(18.232.50.137) 您好!臺灣時間:2021/05/06 17:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許畯臣
研究生(外文):Chun-ChenHsu
論文名稱:以分子動力學法研究Ni-Al合金形狀記憶之特性
論文名稱(外文):The study on shape memory properties in Ni-Al alloys by molecular dynamics simulation
指導教授:張怡玲
指導教授(外文):I-Ling Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:分子動力學麻田散體相沃斯田體相形狀記憶效應
外文關鍵詞:molecular dynamicsmartensiteausteniteshape memory effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以分子動力學方法研究Ni-Al合金塊材之形狀記憶特性,觀察不同Ni含量比例與不同晶格排列對Ni-Al合金相變化的影響,並在低溫時分別施予不同應變加載至塑性變形,在進行升降溫循環,檢驗是否所有應變狀態造成的塑性變形皆可經溫度循環恢復原狀。
由模擬結果可發現,在高溫時Ni-Al合金晶格為體心立方結構,晶格大小大致相同,與Ni含量無關,在低溫時,Ni含量比例高於50%的合金晶格會變為斜長方體結構(麻田散體相),相變溫度受Ni的含量比例所影響,Ni含量越高相變溫度也越高,本研究提出一些判別方法可更有效的決定相變化的溫度區間。此外由模擬發現相同Ni組成比例及原子空間分佈下,不同晶格排列的模型皆有相同的相變溫度區間,且不同晶格排列的原子模型隨溫度的變形符合座標轉換關係。
由模擬發現,在低溫下Ni-Al合金並非施加任意加載至塑性變形皆具有形狀記憶特性,以滑移向量法輔助判斷發現唯有沿著〈110〉晶格方向滑移造成的塑性變形才可經溫度循環回復原狀,且計算其最大剪應力值明顯比無法回復原狀的加載來得小。

We employed molecular dynamics simulation to investigate the shape memory properties of Ni-Al alloy bulks. The effects of Ni composition ratio and the simulated crystal orientation on phase transformation were studied. At low temperature, different loading conditions were applied to the alloy bulk till plastic deformation is observed. Then, the deformed bulk went through the temperature cycle to examine whether it would restore to the original shape.
From the simulation, we found that Ni-Al is body-centered cubic structure at high temperature and transforms to martensite phase at certain temperature, except for the one with 50% Ni composition ratio. The phase transformation temperature was affected by the Ni composition ratio. We proposed certain analysis method to efficiently determine the phase transformation temperature. It was observed that different simulated crystal orientated models, which possess the same Ni composition ratio and atomic arrangement in space, would have the same phase transformation temperature. And the deformations of different crystal orientated models at various temperatures could be described using coordinate transformation relation.
For the same model under different loading conditions, it was found that not every plastic deformed model would restore to its original shape after the thermal cycle. With the assist of slip vector, only those were loaded to slip along 〈110〉 direction would exhibit shape memory behavior. For those loading which would restore original shape, the corresponding maximum shear stress was noticeably smaller than those did not restore.

摘要.....II
ABSTRACT........III
致謝.....IV
目錄.....V
圖目錄....VIII
表目錄....XIV
第一章 緒論.......1
1.1前言...1
1.2文獻回顧......3
1.2.1形狀記憶合金之文獻回顧..4
1.3本文架構.......6
第二章 形狀記憶與分子動力學理論.......9
2.1 形狀記憶合金理論.......9
2.1.1 形狀記憶效應........9
2.1.2 形狀記憶合金之相轉換...10
2.2 分子動力學理論..11
2.2.1基本理論與假設........11
2.2.2 系綜觀念....13
2.2.3分子作用力與勢能函數...14
2.2.4原子級應力...20
2.2.5週期性邊界與最小映像法則........21
2.2.6 初始條件設定.23
2.2.7運動方程式...24
2.2.8 截斷半徑法與Verlet表列法......26
2.2.9差排分析參數..28
第三章 Ni-Al合金之相變化....40
3.1 原子模型......40
3.2 勢能函數的選擇...41
3.3 模擬流程......41
3.4 結果與討論....42
3.4.1組成比例對相變溫度的影響........42
3.4.2 晶格排列對相變溫度的影響.......44
第四章 Ni-Al合金之形狀記憶效應.......57
4.1 模擬流程......57
4.2 結果與討論....58
4.2.1混合加載對形狀記憶效應的影響.... 58
4.2.2 滑移向量法與形狀回復關係.......63
4.2.3降伏發生與記憶回復關係..66
第五章 結論與未來展望.......91
5.1 結論..91
5.2 未來展望......92
參考文獻..93

[1]A. Ölander,An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society, vol. 54, pp. 3819–3833, 1932
[2]A. B. Greninger and V. G. Mooradian, Strain transformation in meta stable beta copper- zinc and beta copper-tin alloys, Transactions of the Metallurgical Society of Aime, vol. 128, pp. 337–368, 1938.
[3]L. C. Chang and T. A. Read, On diffusionless transformation in Au-Cd single crystals containing 47.5 atomic percent cadmium: characteristics of single–interface transformation, Transactions of the Metallurgical Society of Aime, vol. 189, pp. 47, 1951.
[4]W. J. Buehler, J. V. Gilfrich and R. C. Wiley, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of Applied Physics, vol. 34, pp. 1475–1477, 1963.
[5]S. M. Foiles and M. S. Daw, Application of the embedded atom method to Ni3Al, Journal of Materials Research, vol. 2, pp. 25-29, 1987
[6]S. Rubini and P. Ballone, Quasiharmonic and molecular dynamics study of the martensitic transformation in Ni-Al alloys, Physical Review B, vol. 48, pp. 99-111, 1993.
[7]S. Ozgen and O. Adiguzel, Molecular dynamics simulation of diffusionless phase transformation in a quenched NiAl alloy model, Journal of Physics and Chemistry of Solids, vol. 64, pp. 459–464, 2003.
[8]T. Sato, K. Saitoh and N. Shinke, Molecular dynamics study on microscopic mechanism for phase transformation of Ni–Ti alloy, Modelling and Simulation in Materials Science and Engineering, vol. 14, pp. 39-46, 2006.
[9]O. Kastner, Molecular-dynamics of a 2D model of the shape memory effect part II: thermodynamics of a small system, Continuum Mechanics and Thermodynamics, vol. 18, pp.63-81, 2006.
[10]T. Uehara and T. Tamai, An atomistic study on shape-memory effect by shear, Mechanics of Advanced Materials and Structures, vol. 13, pp. 197-204, 2006.
[11]T. Uehara, C. Asai and N. Ohno, Molecular dynamics simulation of shape memory behaviour using a multi-grain model, Modelling and Simulation in Materials Science and Engineering, vol. 17, pp. 035011, 2009.
[12]J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport properties. IV. the equation of hydrodynamics, Journal of Chemical Physics, vol. 18, pp. 817-823, 1950.
[13]N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, Journal Chemical Physics, vol. 21, pp. 1087-1092, 1953.
[14]M. P. Allen and D. J. Tildesley Computer simulation of liquids, Oxford University Press, New York, 1987.
[15]B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system, Journal Chemical Physics, vol. 27, pp. 1208-1209, 1957.
[16]B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. general method, Journal Chemical Physics, vol. 31, pp. 459-466, 1959.
[17]L. A. Girifalco and V. G. Weizer, Application of morse potential function to cubic metals, Physical Review, vol. 114, pp. 687-690, 1959.
[18]L. Verlet, Computer experiments on classical fluids II. equilibrium correlation function, Physical Review, vol. 165, pp. 201-214, 1968.
[19]B. Quentrec and C. Brot, New method for searching for molecular dynamics computations, Journal of Computational Physics, vol. 13, pp. 430-432, 1975.
[20]D. C. Rapaport, Large-scale molecular dynamics simulation using vector and parallel computers, Computer Physics Reports, vol. 9, pp. 1-53, 1988.
[21]G. S. Grest, B. Dunweg and K. Kremer, Vectorized link cell fortran code for molecular dynamics simulations for a large number of particles, Computer Physics Communications, vol. 55, pp. 269-285, 1989.
[22]R. J. Arsenault and J. R. Beeler, Computer simulation in material science: Asm International, 1988.
[23]F. Reif, Fundamentals of statistical and thermal physics: McGraw Hill, 1985.
[24]C. L. Tien and J. H. Lienhard, Statistical thermo dynamics: MeiYa, 1971.
[25]J. M. Haile, Molecular dynamics simulation: John Wiley & Sons, 1997.
[26]E. Hernandez, C. Goze, P. Bernier and A. Rubio, Elastic properties of C and BxCyNz composite nanotubes, Physical Review Letters, vol. 80, pp. 4502, 1998.
[27]G. C. Maitland and M. Rigby, Intermolecular forces : their origin and determination: Oxford University Press, 1987.
[28]D. C. Rapaport, The art of molecular dynamics simulation: Cambridge University Press, 1997.
[29]J. E. Jones, On the determination of molecular fields. II. from the equation of state of a gas, Proceedings of the Royal Society of London. Series A, vol. 106, pp. 463-477, 1924.
[30]L. A. Girifalco and V. G. Weizer, Application of the morse potential function to cubic metals, Physical Review, vol. 114, pp. 687, 1959.
[31]F. Milstein, Theoretical strength of a perfect crystal with exponentially attractive and repulsive interatomic interactions, Journal of Applied Physics, vol. 44, pp. 3833-3840, 1973.
[32]F. Cleri and V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B, vol. 48, pp. 22, 1993.
[33]V. Rosato, M. Guillope and B. Legrand, Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding Model, Philosophical Magazine A-physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, pp. 321-336, 1989.
[34]X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, Atomic scale structure of sputtered metal multilayers, Acta Materialia, vol. 49, pp. 4005-4015, 2001.
[35]N. Miyazaki and Y. Shiozaki, Calculation of mechanical properties of solids using molecular dynamics method, Journal Series A-mechanics and Material Engineering, vol. 39, pp. 606-612, 1996.
[36]H. Tsuzuki, P. S. Branicio, and J. P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood, Computer Physics Communications, vol. 177, pp. 518-523, 2007.
[37]J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, Surface step effects on nanoindentation, Physical Review Letters, vol. 87, p. 165507, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔