跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鈺祺
研究生(外文):Yu-ChiHuang
論文名稱:6061-T6鋁合金在低溫下之撞擊特性與微觀結構分析
論文名稱(外文):Impact response and microstructural characteristics of 6061-T6 aluminum alloy at cryogenic temperatures
指導教授:李偉賢李偉賢引用關係
指導教授(外文):Woei-Shyan Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:霍普金森桿6061-T6鋁合金塑性變形高應變速率差排密度極低溫
外文關鍵詞:Hopkinson bar6061-T6 aluminum alloyplastic deformationhigh strain ratedislocation densitycryogenic temperature
相關次數:
  • 被引用被引用:2
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是探討6061-T6鋁合金在低溫下之撞擊特性與微觀結構分析。利用壓縮式霍普金森桿高速撞擊試驗機(Hopkinson bar)及低溫裝置,於應變速率分別為1000 s-1、3000 s-1和5000s-1;實驗環境溫度分別為-196℃、-100℃、0℃條件下測試,以分析溫度以及應變速率對材料塑變行為與微觀結構之影響。
實驗結果顯示,溫度和應變速率對6061-T6鋁合金之機械性質影響甚巨。在相同溫度條件下,其塑流應力值與應變速率敏感性係數均會隨應變速率之增加而上升,而加工硬化率和熱活化體積則會下降。相反地,在相同應變速率條件下,其塑流應力值與應變速率敏感性係數則會隨溫度之增加而下降,而熱活化體積則會上升。此外,可以藉由Zerilli-Armstrong構成方程式,來準確的預測此合金在不同溫度及應變速率下的塑變行為。
在微觀方面,由光學顯微鏡之觀測可知6061-T6鋁合金中有絕熱剪切帶形成及晶粒組織形貌的改變,兩者皆受溫度與應變速率的影響;然而在穿透式電子顯微鏡下則可觀測到差排密度隨著應變速率上升和溫度降低而隨之增加。最後結合巨觀與微觀結果證明了塑流應力值隨著差排密度的平方根作線性的增加趨勢,證實了Bailey-Hirsch關係式的存在,也證實了差排密度、塑流應力值、應變速率敏感性係數及熱活化體積有重要的相關性。
In this study, a spit-Hopkinson bar is utilized to study the effect of temperature and strain rate on impact response and microstructural characteristics of 6061-T6 aluminum alloy at different cryogenic temperatures of 0℃, -100℃and -196℃, under strain rates of 1000s-1, 3000s-1 and 5000s-1, respectively.
The experimental results indicate that the mechanical properties are related to temperature and strain rate. At a constant temperature, flow stress and strain rate sensitivity all increase with the increasing strain rate, while the work hardening and thermal activation volume decreases. However, at a constant strain rate, flow stress and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. In addition, the observed impact deformation behavior of this alloy under current testing conditions can be described by the Zerilli-Armstrong equation.
Optical microstructural observations reveal that the formation of adiabatic shear band and morphology of deformed grain of 6061-T6 aluminum alloy are strongly dependent on temperature and strain rate. Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. Based on the experimental mechanical properties and microstructural characteristics, it is found that the correlation between the dislocation density and flow stress obeyed by the Bailey-Hirsch type relation. In addition, the flow stress, strain rate sensitivity and thermal activation volume are also related to the observed dislocation substructure.
中文摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XII
1. 第一章 前言 1
2. 第二章 理論與文獻回顧 3
2-1鋁合金之簡介 3
2-1-1純鋁之煉製法 3
2-1-2鋁合金之分類 4
2-1-3添加合金成份對鋁合金影響 5
2-1-4鋁合金析出硬化及熱處理 6
2-2 6061鋁合金介紹 8
2-2-1 6061-T6鋁合金之強化 9
2-3塑性變形之機械測試類別 10
2-4一維波傳理論 11
2-5霍普金森撞擊試驗機之原理 13
2-5-1波散效應─霍普金森撞擊試驗機的先天障礙 16
2-6材料塑性變形行為 19
2-6-1恆溫機構 20
2-6-2熱活化機制 21
2-6-3差排黏滯機制 22
2-7材料組構方程式 23
2-7-1 Ludwick方程式[33, 47] 23
2-7-2 Sokolosky(1948) & Malvern(1951)模式[33, 48] 23
2-7-3 Zerilli-Armstrong方程式[49-51] 24
2-7-4 Johnson-Cook方程式[13, 49, 52] 24
3. 第三章 實驗方法及步驟 36
3-1實驗流程 36
3-2實驗儀器與設備 36
3-2-1動態機械性質測試系統:霍普金森撞擊試驗機 36
3-2-2光學顯微鏡 38
3-2-3穿透式電子顯微鏡 38
3-2-4雙噴式電解拋光機 38
3-2-5鑽石刀片切割機 39
3-3實驗步驟 39
3-3-1實驗試件製備 39
3-3-2動態衝擊實驗 40
3-3-3試件金相之觀察(OM) 40
3-3-4 TEM試片製備 40
4. 第四章 實驗結果與討論 44
4-1應力-應變曲線 44
4-2加工硬化率 45
4-3應變速率敏感性係數 47
4-4熱活化體積 49
4-5活化能 50
4-6溫度敏感性係數 52
4-7理論溫升量 52
4-6材料組構方程式 54
4-7 OM金相組織觀察 55
4-8 TEM微觀結構分析 56
5. 第五章 結論 100
6. 參考文獻 102
1.A. Morita, Aluminum Alloys–Their Physical and Mechanical Properties (ICAA-6), 1998, The Japan Institute of Light Metals, Tokyo.
2.J. Staley and D. Lege, Advances in aluminium alloy products for structural applications in transportation. Le Journal de Physique IV, 1993. 3(C7): p. C7-179-C7-190.
3.E. Starke and A. Csontos, Proc. 6th Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, ICAA-6, Toyohashi, Japan, 1998. 1998.
4.S.G. Kang, M.G. Kim, S.W. Park, C.G. Kim, and C.W. Kong, Damage Analysis of a Type 3 Cryogenic Propellant Tank After LN2 Storage Test. Journal of Composite Materials, 2008. 42(10): p. 975-992.
5.S.-G. Kang, M.-G. Kim, and C.-G. Kim, Evaluation of cryogenic performance of adhesives using composite–aluminum double-lap joints. Composite Structures, 2007. 78(3): p. 440-446.
6.C.-Y. Peng, M. Levine, L. Shido, and R. Leland. Experimental observations on material damping at cryogenic temperatures. in Proc. of SPIE Vol. 2004.
7.R. Braun, Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet. Materials and Corrosion, 2005. 56(3): p. 159-165.
8.G.M. Dominguez Almaraz, V.H. Mercado Lemus, and J. Jesús Villalon Lopez, Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes. Procedia Engineering, 2010. 2(1): p. 805-813.
9.F. MacMaster, K. Chan, S. Bergsma, and M. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Materials Science and Engineering: A, 2000. 289(1): p. 54-59.
10.H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B, 1949. 62: p. 676.
11.B. Butcher and C. Karnes, Strain‐Rate Effects in Metals. Journal of Applied Physics, 1966. 37(1): p. 402-411.
12.F.E. Hauser, Techniques for measuring stress-strain relations at high strain rates. Experimental Mechanics, 1966. 6(8): p. 395-402.
13.G.R. Johnson and W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 1983. The Hague, Netherlands: International Ballistics Committee.
14.R.R. Adharapurapu, F. Jiang, K.S. Vecchio, and G.T. Gray III, Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension–compression asymmetry. Acta materialia, 2006. 54(17): p. 4609-4620.
15.R. Woodward, The interrelation of failure modes observed in the penetration of metallic targets. International Journal of Impact Engineering, 1984. 2(2): p. 121-129.
16. 鎂合金在汽車產業之創新應用. in 輕金屬先進技術發展與應用國際研討會. 2003. 金屬中心.
17.J.A. Jacobs and T.F. Kilduff, Engineering materials technology: structures, processing, properties, and selection . 1997: Prentice hall. 361.
18.J.E. Hatch, Aluminum: properties and physical metallurgy . Vol. 1. 1984: Asm International.
19.E.A. Marquis, D.N. Seidman, and D.C. Dunand, Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Materialia, 2003. 51(16): p. 4751-4760.
20.C.B. Fuller, A.R. Krause, D.C. Dunand, and D.N. Seidman, Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Materials Science and Engineering: A, 2002. 338(1): p. 8-16.
21.N. Kolobnev, Aluminum-lithium alloys with scandium. Metal science and heat treatment, 2002. 44(7-8): p. 297-299.
22.R.R. Ambriz, G. Barrera, R. Garcia, and V.H. Lopez, A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA). Materials & Design, 2009. 30(7): p. 2446-2453.
23.S.C. Bergsma, M.E. Kassner, X. Li, and M.A. Wall, Strengthening in the new aluminum alloy AA 6069. Materials Science and Engineering: A, 1998. 254(1): p. 112-118.
24.D.J. Chakrabarti and D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Progress in Materials Science, 2004. 49(3): p. 389-410.
25.I. Dutta and S.M. Allen, A calorimetric study of precipitation in commercial aluminium alloy 6061. Journal of materials science letters, 1991. 10(6): p. 323-326.
26.M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta materialia, 1999. 47(5): p. 1537-1548.
27.S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso, The crystal structure of the [beta]'phase in Al-Mg-Si alloys. Acta materialia, 1998. 46(9): p. 3283-3298.
28.M.H. Jacobs, The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy. Philosophical Magazine, 1972. 26(1): p. 1-13.
29.Y. Ohmori, L.C. Doan, Y. Matsuura, S. Kobayashi, and K. Nakai, Morphology and crystallography of β-Mg2Si precipitation in Al-Mg-Si alloys. Materials transactions-JIM, 2001. 42(12): p. 2576-2583.
30.U. Lindholm and L. Yeakley, High strain-rate testing: tension and compression. Experimental Mechanics, 1968. 8(1): p. 1-9.
31.M.A. Meyers, Dynamic behavior of materials . 1994: Wiley-Interscience.
32.Y. Bai and B. Dodd, Adiabatic shear localization: occurrence, theories and applications . Vol. 2. 1992: Pergamon Press Oxford,, UK.
33.K.F. Graff, Wave motion in elastic solids . 1975: Dover Pubns.
34.W.S. Lee and C.F. Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
35.J.W. Dally and W.F. Riley, Experimental Stress Analysis, 1991, McGraw-Hill, New York.
36.K. Oi, Transient response of bonded strain gages. Experimental Mechanics, 1966. 6(9): p. 463-469.
37.J.D. Campbell, Dynamic plasticity: macroscopic and microscopic aspects. Materials Science and Engineering, 1973. 12(1): p. 3-21.
38.D. Klahn, A.K. Mukherjee, and J.E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys. Vol. III, ASM, 1970: p. 951.
39.J.D. Campbell and A.R. Dowling, The behaviour of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
40.A. Seeger, Dislocation and Mechanical Properties of Crystals. Philosophical magazine, 1955. 46: p. 1194-1217.
41.H. Conrad, Thermally activated deformation of metals. JOM, 1964. 16(7): p. 582-588.
42.M.A. Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H.H. Fu, Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
43.W.G. Ferguson, A. Kumar, and J.E. Dorn, Dislocation damping in aluminum at high strain rates. Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
44.U. Lindholm and L. Yeakley, Dynamic deformation of single and polycrystalline aluminium+. Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
45.J.D. Campbell and W.G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel. Philosophical Magazine, 1970. 21(169): p. 63-82.
46.P. Ludwik, Elemente der Technologischen Mechanik Springer-Verlag OHG, 1909, Berlin. p. 32.
47.L.E. Malvern, B.U.D.o.A. Mathematics, U.S.O.o.N. Research, and U.S.N.D.B.o. Ships, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect, 1949, Division of Applied Mathematics, Brown.
48.L.W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K.P. Staudhammer, A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study. Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
49.F.J. Zerilli and R.W. Armstrong, Dislocation‐mechanics‐based constitutive relations for material dynamics calculations. Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
50.F.J. Zerilli and R.W. Armstrong, Constitutive equation for hcp metals and high strength alloy steels. High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
51.D. Umbrello, R. M’saoubi, and J. Outeiro, The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
52.P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro, and P.M.S.T. de Castro, Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison. Theoretical and Applied Fracture Mechanics, 2008. 50(2): p. 81-91.
53.D.R. Curran, L. Seaman, and D.A. Shockey, Linking dynamic fracture to microstructural processes. Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
54.U.S. Lindholm, High strain rate tests. Techniques of metals research, 1971. 5(Part 1): p. 199.
55.W.S. Lee and T.H. Chen, Dynamic Deformation Behaviour and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy. Materials Transactions, 2008. 49(6): p. 1284-1293.
56.S. Esmaeili, L.M. Cheng, A. Deschamps, D.J. Lloyd, and W.J. Poole, The deformation behaviour of AA6111 as a function of temperature and precipitation state. Materials Science and Engineering: A, 2001. 319: p. 461-465.
57.B. Viguier, Dislocation densities and strain hardening rate in some intermetallic compounds. Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
58.D. Chu and J.W. Morris, The influence of microstructure on work hardening in aluminum. Acta materialia, 1996. 44(7): p. 2599-2610.
59.U. Andrade, M. Meyers, and A.H. Chokshi, Constitutive description of work-and shock-hardened copper. Scripta Metallurgica et Materialia;(United States), 1994. 30(7).
60.L. Shi and D. Northwood, The mechanical behavior of an AISI type 310 stainless steel. Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
61.J.M. Holt, H. Mindlin, and C.Y. Ho, Structural alloys handbook . 1994: CINDAS/Purdue University.
62.R. Nandan, Computational modeling of heat transfer and visco-plastic flow in friction stir welding . 2008: ProQuest.
63.E. Marquardt, J. Le, and R. Radebaugh, Cryogenic material properties database. Cryocoolers 11, 2002: p. 681-687.
64.R.K. Ham, The determination of dislocation densities in thin films. Philosophical Magazine, 1961. 6(69): p. 1183-1184.
65.Y. Tomota, P. Lukas, S. Harjo, J.H. Park, N. Tsuchida, and D. Neov, In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation. Acta materialia, 2003. 51(3): p. 819-830.
66.M.F. Giordana, I. Alvarez-Armas, and A. Armas, Microstructural characterization of EUROFER 97 during low-cycle fatigue. Journal of Nuclear Materials, 2012. 424(1–3): p. 247-251.
67.N. Hansen and X. Huang, Microstructure and flow stress of polycrystals and single crystals. Acta materialia, 1998. 46(5): p. 1827-1836.
68.M. Kassner, A case for Taylor hardening during primary and steady-state creep in aluminium and type 304 stainless steel. Journal of Materials Science, 1990. 25(4): p. 1997-2003.
69.W.-S. Lee and T.-H. Chen, Effects of strain rate and temperature on dynamic mechanical behaviour and microstructural evolution in aluminium–scandium (Al–Sc) alloy. Materials Science and Technology, 2008. 24(10): p. 1271-1282.
70.W.-S. Lee and C.-F. Lin, Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain. Metallurgical and Materials Transactions A, 2002. 33(9): p. 2801-2810.
71.S. Nemat-Nasser and Y. Li, Flow stress of f.c.c. polycrystals with application to OFHC Cu. Acta Materialia, 1998. 46(2): p. 565-577.
72.G.T. Gray Iii, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov, Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr. Nanostructured Materials, 1997. 9(1–8): p. 477-480.
73.T. Suo, Y. Li, F. Zhao, X. Fan, and W. Guo, Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges. Mechanics of Materials, 2013. 61(0): p. 1-10.
74.W.G. Guo, X.Q. Zhang, J. Su, Y. Su, Z.Y. Zeng, and X.J. Shao, The characteristics of plastic flow and a physically-based model for 3003 Al–Mn alloy upon a wide range of strain rates and temperatures. European Journal of Mechanics - A/Solids, 2011. 30(1): p. 54-62.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蔡敦浩、利尚仁、林韶怡(2008)。〈創業研究的新趨向—敘說探究之應用〉。《中山管理評論》,第16卷第2期,頁321-349。
2. 蔡政安、溫肇東(2009)。〈關係鑲嵌性與公司興業精神之關聯:臺灣廠商大陸子公司的實證研究〉。《管理評論》,第28卷第3期,頁1-20。
3. 蔡政安、溫福星(2008)。〈關係鑲嵌性與子公司劇變型的興業行為間關係實證研究-使用階層線性模式以降低共同方法所產生的變異〉。《管理學報》,第25卷第6期,頁615-634。
4. 潘美玲、張維安(2001)。〈彈性生產與協力網絡:協力廠觀點的個案研究〉。《臺灣社會學刊》,第25期,頁201-242。
5. 劉常勇、謝如梅、陳韋廷(2007)。〈建構創業經驗與機會確認之關係架構〉。《創業管理研究》,第2卷第3期,頁51-72。
6. 楊銘賢、吳濟聰、蘇哲仁、高慈薏(2011)。〈企業家社會資本對社會企業創業與創新之影響〉。《創業管理研究》,第6卷第1期,頁81-106。
7. 劉常勇、謝如梅(2006)。〈創業管理研究之回顧與展望:理論與模式探討〉。《創業管理研究》,第1卷第1期,頁1-43。
8. 彭懷真(1994)。〈運用家庭系統強化專業服務〉。《社會福利雙月刊》,第113期,頁11-13。
9. 陳家聲、戴士嫻(2007)。〈創業家社會網絡行為之質性研究〉。《創業管理研究》 2007年第12期。
10. 陳世傑、李文瑞、唐彥博、楊君偉(2007)。〈臺灣中小企業赴大陸投資之社會鑲嵌網絡分析〉。《行銷評論》,第4期第1卷,頁1-18。
11. 林韶怡(2011)。〈擁抱創業者的生活世界:現象學取向下的創業研究〉。《創業管理研究》,第6卷第4期,頁35-60。
12. 許士軍(1997)。〈家族主義、專業主義與創業-以華人企業為背景的探討〉。《管理評論》,第16卷第1期,頁1-9。
13. 洪啟嘉(2004)。〈社會資本、產業轉型與區域競爭力〉。《亞太經濟管理評論》,第7卷第1、2期,頁17-34。
14. 高明瑞、劉常勇、黃義俊、張乃仁(2010)。〈企業綠色管理、環境績效與競爭優勢關聯性之研究〉。《管理與系統》,第17卷第2期,頁255-278。
15. 林家五、黃國隆、鄭伯壎(2004)。〈從認同到開創:創業家的動態釋意歷程〉。《中山管理評論》,第12卷第2期,頁337-397。