|
1.F. Grong and O. T. Midling, “A process model for friction stir welding of age hardening aluminum alloys, Metallurgical and Materials Transactions A, Vol. 32A, pp. 2001-1189, 2000. 2.Z. A. Hamid and M. T. A. Elkhair, “Development of electroless nickel–phosphorous composite deposits for wear resistance of 6061 aluminum alloy, Materials Letters, Vol. 57, pp. 720-726, 2002. 3.A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W.S. Miller, “Recent development in aluminum alloys for aerospace applications, Materials Science and Engineering, Vol.280, pp. 102-107, 2000. 4.N. P. Wasekar, N. Ravi, P. S. Babu and L. R. Krishna and G. Sundararajan, “High-cycle fatigue behavior of microarc oxidation coatings deposited on a 6061-T6 Al Alloy, Metallurgical and Materials Transactions A, Vol.41(1), pp. 255-265, 2010. 5.H. Kolsky “An investigation of the mechanical properties of materials at very high rates of loading Proceeding of the Physical Society, Vol. 62, pp. 676-699, 1949. 6.F. E. Hauser, “Techniques for measuring stress-strain relations at high strain rates, Experimental Mechanics, Vol. 6, pp. 395-406, 1966. 7.A. J. Holzer and R. H. Brown, “Mechanical behaviors of metals in dynamic compression, Journal of Engineering Materials and Technology, Vol. 101, pp. 238-247, 1979. 8.S. N. Nasser and J. B. Isaacs, “Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys, Acta Materialia. Vol. 45(3), pp. 907-919, 1997. 9.K. A. Hartleya, J. Duffya and R. H. Hawley, “Measurement of the temperature profile during shear band formation in steels deforming at high strain rates, Journal of the Mechanics and Physics of Solids, Vol. 35(3), pp. 283-301, 1987. 10.S. C. Bergsma, M. E. Kassner, X. Li and M. A. Wall, Strengthening in the new aluminum alloy AA 6069. Materials Science and Engineering: A, Vol. 254(1), pp. 112-118, 1998. 11.R. Braun, Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet, Materials and Corrosion, Vol. 56(3), pp. 159-165, 2005. 12.R. R. Ambriz, G. Barrera, R. Garcia and V. H. Lopez, A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA). Materials & Design, Vol. 30(7), pp. 2446-2453, 2009. 13.F. J. MacMaster, K. S. Chan, S. C. Bergsma and M. E. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Materials Science and Engineering: A, Vol. 289(1), pp. 54-59, 2000. 14.G. M. D. Almaraz, V. H. M. Lemus and J. J. V. Lopez, Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes. Procedia Engineering,. Vol. 2(1), pp. 805-813. 2010. 15.J. C. Huang, C. S. Shin and S. L. I. Chan, “Effect of temper, specimen orientation and test temperature on tensile and fatigue properties of wrought and PM AA6061-alloys. International Journal of Fatigue, Vol. 26(7), pp. 691-703, 2004. 16.E. A. Starke, Jr and J. T. Staley, “Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences, Vol. 32, pp. 131-172, 1996. 17.F. Augereau, D. Laux, L. Allais, M. Mottot and C. Caes, “Ultrasonic measurement of anisotropy and temperature dependence of elastic parameters by a dry coupling method applied to a 6061-T6 alloy, Ultrasonics, Vol. 46, pp. 34-41, 2007. 18.P. K. Kumar, Dr. K. Kishore and Prof. P. Laxminarayana, “Prediction of thrust force and torque in drilling on aluminum 6061-T6 alloy, International Journal of Engineering Research & Technology, Vol. 2(3), 2013. 19.D. R. Curran, L. Seaman and D. A. Shockey, “Linking dynamic fracture to microstructural process, shock wave and high-strain-rate phenomena in metal: concepts and applications, pp. 22-26, 1980. 20.U. S. Lindholm, “Measurement of mechanical properties, techniques of metals research, Vol. 5, Part I, edited by R. F. Bunshah, Interscience Publisher, Inc., New York, pp. 199-271, 1971. 21.U. S. Lindholm and L. W. Yeakly, “High strain-rate tension and compression, Experimental Mechanics, Vol. 3, pp. 81-88, 1983. 22.W. S. Lee and C. F. Lin, “Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures, Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998. 23.J. D. Campbell, “Dynamic plasticity: macroscopic and microscopic aspects, Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973. 24.D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd international conference on the strength of metals and alloys, Vol. III, ASM, pp. 951, 1970. 25.J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel, Philosophical magazine, Vol. 21, pp. 63-82, 1970. 26.A. Seeger, “Dislocation and mechanical properties of crystals, Philosophical magazine, Vol. 46, pp. 1194-1217, 1955. 27.H. Conrad, “Thermally activated deformation of metals, Journal of Metal, pp. 582-588, 1964. 28.M. A. Meyers, D. J. Benson, O. Vo¨hringer, B. K. Kad, Q. Xue and H. H. Fu, “Constitutive description of dynamic deformation: physically-based mechanisms, Materials Science and Engineering, Vol. 322, pp. 194–216, 2002. 29.W. G. Ferguson, A. Kumar and J. E. Dorn, “Viscous drag on dislocations in aluminum at high strain rates, Acta Metallurgica , Vol. 16, pp. 1189-1197, 1968. 30.U. S. Lindholm and L. M. Yeakly, “Dynamic deformation of single and polycrystalline aluminum, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965. 31.J. D. Campbell and A. R. Dowling, “The behaviour of materials subjected to dynamic incremental shear loading, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970. 32.D. C. Ludwigson, “ Modified stress-strain relation for FCC metals and alloys, Metallurgical and Materials Transactions A, Vol. 2, pp. 2825-2828, 1971. 33.Z. Gronostajski, “The constitutive equations for FEM analysis, Journal of. Material. Processing Technology, Vol. 106, pp. 40-44, 2000. 34.L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A basic approach for strain rate dependent energy conversion including heat transfer effects: an experimental and numerical study, Journal of. Material. Processing Technology, Vol. 182, pp. 319-326, 2007. 35.R. W. Armstrong and F. J. Zerilli, “Dislocation mechanics aspects of plastic instability and shear banding, Mechanics of Materials, Vol. 17, pp. 318-327, 1994. 36.F. J. Zerilli and R. W. Armstrong, “The effect of dislocation drag on the stress-strain behavior of F.C.C. metals, Acta Metallurgica et Materialia, Vol. 40 (8), pp. 1803-1808, 1992. 37.D. Umbrello, R. M‘Saoubi and J. C. Outeiro, “The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel, International Journal of Machine Tools and Manufacture, Vol. 47, pp. 462-470, 2007. 38.W. J. Kang, S. S. Cho, H. Huh and D.T. Chung, “Modified Johnson-Cook model for vehicle body crashworthiness simulation, Special Issue, Vol. 21, Nos 4/5, pp. 424-435, 1999. 39.Y. C. Lin and X. M. Chen,“A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel, Computational Materials Science, Vol. 49, pp. 628-633, 2010. 40.J. Zhang, D. C. Weckman and Y. Zhou, “Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd: YAG laser welds, Welding Journal, January, Vol. 87, pp. 18-30, 2008. 41.L. E. MURR, G. LIU and J.C McCLURE, “A TEM study of precipitation and related microstructure in friction-stir welded 6061 aluminum, Journal of Materials Science, Vol. 33, pp. 1243-1251, 1998. 42.W. S. Lee and T. H. Chen, “Dynamic Deformation Behavior and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy, Materials Transactions, Vol. 49(6), pp. 1284-1293, 2008. 43.X. M. ZHANG, H. J. LI, H. Z. LI, H. GA, Z. G. GAO, Y. LIU and B. LIU, “Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 1-5, 2008. 44.R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd and M. Finn, “High strain rate tensile testing of automotive aluminum alloy sheet, International Journal of Impact Engineering, Vol. 32, pp. 541-560, 2005. 45.W. S. Lee and T. H. Chen, “Dynamic Mechanical Response and Microstructural Evolution of High Strength Aluminum–Scandium (Al–Sc) Alloy, Materials Transactions, Vol. 47, No. 2, pp. 355-363, 2006. 46.S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd and W. J. Poole, “The Deformation Behaviour of AA6111 as a Function of Temperature and Precipitation State, Materials Science and Engineering A , Vol. 319-321, pp. 461-465, December 2001. 47.B. Viguier, “Dislocation Densities and Strain Hardening Rate in Some Intermetallic Compounds, Materials Science and Engineering A, Vol. 349, pp. 132-135, 2003. 48.D. CHU and J. W. MORRIS and Jr, M. A. “The Influence of Microstructure on Work Hardening in Aluminum, Acta Materialia, Vol. 44(7), pp. 2599-2610, 1996. 49.P. Ludwick, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, pp. 32, 1909. 50.L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel, Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995. 51.C. S. PARK, M. H. KIM and C. LEE, “A theoretical approach for the thermal expansion behavior of the particulate reinforced aluminum matrix composite, Journal of Materials Science, Vol. 36, pp. 3579-3587, 2001. 52.B. Dood and Y. Bai, “Ductile Fracture and Ductility, Academic Press Inc., London, pp. 136, 1987. 53.H. T. Ding, N. G. Shen and Y. C. Shin, “Modeling of grain refinement in aluminum and copper subjected to cutting, Computational Materials Science, Vol. 50, pp. 3016-3025, 2011. 54.F. E. Pfefferkorn, S. T. Lei, Y. G. Jeon and G. Haddad, “A metric for defining the energy efficiency of thermally assisted machining, International Journal of Machine Tool & Manufacture. Vol. 49, pp. 357-365, 2009. 55.B.M. Corbett, “Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers, International Journal of Impact Engineering, Vol. 33, pp. 431-440, 2006. 56.N. Souai, N. Bozzolo, L. Naze, Y. Chastel and R. Loge, “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy, Scripta Materialia, Vol. 621, pp. 851-854, 2010. 57.D.J. Chakrabarti and D.E. Laughlin, “Phase relations and precipitation in Al–Mg–Si alloys with Cu additions, Progress in Material Science, Vol. 49, pp. 389-410, 2004. 58.A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies, Materials Science and Engineering A, Vol. 302A, pp. 56, 2001. 59.G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8, pp. 113. 73, 1996. 60.N. Fujita, R. Sahara, T. Narushima and C. Ouchi, “Austenitic Grain Growth behavior Immediately after Dynamic Recrystallization in HSLA Steels and Austenitic Stainless Steel, ISIJ International, Vol. 48(10), pp. 1419–1428, 2008. 61.W. Jin, C. Jun, Z. Zhen and R. Xue-yu, “Dynamic Recrystallization Behavior of Microalloyed Forged Steel, Journal of Iron and Steel Research, International, Vol. 15(3), pp. 78-81, 2008. 62.M. A. Meryers, Dynamic Behavior of Materials, John Wiley & Sons, pp. 420-426, 1994. 63.M. A Meryers, Mechanical Metallurgy Principles and Applications, Prentice-Hall, pp. 284-289, 1984. 64.F. Hamdi and S. Asgari, “Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals, Metallurgical and Materials Transactions A, Vol. 39(2), pp. 294-303, 2008. 65.R. K. Ham, “The Determination of Dislocation Densities in Thin Films, Philosophical Magazine, Vol. 6, pp. 1183-1184, 1961. 66.Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida and D. Neov, “In Situ Neutron Diffraction Study of IF and Ultra Low Carbon Steels upon Tensile Deformation, Acta Materialia, Vol. 51, pp. 819-830, 2003. 67.P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro and P.M.S.T. de Castro, “Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminum alloy: A comparison, Theoretical and Applied Fracture Mechanics, Vol. 50, pp. 81–91, 2008. 68.J. E. Bailey and P. B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philosophical Magazine, Vol. 5, pp. 485-497, 1960. 69.P. Trivedi, D. P. Field and H. Weiland, “Alloying Effects on Dislocation Substructure Evolution of Aluminum Alloys, International Journal of Plasticity, Vol. 20, pp. 459-476, 2004. 70.S. L. WANG and L. E. MURR, “Effect of Prestrain and Stacking-Fault Energy on the Application of the Hall-Petch in fcc Metals and Alloys, METALLOGRAPHY, Vol. 13, pp. 203-224, 1980. 71.J. Z. Lu, K. Y. Luoa, Y. K. Zhang, C. Y. Cui, G. F. Sun, J. Z. Zhou, L. Zhang, J. You, K. M. Chen and J. W. Zhong, “Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts, Acta Materialia, Vol. 58, pp. 3984-3994, 2010. 72.V. S. Sarma, J. Wang, W. W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y. T. Zhu, “Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals, Materials Science and Engineering A, Vol. 527, pp. 7624-7630, 2010. 73.D. H. Wei, J. Z. Zhou, S. Huang, Y. J. Fan and M. Wang, “Progress in Theory and Application Research on Microscale Laser Shock Peening, Advanced Materials Research, Vol. 135, pp. 194-199, 2010.
|