(34.226.234.102) 您好!臺灣時間:2021/05/12 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:朱祐誼
研究生(外文):Yu-YiChu
論文名稱:鋁合金板材電磁成形之高應變率製程特性與塑流應力之研究
論文名稱(外文):Study on High Strain Rate Process Characteristics and Flow Stress in Electromagnetic Forming of Aluminum Alloy Sheet
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:97
中文關鍵詞:高應變率電磁成形頻率可分離式集磁塊塑流應力
外文關鍵詞:High Strain RateElectromagnetic FormingFrequencySeparable Field shaperFlow Stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
高應變率電磁成形製程可提升材料成形性、改善鋁合金回彈及減少縮管製程中的皺曲現象。由於其獨特的製程特性,電磁成形可用於製造一般傳統製程難以成形的複雜形狀,同時達到較佳的成形效果。
本文設計一組自由撞擊成形實驗來探討頻率對於自由撞擊製程中加速度及撞擊速度的影響,同時針對集磁塊提出新的可分離式設計方式,結合田口方法與3D模擬分析評估幾何參數對於集磁塊的影響。本文所採用之模擬軟體為美國Livermore公司針對電磁成形製程所開發之LS-DYNA EM模組。實驗過程採用高速攝影機進行拍攝,藉由分析擷取之影像可獲得板件成形過程中之飛行撞擊速度,可用以評估製程效能。同時,基於先前所述之實驗架構,本文提出一創新模式以疊代過程建立鋁合金1100-O板材在高應變率下的塑流應力曲線。
由分析結果可知,頻率對試片飛行速度的影響效應高於趨膚深度所造成的電磁場變化,當頻率介於4 k赫茲至11.3 k赫茲之間時,趨膚深度的影響可以忽略。此外,針對集磁塊的設計分析指出,裂縫的設計主導集磁塊的效能表現,較寬的裂縫可減少集磁塊組件之間電磁斥力所造成的能量耗損。另一方面,集磁塊分割的組件越多則電磁力分布越平均。本研究亦根據分析結果提出集磁塊的設計準則。
此外,以本研究測定之塑流應力進行模擬分析與實驗之比對,分析結果顯示以本研究測定之塑流應力進行模擬分析可呈現較高的準確度,等效應變的誤差可由17.9%降為6.74%。同時,研究結果亦顯示材料AA 1100-O在高應變率2800s-1下可成形至等效應變值0.56而不致產生破壞。
Electromagnetic forming (EMF) is a high strain rate forming process which exhibits significant advantages, such as increasing the formability of material, improving the springback of aluminum alloy and mitigating the wrinkling occurred in the tube compression process. Because of the particular advantages, EMF achieves a better forming result for complicated geometry which is difficult to be formed by conventional forming processes.
In this research, a free impact sheet forming experiment was designed to examine the influence of frequency on the acceleration and impacting velocity. Moreover, a novel separable field shaper design was proposed to assist the EMF process. The efficiency of the field shaper under different geometric parameters was evaluated through the combination of Taguchi method and 3D coupled simulation, which is performed by coupled mechanical and electromagnetic simulation software, LS-DYNA EM module. In the experiment, a high-speed camera was used to record the free flying process, from which the retrieved images were used to characterize the forming velocity. Additionally, based on the described experimental set-up, a simple novel method based on the iteration procedure was proposed to determine the flow stress curve of aluminum alloy 1100-O at high strain rates.
Examining the analysis results, the frequency seems to have a more significant effect than the skin depth on electromagnetic forming. In the frequency range between 4 kHz and 11.3 kHz, the skin effect is not a critical parameter and can be neglected. For the field shaper design, the results denote that the slit feature determines the performance of a field shaper. Wider slits reduce the energy loss resulting from electromagnetic repulsion. In addition, with more components of a field shaper, the generated magnetic pressure will be distributed more evenly. Based on the analysis result of the non-symmetric edge effect, some guidelines for designing field shaper are proposed.
In addition, using the determined flow stress curve to simulate the forming process, the simulated deformation performed good agreement with the experimental result, where the deviation of effective strain could be reduced from 17.9% to 6.74%. Besides, the effective strains reached in these high rate forming experiments exceed the effective strain at failure determined in a quasi-static tensile test. Under the strain rate of 2800 s-1, the AA 1100-O material could be deformed to effective strain of 0.56 without fracture.
摘要 I
ABSTRACT II
致謝 III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES IX
LIST OF SYMBOLS XII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Electromagnetic Forming Process 2
1.2.1 Electromagnetic Forming Development and Application 2
1.2.2 Electromagnetic Forming Bottleneck 5
1.2.2.1 Influence of the key parameter 5
1.2.2.2 Design of field shaper 7
1.2.2.3 Material behavior under high strain rate 9
1.2.2.4 Application of finite element simulation 10
1.3 Objective and Methodology of the Study 13
1.4 Outline of the Study 14
CHAPTER 2 THEORETICAL METHODS 17
2.1 Theoretical Background of Electromagnetic Forming Process 17
2.1.1 Physics Foundation of Electromagnetic Field 20
2.2 Material Properties Theory 21
2.2.1 Material Characteristic under High Strain Rate 21
2.2.2 Skin Effect 23
2.3 Taguchi Method 24
2.4 Finite Element Analysis 26
2.4.1 LS-DYNA Introduction 26
CHAPTER 3 FREE IMPACT FORMING TEST 28
3.1 Experiment Design 28
3.1.1 Pulsed Power Generator 29
3.1.1.1 The Maxwell Magneform Machine 30
3.1.1.2 The Magnetic Pulse Forming Machine 31
3.1.2 Measurement of Charging Current 31
3.2 Analysis of Frequency Effect 32
3.2.1 Free Impacting Experiment at the same frequency with different energy 33
3.2.2 Free Impacting Experiment at different frequency and energy 34
3.2.3 Free Impacting Experiment at the same energy with different frequency 34
3.2.4 Free Impacting Experiment at the same frequency and energy with different thickness values 35
3.3 Field shaper Design 36
3.3.1 Design Concept 37
3.3.2 Geometric Parameters Analysis 38
3.3.3 Charging Current 39
3.4 Flow Stress Determination 40
3.4.1 Charging System 40
3.4.2 Workpiece Preparation 41
3.4.3 Strain Measurement 42
3.4.4 Punch Design 44
3.4.5 Impacting Velocity 44
3.4.6 Iteration Procedure 45
3.5 Simulation Model 47
3.5.1 Convergence Analysis 48
3.5.2 Simulation Model of the Maxwell Magneform Machine 49
3.5.3 Simulation Model of the Magnetic Pulse Forming Machine 51
3.5.4 Simulation Setting 52
CHAPTER 4 RESULTS AND DISCUSSION 54
4.1 Simulation Accuracy 54
4.1.1 The Maxwell Magneform Machine 54
4.1.2 The Magnetic Pulse Forming Machine 55
4.2 Frequency Effect 56
4.2.1 Same Frequency with Different Energy 56
4.2.2 Different Frequency and Energy 57
4.2.3 Same Energy with Different Frequency 57
4.2.4 Same Frequency and Energy with Different Thickness 59
4.3 Optimum Design of Field Shaper 62
4.3.1 Parametric Effects on Field Shaper Design 62
4.3.2 Guidelines for Optimal Field shaper Design 69
4.4 Flow Stress Determination 70
4.4.1 Impact Velocity 70
4.4.2 Strain Analysis 73
4.4.3 Temperature Effect 74
4.4.4 Convergence Analysis 76
4.4.5 Comparison between Quasi-static and High Strain Rate Condition 79
4.4.6 Comparison between Simulation and Experiment by using the Determined Flow Stress 82
4.4.7 Analysis of Springback Effect 86
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 88
5.1 Conclusions 88
5.2 Future Work 91
REFERENCES 93
Al-Refaie, A., Grey-data envelopment analysis approach for solving the multi-response problem in the Taguchi method, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 224, 147-158, 2010.
Ami, E., 電磁脈衝系統原理, 電磁脈衝銲接/成形技術與應用國際研討, Taiwan, 2008.
Bühler, H. and E. von Finckenstein, Bemessung von Sickenverbindungen für ein Fügen durch Magnetumformung, In: Werkstatt und Betrieb, vol. 104, 45-51, 1971.
Bahmani, M. A., K. Niayesh and A. Karimi, 3D Simulation of magnetic field distribution in electromagnetic forming systems with field-shaper, Journal of Materials Processing Technology, vol. 209, 2295-2301, 2009.
Balanethiram, V. S. and G. S. Daehn, Hyperplasticity: Increased forming limits at high workpiece velocity, Scripta Metallurgica et Materialia, vol. 30, 515-520, 1994.
Balanethiram, V. S., X. Hu, M. Altynova and G. S. Daehn, Hyperplasticity: Enhanced formability at high rates, Journal of Materials Processing Technology, vol. 45, 595-600, 1994.
Beerwald, C., Grundlagen der Prozessauslegung und-gestaltung bei der elektromagnetischen Umformung, Dr.-Ing. Dissertation, Universität Dortmund, 2004.
Bely, I. V., S. M. Fertik and L. T. Khimenko, Electromagnetic Forming Handbook (A Translation of the Russian Book: Sprvochnik Po Magnitno-impul' Snoy Obrabotke Metallov), Translated by M. M. Altynova and Glenn S. Daehn, Columbus, OH, online available at http://www.matsceng.ohio-state.edu/~Daehn/metalforminghb/index.html (shown on 01.10.2012).
Bely, I. V., L. D. Gorkin, V. S. Dmitriev, V. J. Khvorost, L. T. Khimenko and A. T. Mezhuev, Inductor for magnetic-pulse stamping of flat banks, 3921426, United States, 1975.
Bendjima, B. and M. Feliachi, Finite Element Analysis Of Transient Phenomena In Electromagnetic Forming System, Computation in Electromagnetics, Third International Conference on (Conf. Publ. No. 420), 113-116, 1996.
Bijker, S., How to perform adequate optical strain measurements on a sheet metal truck bumper, MT06.56, Internal Report, 2006.
Chen, Z., D. Li and W. Zhou, Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, 1249-1258, 2012.
Conraux, P., M. Pignol, V. Robin and J. M. Bergheau, 3D Finite Element Modeling of Electromagnetic Forming Processes, 2nd International Conference on High Speed Forming, Dortmund, Germany, 73-82, 2006.
Daehn, G. S., V. J. Vohnou and S. Datta, Hyperplastic Forming: Process Potential and Factors Affecting Formability, Materials Research Society Symposium Proceedings, 1999.
Dharan, C. K. H. and F. E. Hauser, Determination of stress-strain characteristics at very high strain rates - Paper describes experimental technique used for determining stress-strain relations at high strain rates; results are presented from compression tests conducted on aluminum at strain rates from 4000 sec -1 to 120,000 sec -1, Experimental Mechanics, vol. 10, 370-376, 1970.
El-Azab, A., M. Garnich and A. Kapoor, Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs, Journal of Materials Processing Technology, vol. 142, 744-754, 2003.
L'Eplattenier, P., C. Ashcraft and I. Ulacia, An MPP version of the Electromagnetism module in LS-DYNA for 3D Coupled Mechanical-Thermal-Electromagnetic simulation, Proceedings of 4th International Conference on High Speed Forming, Columbus, OH, 250-263, 2010.
L'Eplattenier, P., G. Cook, C. Ashcraft, M. Burger, J. Imbert and M. Worswick, Introduction of an Electromagnetism Module in LS-DYNA for Coupled Mechanical-Thermal-Electromagnetic Simulations, steel research international, vol. 80, 351-358, 2009.
Fenton, G. K. and G. S. Daehn, Modeling of electromagnetically formed sheet metal, Journal of Materials Processing Technology, vol. 75, 6-16, 1998.
Golovashchenko, S., Methodology of design of pulsed electromagnetic joining of tubes Second Global Symposium on Innovations in Materials Processing and Manufacturing: Sheet Materials, New Orleans, LA; USA, 283-299, 2001.
Golovashchenko, S. F., Springback Calibration Using Pulsed Electromagnetic Field, In: Proceedings of NUMISHEET' 2005, Detroit, 284–285, 2005.
Golovashchenko, S. F., Material formability and coil design in electromagnetic forming, Journal of Materials Engineering and Performance, vol. 16, 314-320, 2007.
Gourdin, W. H., Analysis and assessment of electromagnetic ring expansion as a high‐strain‐rate test, Journal of Applied Physics, vol. 65, 411-422, 1989.
Hainsworth, G., P. J. Leonard, D. Rodger and C. Leyden, Finite element modelling of magnetic compression using coupled electromagnetic-structural codes, Magnetics, IEEE Transactions on, vol. 32, 1050-1053, 1996.
Haiping, Y. U. and L. I. Chunfeng, Effects of current frequency on electromagnetic tube compression, Journal of Materials Processing Technology, vol. 209, 1053-1059, 2009.
Henchi, I., P. L'eplattenier, G. Daehn, Y. Zhang, A. Vivek and N. Stander, Material constitutive parameter identification using an electromagnetic ring expansion experiment coupled with LS-DYNA and LS-OPT, 10th International LS-DYNA Users Conference, Dearborn, Michigan, USA, 2008.
Hopkins, D. A., F. Stefani, H. Kuo-Ta and K. Bok-Ki, Analysis of startup behavior in a C-shaped armature using linked EMAP3D/DYNA3D finite element codes, IEEE TRANSACTIONS ON MAGNETICS, vol. 35, 59-64, 1999.
Imbert, J. M., S. L. Winkler, M. J. Worswick, D. A. Oliveira and S. Golovashchenko, The Effect of Tool--Sheet Interaction on Damage Evolution in Electromagnetic Forming of Aluminum Alloy Sheet, Journal of Engineering Materials and Technology, vol. 127, 145-153, 2005.
Iriondo, E., M. A. Gutiérrez, B. González, J. L. Alcaraz and G. S. Daehn, Electromagnetic impulse calibration of high strength sheet metal structures, Journal of Materials Processing Technology, vol. 211, 909-915, 2011.
IUL, Introduction of Institute of Forming Technology and Lightweight Construction (IUL) at TU Dortmund University, online available at http://www.iul.eu/pages/de/content/projekte/pics/Anlage_IUL.jpg (shown on 01.10.2012).
Jablonski, J. and R. Winkler, Analysis of the electromagnetic forming process, International Journal of Mechanical Sciences, vol. 20, 315-325, 1978.
Johnson, G. R. and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proc 7th international symposium on ballistics, Hague, Netherlands, 541-547, 1983.
Johnson, J. R., G. A. Taber and G. S. Daehn, Constitutive relation development through the FIRE test, 4th International Conference on High Speed Forming, vol. 295-306, 2010.
Kajberg, J. and B. Wikman, Viscoplastic parameter estimation by high strain-rate experiments and inverse modelling – Speckle measurements and high-speed photography, International Journal of Solids and Structures, vol. 44, 145-164, 2007.
Kamal, M., J. Shang, V. Cheng, S. Hatkevich and G. S. Daehn, Agile manufacturing of a micro-embossed case by a two-step electromagnetic forming process, Journal of Materials Processing Technology, vol. 190, 41-50, 2007.
Karch, C. and K. Roll, Transient Simulation of Electromagnetic Forming of Aluminium Tubes, Advanced Materials Research, vol. 6-8, 639-648, 2005.
Khan, A. S. and S. Huang, Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104s−1, International Journal of Plasticity, vol. 8, 397-424, 1992.
Kleiner, M., C. Beerwald and W. Homberg, Analysis of Process Parameters and Forming Mechanisms within the Electromagnetic Forming Process, CIRP Annals - Manufacturing Technology, vol. 54, 225-228, 2005.
Kleiner, M. and A. Brosius, Determination of Flow Curves at High Strain Rates using the Electromagnetic Forming Process and an Iterative Finite Element Simulation Scheme, CIRP Annals - Manufacturing Technology, vol. 55, 267-270, 2006.
Kolsky, H., An investigation of the mechanical properties of materials at very high rates of loading, Proceedings of the Physical Society. Section B, vol. 62, 676-700, 1949.
Liu, A. F., Mechanics and Mechanisms of Fracture: An Introduction, ASM International, Incorporated, 2005.
Mamalis, A. G., D. E. Manolakos, A. G. Kladas and A. K. Koumoutsos, Electromagnetic Forming Tools and Processing Conditions: Numerical Simulation, Materials and Manufacturing Processes, vol. 21, 411-423, 2006.
O'Donnell, T., M. Brunet, P. McCloskey, J. O' Brien and S. C. Ó Mathúna, Microtransformers and Inductors using Permalloy Thin Films, Proceedings of a Workshop at the Vienna University of Technology, 45-52, 2000.
Oliveira, D. A., M. J. Worswick, M. Finn and D. Newman, Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model, Journal of Materials Processing Technology, vol. 170, 350-362, 2005.
Padmanabhan, M., Wrinkling and Springback in Electromagnetic Sheet Metal Forming and Electromagnetic Ring Compression, The Ohio State University, 1997.
Psyk, V., C. Beerwald, W. Homberg and M. Kleiner, Electromagnetic Compression as a Preforming Operation for Tubular Hydroforming Parts, In: Proceedings of the 1st International Conference on High Speed Forming, Dortmund, Germany, 171-180, 2004.
Psyk, V., M. Marre, A. Jäger and A. E. Tekkaya, Prospects of electromagnetic forming as a production step in process chains for the manufacturing of automotive components, 2nd International Conference on Advanced Metal Forming Processes in Automotive Industry AutoMetForm 2010, vol. 175-187, 2010.
Psyk, V., D. Risch, B. L. Kinsey, A. E. Tekkaya and M. Kleiner, Electromagnetic forming—A review, Journal of Materials Processing Technology, vol. 211, 787-829, 2011.
Seth, M., V. J. Vohnout and G. S. Daehn, Formability of steel sheet in high velocity impact, Journal of Materials Processing Technology, vol. 168, 390-400, 2005.
Shang, J. and G. Daehn, Electromagnetically assisted sheet metal stamping, Journal of Materials Processing Technology, vol. 211, 868-874, 2011.
Siddiqui, M. A., Numerical modelling and simulation of electromagnetic forming process, Ph.D., Université de Strasbourg, 2009.
Siddiqui, M. A., J. P. M. Correia, S. Ahzi and S. Belouettar, A numerical model to simulate electromagnetic sheet metal forming process, International Journal of Material Forming, vol. 1, 1387-1390, 2008.
Stiemer, M., J. Unger, B. Svendsen and H. Blum, Algorithmic formulation and numerical implementation of coupled electromagnetic-inelastic continuum models for electromagnetic metal forming, International Journal for Numerical Methods in Engineering, vol. 68, 1301-1328, 2006.
Taebi, F., O. K. Demir, M. Stiemer, V. Psyk, L. Kwiatkowski, A. Brosius, H. Blum and A. E. Tekkaya, Dynamic forming limits and numerical optimization of combined quasi-static and impulse metal forming, Computational Materials Science, vol. 54, 293-302, 2012.
Ulacia, I., C. P. Salisbury, I. Hurtado and M. J. Worswick, Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures, Journal of Materials Processing Technology, vol. 211, 830-839, 2011.
Unger, J., M. Stiemer, B. Svendsen and H. Blum, Multifield modeling of electromagnetic metal forming processes, Journal of Materials Processing Technology, vol. 177, 270-273, 2006.
Yu, H., C. Li, Z. Zhao and Z. Li, Effect of field shaper on magnetic pressure in electromagnetic forming, Journal of Materials Processing Technology, vol. 168, 245-249, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔