

McClintock, F. A. A Criterion of Ductile Rupture by Void Nucleation and Growth. Journal of Applied Mechanics 35: 363-371.(1968)

Moritoki, H. Free surface ductility in upsetting. International Journal of Plasticity 9: 507-523.(1993)

Nakazima, K., T. Kimuta and K. Asuka. Studyu on the formability of steel sheet. Yawata Technical Report 284: 678-680.(1968)

Norris, D. M., J. E. Reaugh, B. Moran and D. F. Quinones. A Plastic-strain, Mean-stress Criterion for Ductile Fracture. Journal of Engineering Materials and Technology 100: 279-286.(1978)

Oh, S., C. C. Chen and S. Kobayashi. Ductile Failure in Axisymmetric Extrusion and Drawing, Part 2, Workability in Extrusion and Drawing. Journal of Engineering for Industry, Trans. ASME 101: 36-44.(1979)

Okamoto, T., T. Fukuda and H. Hagita. Material Fracture in Cold Forging- Systematic Classification of Working Methods and Types of Cracking in Cold Forging. The Sumitomo Search 9: 216-226.(1973)

Oyane, M., K. Sato, K. Okimoto and S. Shima. Criteria for Ductile Fracture and Their Applications. Journal of Mechnical Working Technology 4(1): 65-81.(1980)

Ozturk, F. and D. Lee. Analysis of forming limits using ductile fracture criteria. Journal of Materials Processing Technology 147(3): 397-404.(2004)

Pearce, R. 4000 years of sheet metal forming. Formability of metallic materials- 2000 A.D. a symposium / sponsored by ASTM Committee E-28 on Mechanical Testing STP 753: 3-18.(1982)

Rao, A. V., R. K. Kumar and N. Ramakrishnan. Workability Limits in Cold Forging: Investigation of the Deformation Mechanics through FEA. Mechanics of Advanced Materials and Structures 14(3): 213-224.(2007)

Rao, A. V., N. Ramakrishnan and R. K. Kumar. A Comparative Evaluation for the Theoretical Failure Criteria for Workability in Cold Forging. Journal of Materials Processing Technology 142: 29-42.(2003)

Rezaee-Bazzaz, A., H. Noori and R. Mahmudi. Calculation of forming limit diagrams using Hill's 1993 yield criterion. International Journal of Mechanical Sciences 53(4): 262-270.(2011)

Shabara, M. A., A. A. El-Domiaty and K. A. Validity assessment of ductile fracture criteria in cold forming. Journal of Materials Engineering and Performance 5: 478-488.(1996)

Shakeri, M., A. Sadough and B. M. Dariant. Effect of Pre-straining and Grain Size on the Limit Strains in Sheet Metal Forming. Proceedings of the IMechE Part B: Journal of Engineering Manufacture 214(9): 821-827.(2000)

She, C.H. 板金多道次成形之成形極限研究. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(1989)

Situ, Q., M. K. Jain and D. R. Metzger. Determination of forming limit diagrams of sheet materials with a hybrid experimental–numerical approach. International Journal of Mechanical Sciences 53(9): 707-719.(2011)

Sowerby, R. and N. Chandrasekaran. The cold upsetting and free surface ductility of some commercial steels. Journal of Applied Metalworking 3(3): 257-263.(1984)

Swift, H. W. Plastic instability under plane stress Journal of the Mechanics and Physics of Solids 1: 1-18.(1952)

Tabri, K., H. Alsos, J. Broekhuijsen and S. Ehlers. An Experimental and Numerical Study of the Effects of Length Scale and Strain State on the Necking and Fracture Behaviours in Sheet Metals. International Journal of Impact Engineering 36(10-11): 1194-1203.(2009)

Takuda, H., K. Mori and N. Hatta. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. Journal of Materials Processing Technology 95: 116-121.(1999)

Teng, X. and T. Wierzbicki. Evaluation of six fracture models in high velocity perforation. Engineering Fracture Mechanics 73(12): 1653-1678.(2006)

Venugopal Rao, A., N. Ramakrishnan and R. Krishna kumar. A comparative evaluation of the theoretical failure criteria for workability in cold forging. Journal of Materials Processing Technology 142(1): 29-42.(2003)

Vilotic, D., M. Planck, S. Grbic, S. Alexandrov and N. Chikanova. An approach to determining the workability diagram based on upsetting tests. Fatigue and Fracture of Engineering Materials and Structures 26: 305-310.(2003)

Volk, W., H. Hoffmann, J. Suh and J. Kim. Failure prediction for nonlinear strain paths in sheet metal forming. CIRP Annals - Manufacturing Technology 61(1): 259-262.(2012)

Wifi, A. S., A. Abdel-Hamid and N. El-Abbasi. Computer-aided evaluation of workability in bulk forming processes. Journal of Materials Processing Technology 77: 285-293.(1998)

Wu, P. D., A. Graf, S. R. MacEwen, D. J. Lloyd, M. Jain and K. W. Neale. On forming limit stress diagram analysis. International Journal of Solids and Structures 42(8): 2225-2241.(2005)

Zhuang, W. L. 應用有限元素法於板金成形極限之模擬分析. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis.(1990) 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top