跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃証群
研究生(外文):Chang-ChunHuang
論文名稱:雷射表面重熔處理對Alloy 52覆銲之效果研究
論文名稱(外文):The Effect of Laser Surface Treatment on Alloy 52
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:Alloy 52雷射表面處理沿晶腐蝕殘留應力敏化值
外文關鍵詞:Alloy 52Laser Surface TreatmentIntergranular CorrosionInterdendritic CorrosionResidual Stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以雷射表面處理(Laser Surface Treatment, LST)對用於核電廠覆銲融填的鎳基合金Alloy 52進行表面修整。研究利用熱處理模擬不當銲接或長時間使用後,材料晶界劣化造成抗腐蝕能力下降,再以不同能量密度的雷射光束對覆銲層進行雷射表面重熔(Melting)處理。觀察雷射處理前後金相組織變化,並以高速鑽孔法量測表面殘留應力,抗腐蝕能力測試則採用改良惠式試驗法(Modified Huey Test)及雙環動電位再活化法(Double Loop-Electrochemical Potential-kinetics Reactivation, DL-EPR),藉以評估其耐蝕能力提升程度。
實驗結果顯示,當試件劣化時,晶界將生成富Cr碳化物,枝晶間則有Ti析出物與細微Cr碳化物顆粒偏析,造成整體抗腐蝕能力下降。雷射重熔則將析出物重熔回基地,重熔區內組成為緻密枝晶結構,大幅提升抗腐蝕能力,熱影響區內則因析出物未完全熔融而仍有輕微孔蝕情形。然經由雷射表面重熔後將引入額外殘留張應力,其中較高能量密度之殘留張應力最高達到238.79MPa,仍小於材料降伏應力。電化學腐蝕試驗中顯示,在經過雷射重熔後敏化值(Ir/Ia)明顯降低,整體抗腐蝕能力皆優於原始銲件,故雷射表面重熔為此材料有效恢復及提升抗腐蝕能力之方式。

Laser Surface Treatment (LST) is used to repair the surface of overlaid nickel based metal Alloy 52 in this study. In simulating of welding decay by aging heat treatment, chromium carbide had precipitated in grain boundary, caused the decrease of corrosion resistance. Laser Surface Melting (LSM) is now considered to be a solution of grain boundary segregation. In addition to the investigation of metallurgic, Modified Huey Test and DL-EPR were applied to evaluate the improvement of corrosion resistance. Surface Residual Stress was examined by High-Speed Hole-Drilling strain gauge method.
In comparison with As-Welding (AW), the tensile residual stress had decreased after 650℃ aging heat treatment. LSM had increased the surface tensile residual stress that the highest tensile residual stress reached to 238.79MPa, but still lower than its own yielding stress. Metallurgic showed that chromium and titanium carbide were resolved and redistributed in melting zone, which made the intergranular and interdendritic corrosion markedly improved. However, the un-melted carbide in the heat effect zone lowered the corrosion resistance and pitting was discovered. The DL-EPR results revealed that the sensitization value (DOS, Ir/Ia) which was elevated after aging heat treatment had reduced by LSM, indicated the higher corrosion resistance. Laser surface treatment was proven to be an effective technique for the welding decay of Alloy 52 weldment surface.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XI
第一章 前言與文獻回顧 1
1.1前言 1
1.2文獻回顧 5
第二章 相關理論 9
2.1銲道凝固理論 9
2.2雷射製程 12
2.3沿晶應力腐蝕理論 15
2.4 銲接殘留應力 17
2.5 應變規鑽孔法量測殘留應力 20
2.6 動電位再活化法原理 27
第三章 研究方法與實驗流程 30
3.1銲材 32
3.2 GTAW覆銲及銲後熱處理 33
3.3 雷射表面處理(LST)製程 35
3.4金相及微結構觀察 37
3.5 Modified Huey test抗腐蝕測試 39
3.6 雙環動電位再活化測試法 40
3.7 高速鑽孔法量測殘留應力 42
第四章 結果與討論 44
4.1覆銲組織觀察 44
4.2 熱處理後組織觀察 47
4.3 雷射表面處理形貌觀察 54
4.4雷射表面處理殘留應力 58
4.5 Modified Huey Test測試結果 64
4.6 DL-EPR測試結果 70
第五章 結論 77
第六章 參考文獻 78


[1]J. W. H. Cullen, NRC Response to the Davis-Besse Head Degradation Event, Office of Nuclear Regulatory Research, pp. 1-6, 2003.
[2]H. Xu and S. Fyfitch, Laboratory Investigation of PWSCC of CRDM Nozzle 3 and Its J-Groove Weld on the Davis-Besse Reactor Vessel Head, In Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, pp. 833-842, 2005.
[3]H. Xu and J. W. Hyres, Laboratory Investigation of the Stainless Steel Cladding on the Davis-Besse Reactor Vessel Head, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, pp. 821-830, 2005.
[4]S. H. J. Gorman, P. Riccardella, G. A. White, PWR Reactor Vessel Alloy 600 Issues, Companion Guide to the ASME Boiler & Pressure Vessel Code, vol. 3, pp. 1-6, 2006.
[5]J. H. W. Bamford, A Review of Alloy 600 Cracking in Operating Nuclear Plants Including Alloy 82 and 182 Weld Behavior, 12th International Conference on Nuclear Engineering, vol. 1, pp. 131-139, 2004.
[6]W. E. Mayo, Predicting IGSCC/IGA Susceptibility of Ni-Cr-Fe Alloys By Modeling of Grain Boundary Chromium Depletion, Materials Science and Engineering, vol. A232, pp. 129-139, 1997.
[7]O. Raquet, E. Herms, F. Vaillant, and T. Couvant, SCC of Cold-Worked Austenitic Stainless Steels in PWR Conditions, Advances In Materials Science, vol. 7, pp. 33-46, 2007.
[8]M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, Advanced TEM Characterization of Stress Corrosion Cracking of Alloy 600 in Pressurized Water Reactor Primary Water Environment, Journal of Nuclear Materials, vol. 393, pp. 254-266, 2009.
[9]M. S. L. and S. R. E., Behavior and Hot Cracking Susceptibility of Filler Metal 52 M (ERNiCrFe-7A) Overlays on Cast Austenitic Stainless Steel Base Materials, pp. 333-352, 2011.
[10]T.-K. Song, H.-R. Bae, Y.-J. Kim, and K.-S. Lee, Numerical Investigation on Welding Residual Stresses in a Pwr Pressurizer Safety/Relief Nozzle, Fatigue & Fracture of Engineering Materials & Structures, vol. 33, pp. 689-702, 2010.
[11]F. W. Brust, T. Zhang, D. J. Shim, and G. Wilkowski, Evaluation of Fabrication Related Indications in Reactor Upper Head Penetrations, U.S. Nuclear Regulatory CommissionWashington, DC, 2011.
[12]T. R. Anthony and H. E. Cline, Surface Normalization of Sensitized Stainless-Steel by Laser Surface Melting, Journal of Applied Physics, vol. 49, pp. 1248-1255, 1978.
[13]許家旗, 雷射表面重熔法修補Alloy 82衰化之效果研究, 碩士論文, 國立成功大學機械所, 台南, 2012.
[14]曾秉鈞, 雷射表面重熔參數對SUS 304敏化不鏽鋼去敏化之影響, 碩士論文, 國立成功大學機械所,台南, 2009.
[15]陳冠聿, 雷射表面處理修補衰化Alloy 82之效果研究, 碩士論文,國立成功大學機械所, 台南, 2011.
[16]T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto, and T. Ishide, Development of YAG Laser Welding Robot System for Repairing Heat Exchange Tube, Welding in the World, vol. 34, pp. 133-138, 1994.
[17]A. Yokoyama, T. Nagashima, O.Matsumto, Y. Nagura, and T. Isshide, Yag Laser Welding Sleeving Technology for Steam Generator Tubes in Nuclear Power Plants, in The 5th International Symposium of the Japan Welding Society, 1990.
[18]J. H. Suh, J. K. Shin, S. J. Kang, Y. S. Lim, I. H. Kuk, and J. S. Kim, Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600, vol. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp. 67-75, 1998.
[19]G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, Y. Mahara, and H. Watanabe, Influence of Heat Treatments and Chemical Composition on SCC Susceptibility During Repairing Procedure of Overlaying of Inconel 182 by Laser Surface Melting, Science and Technology of Welding and Joining, vol. 10, pp. 706-716, 2005.
[20]G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara, et al., Modeling of Precipitation and Cr Depletion Profiles of Inconel 600 During Heat Treatments and LSM Procedure, Journal of Alloys and Compounds, vol. 419, pp. 118-125, 2006.
[21]G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara, et al., Stress Corrosion Cracking Sealing in Overlaying of Inconel 182 by Laser Surface Melting, Journal of Materials Processing Technology, vol. 173, pp. 330-336, 2006.
[22]J. J. Kai, C. H. Tsai, and G. P. Yu, The IGSCC, Sensitization, and Microstructure Study of Alloys 600 and 690, Nuclear Engineering and Design, vol. 144, pp. 449-457, 1993.
[23]鄭勝隆, 鎳基690合金與SUS304不銹鋼異種金屬銲接特性與微結構研究, 博士論文, 國立成功大學機械所,台南., 2003.
[24]葉東昌, 鎳基690銲件之特性與組織改善研究, 碩士論文,國立成功大學機械所,台南, 1997.
[25]F. Meng, J. Wang, E.-H. Han, and W. Ke, The Role of TIN Inclusions in Stress Corrosion Crack Initiation for Alloy 690TT In High-Temperature and High-Pressure Water, Corrosion Science, vol. 52, pp. 927-932, 2010.
[26]A. A262-02a, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, 2008.
[27]Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, Influence Of Laser Surface Melting On The Susceptibility To Intergranular Corrosion Of Sensitized Alloy 600, Corrosion Science, vol. 43, pp. 1321-1335, 2001.
[28]W. M. Steen, Laser Material Processing, Springer-Verlag, London, 1991.
[29]S. Liu and J. E. Indacochea, Metal Handbook- Property and Selection : Irons, Steels and High-Performance Alloy, vol. 1, pp. 603-613, 1989.
[30]李孟軒, GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究, 碩士論文,國立成功大學機械所,台南, 2007.
[31]王振欽, 銲接學, 登文書局,高雄, 2006.
[32]蔡曜隆, 銲道溫度與應力分析實驗, 碩士論文,國立交通大學機械所,新竹, 2001.
[33]黃正峰, 殘留應力之量測, 機械月刊, vol. 8, 1982.
[34]J. Mathar, Determination of Initial Stress by Measuring the Deformation Around Drilled Holes, Trans.ASME, vol. 4, pp. 249-254, 1934.
[35]G.Kirsch, Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre, Zeitschrift des Vereines deutscher Ingenieure, vol. 42, pp. 787-807, 1898.
[36]M. Kabiri, Measurement of Residual Stress by the Hole-Drilling Method:Influence of Transverse Sensitivity of the Gages and Relieved Strain Coefficients, Experimental Mechanics, vol. 24, pp. 252-256, 1984.
[37]N.J.Rendler and I.Vigness, Hole-drilling Strain-gage Method of Measuring Residual Stresses, Experimental Mechanics, vol. 6, pp. 577-586, 1966.
[38]G. S. Schajer, Application of Finite Element Calculations to Residual Stress Measurement, Journal of Engineering Materials and Technology, vol. 103, pp. 157-163, 1981.
[39]A. E837, Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method, 2001.
[40]http://www.vishaypg.com.
[41]T.-F. Wu and W.-T. Tsai, Effect of KSCN and its Concentration on The Reactivation Behavior of Sensitized Alloy 600 in Sulfuric Acid Solution, Corrosion Science, vol. 45, pp. 267-280, 2003.
[42]游季陸, 鎳基182合金銲道敏化現象之研究, 碩士論文,國立成功大學機械所, 台南, 2003.
[43]ASTMA262, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, 2010.
[44]A. G28, Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium Bearing Alloys, 2008.
[45]A. G108-94, Standard Test Method for Electrochemical Potential Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels, 2010.
[46]K.Hulka, Characteristic Feature of Titanium, Vanadium and Niobium as Microalloy Additions to Steel, Niobium Technical Information, NPC Gmbh, vol. 49(211).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 13. 孫同文、廖秀滿,2011,〈政策網絡與政策終結--新竹科學工業園區污泥乾燥焚化爐之設置與拆遷〉。《政策與人力管理》第2卷第2期,頁1-39。
2. 3. 何明修,2012,〈反國光石化運動的「公民」展演〉。《傳播研究與實踐》第1卷2期,頁45-54。
3. 14. 孫煒,2002,〈政策次級系統與政策典範:政策變遷之模型建構〉。《政治學報》第34期,頁123-148。
4. 17. 陳吉仲,2011,〈國光石化在彰化設廠的經濟分析〉。《生態臺灣》第30期,頁16-19。
5. 20. 陳順孝,2012,〈網路社會動員的繼往開來:反國光石化運動的社會科技基礎和行動策略演化〉。《傳播研究與實踐》第1卷2期,頁19-34。
6. 35. 蔡嘉陽,2012,〈反國光石化的社會實踐:談環境保護的公民〉。《傳播研究與實踐》第1卷2期,頁1-8。
7. 37. 蕭文杰;堀込憲二,2011,〈由文化創意和公益信託的角度思考永續規劃的理念-以「迎新北投火車站回家」與「守護白海豚」活動為例〉。《設計學研究 》第14卷特刊,頁257-276。
8. 41. 謝俊義,1998,〈公共政策遺失的環節—政策終結理論〉。《人事管理》第35卷第7期,頁23-35。
9. 45. 蘇志宗,2011,〈反國光石化運動的文化創意模式〉。《藝術與文化論衡》第2期,頁1-16。
10. 2、王英津,〈「一國兩區論」與「兩岸一國論」之比較分析〉,《中國評論月刊》,2012年12月號。
11. 4、王維新,〈中共的「一國兩制」政策及其在香港的實施〉,《中山學報》,第21卷,1990年。
12. 5、丘宏達,〈中國統一問題:「一國兩制」與「中華邦聯」〉,《當代中國研究》,第4卷,2002年。
13. 7、江炳倫,〈自治、聯邦、一國兩制—論解決族群與國家衝突及分裂國家問題的方案〉,《華岡社科學報》,第14期,2000年。
14. 10、周陽山,〈「不統不獨不武」與統合前景〉,《臺灣民主季刊》,第5卷,第2期,2008年。
15. 12、俞新天,〈對擴大臺灣國際空間的思考〉,《中國評論月刊》,2009年3月號。