[1]J. W. H. Cullen, NRC Response to the Davis-Besse Head Degradation Event, Office of Nuclear Regulatory Research, pp. 1-6, 2003.
[2]H. Xu and S. Fyfitch, Laboratory Investigation of PWSCC of CRDM Nozzle 3 and Its J-Groove Weld on the Davis-Besse Reactor Vessel Head, In Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, pp. 833-842, 2005.
[3]H. Xu and J. W. Hyres, Laboratory Investigation of the Stainless Steel Cladding on the Davis-Besse Reactor Vessel Head, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, pp. 821-830, 2005.
[4]S. H. J. Gorman, P. Riccardella, G. A. White, PWR Reactor Vessel Alloy 600 Issues, Companion Guide to the ASME Boiler & Pressure Vessel Code, vol. 3, pp. 1-6, 2006.
[5]J. H. W. Bamford, A Review of Alloy 600 Cracking in Operating Nuclear Plants Including Alloy 82 and 182 Weld Behavior, 12th International Conference on Nuclear Engineering, vol. 1, pp. 131-139, 2004.
[6]W. E. Mayo, Predicting IGSCC/IGA Susceptibility of Ni-Cr-Fe Alloys By Modeling of Grain Boundary Chromium Depletion, Materials Science and Engineering, vol. A232, pp. 129-139, 1997.
[7]O. Raquet, E. Herms, F. Vaillant, and T. Couvant, SCC of Cold-Worked Austenitic Stainless Steels in PWR Conditions, Advances In Materials Science, vol. 7, pp. 33-46, 2007.
[8]M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, Advanced TEM Characterization of Stress Corrosion Cracking of Alloy 600 in Pressurized Water Reactor Primary Water Environment, Journal of Nuclear Materials, vol. 393, pp. 254-266, 2009.
[9]M. S. L. and S. R. E., Behavior and Hot Cracking Susceptibility of Filler Metal 52 M (ERNiCrFe-7A) Overlays on Cast Austenitic Stainless Steel Base Materials, pp. 333-352, 2011.
[10]T.-K. Song, H.-R. Bae, Y.-J. Kim, and K.-S. Lee, Numerical Investigation on Welding Residual Stresses in a Pwr Pressurizer Safety/Relief Nozzle, Fatigue & Fracture of Engineering Materials & Structures, vol. 33, pp. 689-702, 2010.
[11]F. W. Brust, T. Zhang, D. J. Shim, and G. Wilkowski, Evaluation of Fabrication Related Indications in Reactor Upper Head Penetrations, U.S. Nuclear Regulatory CommissionWashington, DC, 2011.
[12]T. R. Anthony and H. E. Cline, Surface Normalization of Sensitized Stainless-Steel by Laser Surface Melting, Journal of Applied Physics, vol. 49, pp. 1248-1255, 1978.
[13]許家旗, 雷射表面重熔法修補Alloy 82衰化之效果研究, 碩士論文, 國立成功大學機械所, 台南, 2012.[14]曾秉鈞, 雷射表面重熔參數對SUS 304敏化不鏽鋼去敏化之影響, 碩士論文, 國立成功大學機械所,台南, 2009.[15]陳冠聿, 雷射表面處理修補衰化Alloy 82之效果研究, 碩士論文,國立成功大學機械所, 台南, 2011.[16]T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto, and T. Ishide, Development of YAG Laser Welding Robot System for Repairing Heat Exchange Tube, Welding in the World, vol. 34, pp. 133-138, 1994.
[17]A. Yokoyama, T. Nagashima, O.Matsumto, Y. Nagura, and T. Isshide, Yag Laser Welding Sleeving Technology for Steam Generator Tubes in Nuclear Power Plants, in The 5th International Symposium of the Japan Welding Society, 1990.
[18]J. H. Suh, J. K. Shin, S. J. Kang, Y. S. Lim, I. H. Kuk, and J. S. Kim, Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600, vol. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp. 67-75, 1998.
[19]G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, Y. Mahara, and H. Watanabe, Influence of Heat Treatments and Chemical Composition on SCC Susceptibility During Repairing Procedure of Overlaying of Inconel 182 by Laser Surface Melting, Science and Technology of Welding and Joining, vol. 10, pp. 706-716, 2005.
[20]G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara, et al., Modeling of Precipitation and Cr Depletion Profiles of Inconel 600 During Heat Treatments and LSM Procedure, Journal of Alloys and Compounds, vol. 419, pp. 118-125, 2006.
[21]G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara, et al., Stress Corrosion Cracking Sealing in Overlaying of Inconel 182 by Laser Surface Melting, Journal of Materials Processing Technology, vol. 173, pp. 330-336, 2006.
[22]J. J. Kai, C. H. Tsai, and G. P. Yu, The IGSCC, Sensitization, and Microstructure Study of Alloys 600 and 690, Nuclear Engineering and Design, vol. 144, pp. 449-457, 1993.
[23]鄭勝隆, 鎳基690合金與SUS304不銹鋼異種金屬銲接特性與微結構研究, 博士論文, 國立成功大學機械所,台南., 2003.[24]葉東昌, 鎳基690銲件之特性與組織改善研究, 碩士論文,國立成功大學機械所,台南, 1997.[25]F. Meng, J. Wang, E.-H. Han, and W. Ke, The Role of TIN Inclusions in Stress Corrosion Crack Initiation for Alloy 690TT In High-Temperature and High-Pressure Water, Corrosion Science, vol. 52, pp. 927-932, 2010.
[26]A. A262-02a, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, 2008.
[27]Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, Influence Of Laser Surface Melting On The Susceptibility To Intergranular Corrosion Of Sensitized Alloy 600, Corrosion Science, vol. 43, pp. 1321-1335, 2001.
[28]W. M. Steen, Laser Material Processing, Springer-Verlag, London, 1991.
[29]S. Liu and J. E. Indacochea, Metal Handbook- Property and Selection : Irons, Steels and High-Performance Alloy, vol. 1, pp. 603-613, 1989.
[30]李孟軒, GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究, 碩士論文,國立成功大學機械所,台南, 2007.[31]王振欽, 銲接學, 登文書局,高雄, 2006.
[32]蔡曜隆, 銲道溫度與應力分析實驗, 碩士論文,國立交通大學機械所,新竹, 2001.[33]黃正峰, 殘留應力之量測, 機械月刊, vol. 8, 1982.[34]J. Mathar, Determination of Initial Stress by Measuring the Deformation Around Drilled Holes, Trans.ASME, vol. 4, pp. 249-254, 1934.
[35]G.Kirsch, Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre, Zeitschrift des Vereines deutscher Ingenieure, vol. 42, pp. 787-807, 1898.
[36]M. Kabiri, Measurement of Residual Stress by the Hole-Drilling Method:Influence of Transverse Sensitivity of the Gages and Relieved Strain Coefficients, Experimental Mechanics, vol. 24, pp. 252-256, 1984.
[37]N.J.Rendler and I.Vigness, Hole-drilling Strain-gage Method of Measuring Residual Stresses, Experimental Mechanics, vol. 6, pp. 577-586, 1966.
[38]G. S. Schajer, Application of Finite Element Calculations to Residual Stress Measurement, Journal of Engineering Materials and Technology, vol. 103, pp. 157-163, 1981.
[39]A. E837, Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method, 2001.
[40]http://www.vishaypg.com.
[41]T.-F. Wu and W.-T. Tsai, Effect of KSCN and its Concentration on The Reactivation Behavior of Sensitized Alloy 600 in Sulfuric Acid Solution, Corrosion Science, vol. 45, pp. 267-280, 2003.
[42]游季陸, 鎳基182合金銲道敏化現象之研究, 碩士論文,國立成功大學機械所, 台南, 2003.[43]ASTMA262, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, 2010.
[44]A. G28, Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium Bearing Alloys, 2008.
[45]A. G108-94, Standard Test Method for Electrochemical Potential Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels, 2010.
[46]K.Hulka, Characteristic Feature of Titanium, Vanadium and Niobium as Microalloy Additions to Steel, Niobium Technical Information, NPC Gmbh, vol. 49(211).