跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建羽
研究生(外文):Jian-YuChen
論文名稱:射出成形黏模力現象之研究
論文名稱(外文):Investigation of Mold Adhesion Phenomenon during the Injection Molding Process
指導教授:黃聖杰黃聖杰引用關係
指導教授(外文):Sheng-Jye Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:117
中文關鍵詞:黏模現象熱可塑性聚氨酯頂出型黏模力量測方法張力型黏模力量測方法彈性體氮化鉻表面處理表面能疏水結構
外文關鍵詞:Mold adhesion phenomenonthermoplastic polyurethaneejection mode adhesion force testertensile mode adhesion force testerelastomeric resinCrN based coatingssurface energywater-repellency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1149
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:2
黏模現象不僅會發生於轉注成形的IC封裝製程,一般使用熱塑型材料的射出成形製程亦會有相類似的問題。過去,有多數的論文皆集中於討論IC封裝製程中所產生的黏模力問題,少有文獻針對射出成形之黏模效應進行探討。本文研究在於針對熱塑型材料所使用的射出成形製程進行黏模力量測機構開發,包含:頂出型黏模力量測機構與張力型黏模力量測機構等兩種量測方式。由實驗結果可以得知,頂出型黏模力量測方法針對TPU此類彈性體材料僅能作黏模力定性探討,因材料本身具有類似橡膠材料之特性,故當材料在頂出階段可承受並吸受部份來自於頂出銷之能量而產生變形;然而,黏著衝量實驗結果顯示,在連續實驗中,對每一模次所得量測曲線之黏著力峰值與其黏著衝量在整理後的連續實驗曲線呈現類似的發展趨勢,故使用頂出型黏模力量測法可合理定義量測曲線峰值即為成品與模具黏著界面間的黏模力。此外,由成形參數實驗結果中可以清楚得知黏模力與頂出速度、料溫與冷卻時間成正比。
為改進黏模力的量測準確性,本文另開發出一套張力型黏模力量測方法,此研究方法尤其針對彈性體材料而設計。由實驗結果可以顯示,量測所得黏模力並不受頂出速度與彈性體材料本身應力吸收能力之影響,故可準確量測射出成品與模具界面間的黏模力並作定量分析。
本文選擇三種不同種類TPU塑料進行黏模力探討,而為降低黏模力,本文選擇三種不同氮化鉻之表面處理方式與類鑽石鍍膜表面處理,討論其對降低黏模力之效果。由連續實驗結果發現,單層氮化鉻與氮化鉻改質模面處理對降低黏模力有顯著效果,但多層氮化鉻與類鑽石鍍膜則無效果。若進一步針對這四種模面進行微觀觀測,發現單層氮化鉻與氮化鉻改質模面有非常優異的疏水性質,故其表面能相對未處理表面要低的許多,而表面微結構呈現特殊圓錐柱狀,大小相當均一;而多層氮化鉻雖與單層氮化鉻具有相同結構,但微結構因大小不一,高度不一,故疏水性不佳;相反地,類鑽石鍍膜之微結構雖大小均一,但其晶粒太大,且晶粒間距亦較寬,故高溫塑料可輕易充填微孔隙,而產生較大的機械性黏著力。

Serious adhesion can occur not only during IC encapsulation, but also in the injection molding process. However, while many studies have focused on adhesion during the former, much less attention has been paid to the latter. This study thus developed both ejection mode and tensile mode adhesion force testers to measure the adhesion force that occur during the injection molding process. The experimental results show the ejection mode adhesion force measurement only qualitatively analyzes the adhesion force during thermoplastic polyurethane (TPU) injection molding process, because TPU behaves as rubber-like character which can partially resist and absorb ejection force when molded part released from the cavity surface. However, adhesion impulse results have similar trend as those of adhesion force in continuous experiments and hence it is acceptable to define peak value as adhesion force. Besides, adhesion force was proportional to ejection speed, melt temperature and cooling time.
In order to improve the accuracy of adhesion force measurement, the tensile mode adhesion force measurement was fabricated, especially designated for elastomeric resins. The experimental results show the acquired adhesion force was not affected by either the release speed and energy absorption capability of elastomeric resin. It can quantitatively analyze adhesion force accurately between molded part and tool surface.
There are three different types of TPU that are investigated in this research. In addition, chrome-nitride (CrN) based and diamond-like carbon (DLC) coatings prepared by physical vapor deposition (PVD) were used to investigate their effectiveness with regard to alleviating adhesion force. Single layer CrN and modifying CrN coatings are found to be beneficial with regard to alleviating adhesion force, whereas multi-layer CrN and DLC surface treatments are ineffective during continuous experiments. Further investigations show that single layer CrN and modifying CrN both have excellent water-repellency properties with low surface energy, and exhibit a distinctive conical structure with uniform grain size. Although multi-layer CrN exhibits a similar morphology to that of single layer CrN, it shows significant variations in grain size and height. In contrast, although DLC has a uniform topography, its larger grain size and wider valleys between grains lead to greater adhesion force due to mechanical anchoring.

Abstract...................................................I
Chinese abstract.........................................III
Acknowledgement............................................V
Contents.................................................VII
List of Tables.............................................X
List of Figures...........................................XI
Nomenclature.............................................XIV
Chapter 1 Introduction...............................................1
1-1 Preface................................................1
1-2 Thermoplastic and Thermosetting Materials..............3
1-3 Aims of the Thesis.....................................5
1-4 Literature Review......................................6
1-5 Outline of Thesis......................................9
Chapter 2 Basic Theory....................................11
2-1 Theory of Polymer Processing..........................11
2-2 Adhesion Theory.......................................13
2-2-1 Mechanical Theory...................................14
2-2-2 Wetting Theory......................................15
2-2-3 Chemical Bonding Theory.............................17
2-3 Adhesive Strength versus Adhesion Force...............18
2-4 Stress-Strain Relation of Material....................19
2-5 Adhesion Impulse......................................22
2-6 Contact Angle of Droplet and Surface Eenrgy...........24
Chapter 3 Experimental Results of Ejection Mode
Adhesion Force Measurement................................26
3-1 Methodology of Measurement............................26
3-2 Experiment Details....................................28
3-2-1 Measurement Device..................................28
3-2-2 Sensor and Measurement Device.......................31
3-2-3 Experiment Parameters...............................32
3-2-4 Test Procedures.....................................33
3-2-5 Sample Preparation..................................36
3-3 Experiment Results....................................37
3-3-1 Continuous Experiments..............................40
3-3-2 Influence of Process Parameters on Adhesion
Force.....................................................46
3-4 Evaluation and Verification with Adhesion Impulse.....49
3-5 Summary of Ejection Mode Adhesion Force
Measurement...............................................55
Chapter 4 Experimental Results of Tensile Mode
Adhesion Force Measurement................................57
4-1 Methodology of Measurement............................60
4-2 Experiment Details....................................61
4-2-1 Design of Testing Tool..............................61
4-2-2 Measurement Device..................................65
4-2-3 Test Procedures and Data Acquisition................66
4-2-4 Molding Conditions..................................71
4-3 Experiment Results....................................73
4-3-1 Practicability......................................73
4-3-2 Stability and Repeatability of Measurement..........76
4-3-3 Relevance of Different Types of TPU.................81
4-4 Summary of Tensile Mode Adhesion Force
Measurement...............................................88
Chapter 5 Investigation of Surface Morphology.............89
5-1 Adhesion Force Measurment.............................89
5-2 Contact Angle and Surface Energy......................92
5-3 Surface Morphology....................................96
5-4 Summary of Investigation of Surface Morphology.......104
Chapter 6 Conclusions....................................106
6-1 Contributions........................................106
6-2 Future Works.........................................109
References...............................................110
Index....................................................113
Vita.....................................................117
[1]M. Yoshii, Y. Mizukami and H. Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors, Hitachi Chemical Technology Report, No. 40, pp. 13-20 (2003).
[2]M. Yoshii and N. Suzuki, “Investigation Into the Release Behavior and Releasability Evaluation of the Encapsulation of Semiconductor Packages, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, pp. 228-235 (2007).
[3]S.J. Chang and S.J. Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 26, pp. 281-285 (2003).
[4]S.J. Chang, “Measurement and Analysis of Adhesion Force on IC Encapsulation Mold, Ph. D thesis, National Cheng Kung University, Tainan, Taiwan (2004).
[5]American Society for Testing Materials, “Standard Test Method for Tensile Properties of Adhesive Bonds, STD. D897-08.
[6]American Society for Testing Materials, “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading, STD. D1002-08.
[7]American Society for Testing Materials, “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds, STD. D1062-08.
[8]American Society for Testing Materials, “Standard Practice for Preparation of Bar and Rod Specimens for Adhesion Tests, STD. D2094-00.
[9]American Society for Testing Materials, “Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading, STD. D3163-01.
[10]American Society for Testing Materials, “Standard Test Method for Strength Properties of Adhesively Bonded Plastic Lap-Shear Sandwich Joints in Shear by Tension Loading, STD. D3164M-03.
[11]American Society for Testing Materials, “Standard Test Method for Strength Properties of Adhesives in Shear by Tension Loading of Single-Lap-Joint Laminated Assemblies, STD. D3165-07.
[12]American Society for Testing Materials, “Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading, STD. D3528-96.
[13]American Society for Testing Materials, “Standard Test Method for Shear Strength of Adhesives Using Pin-and-Collar Specimen, STD. D4562-01.
[14]W.E. Moddeman, “Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, Md. Vol. 4, pp. 77-87 (1987).
[15]R.A. Ryntz, A. McNeight and A. Ford, “How Molding Conditions Affect Adhesion of Coatings to TPOs, Plastic Engineering, Vol. 52, pp. 35-38 (1996).
[16]T, Sasaki, N. Koga, K. Shirai, Y. Kobayashi and A. Toyoshima, “An experimental study on ejection forces of injection molding, Precision Engineering, Vol. 24, pp. 270-273 (2000).
[17]A.S. Pouzada, E.C. Ferreira and A.J. Pontes, “Friction properties of moulding thermoplastics, Polymer Testing, Vol. 25, pp. 1017-1023 (2006).
[18]S. Haragas, L. Tudose and C. Stanescu, “On the Demolding Force Calculation in the Case of Plastics Thin-Wall Injected Parts, Material Plastics, Vol. 45, pp. 53-56 (2008).
[19]Q. Zhao, Y. Liu and E.W. Abel, “Surface free energies of electroless Ni-P based composite coatings, Applied Surface Science, Vol. 240, pp. 441-451 (2004).
[20]S.M. Chiu, S.J. Hwang, C.W. Chu, D. Gan, “The influence of Cr-based coating on the adhesion force between epoxy molding compounds and IC encapsulation mold, Thin Solid Films, Vol. 515, pp. 285-292 (2006).
[21]H. Yamamoto, Y. Ohkubo, K. Ogawa and K. Utsumi, “Application of a chemically adsorbed fluorocarbon film to improve demolding, Precision Engineering, Vol. 33, pp. 229~234 (2009).
[22]H. Yamamoto, Y. Ohkubo, K. Ogawa and K. Utsumi, “Physical performance of the metal surface covered with the highly durable and chemical adsorbed fluorocarbon film, Precision Engineering, Vol. 34, pp. 440-445 (2010).
[23]張永彥, “塑膠模具設計學, 全華圖書股份有限公司, 台北 (2007).
[24]S. Ebnesajjad, “Adhesives Technology Handbook, William Andrew Inc., New York, USA (2008).
[25]T. Young, Trans. Roy. Soc., Vol. 95, pp. 65 (1805).
[26]F.M. Fowkes, “Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces, Journal of Physics Chemistry, Vol. 66, pp. 382 (1962).
[27]D.K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, Vol. 13, pp. 1741-1747 (1969).
[28]S. Wu, “Calculation of interfacial tension in polymer systems, Journal of Polymer Science. Part C, Vol. 34, pp. 19-30 (1971).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top