(3.238.173.209) 您好!臺灣時間:2021/05/16 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾晨維
研究生(外文):Chen-WeiTseng
論文名稱:氣壓伺服微操作系統之力量與定位控制之研究
論文名稱(外文):A study on Force and Position control of Pneumatic Servo Micro-manipulation System
指導教授:施明璋
指導教授(外文):Ming-Chang Shih
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:49
中文關鍵詞:氣壓伺服微操作系統自調式模糊控制器影像處理力量控制定位控制
外文關鍵詞:pneumatic servomicro-manipulation systemself-tuning fuzzy controllerimage processforce controlposition control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文目標為使氣壓伺服微操作系統能夠透過控制氣壓缸輸出一穩定力量,用以帶動探針使其產生穿刺力,由細胞外部往細胞內部方向移動並進行穿刺,在探針刺入細胞內部後利用影像回授機制判斷探針位置,當探針到達目標位置時控制氣壓缸停止輸出力量,使探針能夠停止於目標位置上,此為本文定位之目的。由於氣體本身的可壓縮性,元件間的摩擦力,以及外部給予系統的非線性干擾力等,致使此微操作系統為一具高度非線性之系統。因此本文使用不需要精確數學模式的自調式模糊控制器來控制比例減壓閥之壓力輸出,進而達到控制系統力量輸出之目的。同時結合裝載CCD攝影鏡頭之光學顯微鏡進行影像回授,經由電腦執行影像處理,影像辨識
程序後計算出位置誤差,利用位置誤差訊號判別目標是否到達或超過輸入位置,並由控制邏輯根據位置誤差之狀態,選擇控制器相對應之輸出模糊參數,用以達成定位控制之目的。由實驗結果可知,在探針未受到外部力量干擾的情況下,力量控制精度範圍為2mN~-2.2mN,影像定位控制精度範圍為4μm~-4μm。在執行魚卵穿刺的過程中,力量誤差為-3.2mN,影像定位誤差為-12μm。
The purpose of this paper is to control a stable force of the pneumatic cylinders and drive the probe to produce a puncture force that move from the outside of cell toward the inside of cell. When the probe is punctured into the inside of cell, there is used the image feedback process to determine the position of the probe and control the force of the pneumatic cylinders to stop output. Therefore, the probe is able to stop at the target position and this is the purpose of position control in this paper. A micro-manipulation system is a highly nonlinear system as results of air’s compressibility, friction force between the mechanical components, and nonlinear disturbance from outside system. Therefore, a self-tuning fuzzy controller is used in this paper without precisely mathematic model to control the output pressure of proportional reduce-pressure valve so that the purpose of force control can be achieved in this paper. On the other hand, the optical microscope is combined CCD camera to return the image and use the computer to calculate the position error after image process and image recognition. According to the position error, control logic is selected suitable fuzzy sets so that the propose of position control can be achieved. From the experimental results, the force control error range of the probe without force disturbance from outside system was 2mN~-2.2mN and visual position control error range was 4μm~-4μm. In case of the process that fish egg was punctured, the force error was -3.2mN and visual position control error was -12μm.
中文摘要..............................Ⅰ
英文摘要..............................Ⅱ
誌謝.................................Ⅲ
目錄.................................IV
表目錄................................VII
圖目錄................................VIII
符號說明................................X
第一章 緒論.............................1
1-1 前言...............................1
1-2 研究動機............................2
1-3 文獻回顧............................3
1-4 研究目的與方法.......................5
第二章 系統架構與數學模式推導 ..............6
2-1 氣壓伺服微操作系統之系統架構............6
2-2 微操作系統..........................8
2-2-1 氣壓缸............................9
2-2-2 比例減壓閥.........................10
2-2-3 微力量感測器.......................10
2-2-4 玻璃探針...........................10
2-2-5 設備與元件規格......................11
2-3 顯微鏡系統...........................12
2-3-1 CCD攝影機.........................13
2-3-2 影像回授機之建立....................14
2-4 微操作系統數學模式推導.................17
2-4-1 探針移動之運動方程式.................18
2-4-2 控制容積壓力之動態數學模式.............18
2-4-3 流經孔口之質量流率...................20
2-4-4 摩擦力模型..........................22
第三章 控制理論與控制器設計.................23
3-1 模糊控制理論..........................23
3-1-1 模糊化介面..........................24
3-1-2 決策邏輯............................24
3-1-3 解模糊化介面.........................25
3-1-4 知識庫..............................26
3-2 自調式模糊控制理論......................26
3-2-1控制邏輯............................29
3-2-2模糊歸屬函數與模糊規則表之建立..........29
第四章 實驗結果與討論......................35
4-1 摩擦力之量測結果......................35
4-2 氣壓缸輸出力量-電壓之量測結果...........35
4-3 力量控制之實驗結果....................37
4-3-1 單步階力量控制.....................37
4-3-2 多步階力量控制.....................37
4-4 力量控制加入影像定位之實驗結果...........39
4-4-1 未穿刺魚卵之力量控制與影像定位控制.....39
4-4-2 穿刺魚卵之力量控制與影像定位控制........43
第五章 結論與未來建議......................46
參考文獻.................................48

[1]K. Kudoh, T. Goto, K. Sato, Y. Yamagata, K. Furutani and T. Higuchi, “Development of Piezo Micromanipulator for cell Micromanipulation, Journal of Mammalian Ova Research, Vol. 7, No. 1, pp. 7-12, 1990.

[2]K. Kudoh, S. Tabuchi, T. Higuchi, N. Kakusho and K. Sato, “Development of Automatic Micromanipulation System for Biological Cell Sorter, Journal of Mammalian Ova Research, Vol. 16, No. 1, pp. 167-172, 1998.

[3]N. Tsukada, K. Kudoh, A. Yamamoto, T. Higushi, M. Kobayashi, K. Sato, K. Oishi and K. Iida, “Development of Oocyte Rotation System for Biological Cell Manipulation, Proceedings of the 32th International Symposium on Robotics, pp. 682-685, 2001.

[4]K. Ohashi, N. Hata, T. Matsumura, N. Yahagi, I. Sakuma and T. Dohi, “A manipulator with flexible drilling unit for hematopoietic stem cell harvesting, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Vol. 1, pp. 689 -690, 2006.

[5]C. Nikolas, L.P. Lee, “Polymer mems-based microgripper for single cell manipulation, 17th IEEE International Conference on Micro Electro Mechanical Systems: Maastricht MEMS 2004 Technical Digest,pp. 17-20, 2004.

[6]H. Matsuoka, T. Komazaki, Y. Mukai, M. Shibusawa, H. Akane,A. Chaki, N. Uetake and M. Saito, “High throughput easy microinjection with a single-cell manipulation supporting robot, Journal of Biotechnology, Vol. 116, No. 2, pp. 185-194, 2005.

[7]何易展,“細胞顯微影像之分割、追蹤與運動分析,國立成功大學資訊工程學系碩士論文,2002。

[8]邵得晉,“電腦視覺技術於細胞影像序列運動分析之研究,國立成功大學資訊工程學系碩士論文,2003。

[9]熊家誠,“自動化螢光顯微影像之次細胞結構辨識,中原大學醫學工程學系碩士論文,2004。

[10]L. Zhou, Z.J. Qiu, T. Ishikawa, T. Kawakami and H. Eda,
“Development of vision controlled bio-cell manipulation system, International Journal of Manufacturing Technology and Management, Vol. 9, No. 1-2, pp. 130-143, 2002.

[11]D. Ben-Dov, S.E. Salcudean, “A Force-Controlled Pneumatic Actuator, IEEE Transactions on Robotics and Automation, Vol. 11,No. 6, pp. 906-911, 1995.

[12]M.H. Tsai, M.C. Shih, “A study of the pneumatic counterweight of machine tools conventional and active pressure control method, International Journal of Japan Society Mechanical Engineering, Series C, Vol. 49, No. 3, pp. 890-896, 2006.

[13]X. Shen, M. Goldfarb, “Simultaneous Force and Stiffness Control of a Pneumatic Actuator, Journal of Dynamic Systems, Measurement and Control, Vol. 129, pp. 425-434, 2007.

[14]D.V. Michael, F. Ceyssens, D. Reynaerts and R. Puers, “Microsized Piston-Cylinder Pneumatic and Hydraulic Actuators Fabricated by Lithography, Journal of Microelectro Mechanical Systems,Vol. 18, pp. 1100-1104, 2009.

[15]陳智盛,“自動對焦與視覺伺服控制應用於氣壓YZ定位控制之研究,臺灣科技大學自動化及控制研究所碩士論文,2006。

[16]R.C. Gonzalez, R.E. Woods, “Digital Image Processing,
Addison-Wesley Publishing Company, 2002. 

[17]H.Y. Chen, M.C. Shih, “Hybrid vision control apply on
automatic pneumatic micromanipulation system, 9th IEEE International Conference Sensors, pp. 801-804, 2010.

[18]A.K. Paul, J.E. Mishra and M.G. Radke, “Reduced Order Sliding Mode Control for Pneumatic Actuator, IEEE Transaction on Control Systems Technology, Vol. 2, No. 3, pp. 271-276, 1994.

[19]E. Richer, Y. Hurmuzlu, “A High Performance Pneumatic Force actuator System Part I-Nonlinear mathematical Model, Journal of Dynamic Systems, Measurement, and control, Transactions of the ASME, Vol. 122, No. 3, pp. 416-425, 2000.

[20]A.H. Brian, P. Dupont and D.W. Canudas, “A survey
of models, analysis tools and compensation methods for the control of machunes with friction, Automatica, Vol. 30, No. 7, pp. 1083-1138, 1994.

[21]L.A. Zadeh, “Fuzzy Sets, Information and Control, Vol.8,pp. 338-353, 1965.

[22]L.A. Zadeh, “Outline of a New Approach to the Analysis complex system and decision processes, IEEE Transactions on Systems, Man and Cybernetics, Vol. 3, No. 1, pp. 28-44,1973.

[23]C.C. Lee, “Fuzzy Logic in Control System: Fuzzy Logic
Controller-Part I, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 20, No. 2, pp. 404-418, 1990.

[24]C.C. Lee, “Fuzzy Logic in Control System: Fuzzy Logic
Controller-Part II, IEEE Transactions on Systems, Man and Cybernetics, Vol. 20, No. 2, pp. 419-435, 1990.

[25]C.G. Lhee, J.S. Park, H.S. Ahn and D.H. Kim, “Sliding Mode-Like Fuzzy Logic Control with self-tuning the Dead Zone Parameters, IEEE Transactions on Fuzzy Systems, Vol. 9, No. 2, pp. 343-348, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊