跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃景暉
研究生(外文):Ching-HuiHuang
論文名稱:無氧銅薄板之雷射銲接特性研究
論文名稱(外文):The Characteristic Study of Laser Welding on Oxygen-free Copper Sheet
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:無氧銅薄板雷射銲接製程窗口離焦距離
外文關鍵詞:oxygen-free copper platelaser weldingprocess windowdefocus distance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為探討無氧銅薄板之雷射可銲性及銲接製程窗口(Welding Process Window)。研究將無氧銅/無氧銅鍍鎳/無氧銅鍍錫三種薄板試件置於厚度0.2mm冷軋鋼板(SPCC)上方,以雷射進行疊合點銲(Lap-Joint Welding)。接合後藉由銲道機械性質測試及金相組織分析,以評估不同材料及不同雷射銲接參數下銲點之導電度、強度以及金相微結構組織特性,並透過EPR電化學實驗分析銲點於一般環境下之抗腐蝕能力。最後尋找出最佳之銲接參數以作為未來雷射銲接銅薄板之銲接製程窗口。
研究結果顯示,母材方面由於無氧銅鍍錫擁有最高雷射吸收率,且在銲接初期將於熔融區形成熔點較低之銅錫合金,使熱可有效往下傳遞至SPCC,因此在三種銅料中具有最佳雷射可銲性。製程參數正離焦距離增加將使熔融區域高度往上提升,進而使銲接窗口及銲點面積逐漸擴大,且在正離焦9mm及10mm時將有最佳銲接效果。
研究分析結果顯示,在製程參數正離焦9mm、脈寬10ms、峰值功率10kW、罩吹氣體(Ar)流速10L/min時將有最大銲點直徑955um,測試銲點拉力平均值最大可達74.3N,電阻值為最小0.217 mΩ,但由於其擴散層中鐵離子含量達38%,銲道容易形成選擇性腐蝕,造成抗腐蝕性較不佳。

This study investigated the laser weldability and welding process window of three different copper sheets: the oxygen-free copper (OFC), OFC coated with nickel or OFC coated with tin, on the SPCC (thickness 0.2mm) where Lap-Joint welding by laser were performed. The mechanical properties test and microstructure analysis of the welding joint were used to examine the degree of conductivity, strength and microstructure characteristics in different materials and parameters. The welding ability of corrosion resistance at general environmental was analyzed by electrochemical test. Finally, the optimum welding process window as laser welding of copper sheet would be obtained.
As the results of the experiment, the base material – OFC coated with tin had the maximum laser absorptivity. At the beginning of welding, it would form the copper-tin alloy with low melting point at the weld fusion zone, so the heat could be effectively passed down to SPCC. Thus, OFC coated with tin would achieve satisfactory laser weldability among three different copper sheets. The molten zone was raised up with the increasing defocus distance to expand the process window and spot area gradually. There were optimum effect of welding when the defocuses distance were at 9mm and 10mm.
As the analysis of the experiment, there was the maximum welding diameter 955um under defocused 9mm, pulse width 10ms, peak power 10kW, shielding gas (Ar) flow rate 10L/min, which would have the maximum tensile force of 74.3N and minimum resistance of 0.217 mΩ. But there was poor corrosion resistance due to the content of iron ions with 38% at diffusion layer which would cause the selective corrosion easily.

總目錄
中文摘要 I
英文摘要 II
誌 謝 III
總 目 錄 IV
表 目 錄 VI
圖 目 錄 VII
第一章 前言 1
第二章 文獻回顧 4
第三章 相關理論背景 11
3-1 雷射製程(Laser Processing) 11
3-1-1 雷射銲接原理 11
3-1-2 Nd:YAG與CO2 雷射銲接 12
3-1-3 Keyhole mode & Conduction mode 13
3-2 雷射銲接參數之影響 17
3-3 異種金屬銲接 26
3-3-1 銲道組織之影響 26
3-3-2 基材的物理性質之影響 27
3-3-3 異種金屬適銲性 28
第四章 實驗方法 31
4-1 實驗流程規劃 31
4-2 實驗方法 33
4-2-1 實驗材料 33
4-2-2 雷射銲接 34
4-2-3 雷射銲接參數影響實驗 35
4-2-4 雷射銲接參數設計及銲接窗口訂定 36
4-2-5 微結構觀察與分析 38
4-2-6 強度與導電度分析 38
4-2-7 EPR電化學實驗 39
4-3實驗儀器與設備 40
4-3-1 Nd:YAG雷射銲接機 40
4-3-2掃描式電子顯微鏡 42
4-3-3光學顯微鏡 43
4-3-4微拉伸試驗機 44
第五章 結果與討論 45
5-1雷射銲接參數對材料熔融深度與寬度之影響 45
5-2 罩吹流速氣體對於銲接窗口之影響 57
5-3 正離焦距離改變對銲道熔融情形之影響 62
5-4 正離焦距離改變對於銲接窗口之影響 67
5-5 銲道微結構觀察與成份分析 71
5-5-1 參數對銲道熔融情形之影響 71
5-5-2 銲道微結構分析 72
5-5-3 成份分析 73
5-6 強度與導電度測試 79
5-7 抗腐蝕性測試 82
第六章 結論 84
第七章 未來研究建議與方向 86
第八章 參考文獻 87


1.韋光華, 綠色能源發電與儲能, 科學發展雜誌, Vol.451, pp.26-31, 2010.
2.R.Y. Liu, Z.H. Xu, X.D. Lu and Y.Y Yan, Study and preparation of battery clad metals, Foshan Electrical Precision Alloy Company, Vol.31, pp.813-815, 2007.
3.劉吉地, 鎳合金工藝技術探討和生產標準研究, 金川鎳鈷研究設計院,Vol.1, pp.26-31, 2006.
4.Terry M. Tritt and Ctirad Uher, Thermal conductivity: theory, properties, and applications, Kluwer Academic Publishers, pp.21-91, 2004.
5.A. Moalem, P. V. Witzendorff, U. Stute and L. Overmeyer, Reliable copper spot welding with IR Laser radiation through short prepulsing, Procedia CIRP, Vol.3, pp.459-464, 2012.
6.S.A.A. Akbari Mousavi and S.T. Niknejad, Study on the microstructure and mechanical properties of Nd:YAG pulsed laser beam weld of UNS-C17200 copper beryllium alloy, Journal of Materials Processing Technology, Vol.210, pp.1472-1481, 2010.
7.西川工, 熔接專門技術用書, 復漢圖書, 1977.
8.Christopher Dawes, Laser welding, McGran-Hill Publisher, 1992.
9.Z. Zhao, C. Wang, M. Li, L. Wang and L. Kong, The effects of pulsed Nd:YAG laser irradiation on surface energy of copper, Applied Surface Science, Vol.252, pp.457-4263, 2006.
10.S.Nakashiba, Y. Okamoto, T. Sakagawa and S. Takai, Micro-welding of copper plate by frequency doubled diode pumped pulsed Nd:YAG laser, Physics Procedia, Vol.39, pp.577-584, 2012.
11.T.A. Mai and A.C. Spowage, Characterisation of dissimilar joints in laser welding of steel–kovar,copper–steel and copper–aluminium, Materials Science and Engineering A, Vol.374, pp.224-233, 2004.
12.A. Hess, R. Weber, A. Heider and T. Graf, Forced deep-penetration welding with low-power second-harmonic assistance of CW copper welding with 1 μm wavelength, Physics Procedia, Vol.5, pp.29-36, 2010.
13.L. Tunna, A. Kearns, W. O’Neill and C.J. Sutcliffe, Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths, Optics & Laser Technology, Vol.33, pp.135-143, 2001.
14.C. Ruttimann, U. Durr, Efficient laser welding of copper, Materials Processing, Vol.1, pp.18-20, 2011.
15.T.Y. Kuo and S.L. Jeng, Porosity reduction in Nd:YAG laser welding of stainless steel and inconel alloy by using a pulsed wave, J. Phys. D: Appl. Phys, Vol.38, pp.722-728, 2005.
16.D. Petring and V.N. Goneghany, Parameter dependencies of copper welding with Multi-kW lasers at 1 micron wavelength, Physics Procedia, Vol.12, pp.95-104, 2011.
17.D. Petring and V. Nazery, On parameter dependencies of copper and copper alloy welding with fiber-coupled Multi-kW lasers, 5th International Symposium on High-Power Fiber Lasers and Their Applications, 2010.
18.S. Engler, R. Ramsayer and R. Poprawe, Process studies on laser welding of copper with brilliant green and infrared lasers, Physics Procedia, Vol.12, pp.339-346, 2011.
19.C. Ruttimann, U. Durr, A. Moalem and M. Priehs, Reliable laser micro-welding of copper, Proceedings of SPIE, Vol.7920, pp.1-7, 2011.
20.E. Biro, D.C. Weckman, and Y. Zhou, Pulsed Nd:YAG laser welding of copper using oxygenated assist gases, Metallurgical and Materials Transactions A, Vol.33, pp.2019-2030, 2002.
21.A. Blom, P. Dunias, P.V. Engen and W. Hovin, Process spread reduction of laser micro-spot welding of thin copper parts using real-time control, Proceedings of SPIE, Vol. 4977, pp.493-507, 2003.
22.A. Hess, R. Schuster, A. Heider, R. Weber and T. Graf, Continuous wave laser welding of copper with combined beams at wavelengths of 1030 nm and of 515 nm, Physics Procedia, Vol.12, pp.88-94, 2011.
23.T.E. Zavecz, M.A. Saifi and M. Notis, Metal reflectivity under high intensity optical radiation, Applied Physics Letters, Vol26, pp.165-168, 1975.
24.S. Dadras, M.J. Torkamany and J. Sabbaghzadeh, Spectroscopic characterization of low-nickel copper welding with pulsed Nd:YAG laser, Optics and Lasers in Engineering, Vol.46, pp.769-776, 2008.
25.H. Shen and M.C. Gupta, Nd:yttritium-aluminum-garnet laser welding of copper to stainless steel, Journal of Laser Applications, Vol.16, pp.2-8, 2004.
26.M.J. Torkamany, S. Tahamtan and J. Sabbaghzadeh, Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser, Materials and Design, Vol.209, pp.3705-3713, 2009.
27.A. Patschger, C. Sahib, J. P. Bergmann and A. Bastick, Process optimization through adaptation of shielding Gas selection and feeding during laser beam welding, Physics Procedia, Vol.12, pp.46-55, 2011.
28.M. Weigla and M. Schmidt, Influence of the feed rate and the lateral beam displacement on thejoining quality of laser-welded copper-stainless steel connections, Physics Procedia, Vol.5, pp.53-59, 2010.
29.I. Magnabosco, P. Ferro,F. Bonollo and L. Arnberg, An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel, Materials Science and Engineering A, Vol.424, pp.163-173, 2006.
30.N. Takata, S. Lee and N. Tsuji, Ultrafine grained copper alloy sheets having both high strength and high electric conductivity, Materials Letters, Vol. 63, pp. 1757-1760, 2009.
31.S. Riedel, J. Rober and T. Gebner, Electrical properties of copper films produced by MOCVD, Microelectronic Engineering, Vol.33, pp.165–172, 1997.
32.J.C. Ion, Laser processing of engineering materials, Elsevier, Amsterdam, 2004.
33.W.M. Steen, Laser material processing, Springer-Verlag, London, 1991.
34.S. Chen, L. Li, Y. Chen and J. Huang, Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process, Journal of Alloys and Compounds, Vol.509, pp.891-898, 2011.
35.D. Dittrich, J. Standfuss, J. Liebscher, B.Brenner and E. Beyer, Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design-first results, Physic Procedia, Vol.12, pp.113-122, 2011.
36.M. Jahazi and X. Cao, Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd:YAG laser, Optics and Lasers in Engineering, Vol.47, pp.1231-1241, 2009.
37.A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber and T. Graf, High-speed X-Ray analysis of spatter formation in laser welding of copper , Physic Procedia, Vol.41, pp.112-118, 2013.
38.陳俊德, 雷射與惰性氣體鎢極銲接溫度場對沃斯田鐵系合金敏化之研究, 國立成功大學機械工程研究所博士論文, 2011.
39.王總守, 雷射銲接原理、特點及其應用, 機械月刊, 第21卷第4期, pp.220-232, 1995.
40.王振欽, 銲接學, 高力圖書, 2006.
41.E. Beyer, K. Behler and G. Herziger, Plasma absorption effects in welding with CO2 lasers, Proceedings of SPIE, Vol.1020, pp.84-95, 1988.
42.李孟軒, GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究,國立成功大學機械工程研究所碩士論文, 2007.
43.Y.F. Tzeng, Parametric analysis of the pulsed Nd:YAG laser seam-welding process, Journal of Materials Processing Technology, Vol.102, pp.40-47, 2000.
44.A. Heider, P. Stritt, A. Hess, R. Weber and T. Graf, Process stabilization at welding copper by laser power modulation, Physics Procedia, Vol.12, pp.81-87, 2011.
45.J. Karlsson, P. Norman, A. F.H. Kaplan, P. Rubin, J. Lamas and A. Yanez, Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding, Applied Surface Science, Vol.257, pp.7501-7506, 2011.
46.范文傑, Nd-YAG雷射銲接製程參數對鎳基690與304L不銹鋼異種銲接之影響, 國立成功大學機械工程研究所碩士論文, 2005.
47.K. Mumtaz and N. Hopkinson, Selective laser melting of Inconel 625 using pulse shaping, Rapid Prototyping Journal, Vol.16, pp.248-257, 2010.
48.E. Akman, A. Demir, T. Canel and T. Sınmazc, Laser welding of Ti6Al4V titanium alloys, Journal of Materials Processing Technology, Vol.209, pp.3705-3713, 2009.
49.B. G. Oztoprak, E. Akman, M. M. Hanon, E. Kacar, O. Gundogdu, M. Zeren and A. Demir, Laser welding of copper with stellite 6 powder and investigation using LIBS technique, Optics & Laser Technology, Vol.45, pp.748-755, 2013.
50.K.Y. Benyounis , A.G. Olabi and M.S.J. Hashmi, Effect of laser welding parameters on the heat input and weld-bead profile, Journal of Materials Processing Technology, Vol.164, pp.978-985, 2005.
51.D. Grevey, P. Sallamand, E. Cicala and S. Ignat, Gas protection optimization during Nd:YAG laser welding, Optics & Laser Technology, Vol.37, pp.647-651, 2005.
52.G. Phanikumar, S. Manjini, P. Dutta, J. Mazumder, Characterization of a continuous CO2 laser–welded Fe-Cu dissimilar couple, Metallurgical and Materials Transactions A, Vol.36, pp.2137-2147, 2005.
53.C. Yao, B. Xu , X. Zhang, J. Huang, J. Fu, Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint, Optics and Lasers in Engineering, Vol. 47, pp.807-814, 2009.
54.W.W. Duley, Laser welding, Wiley-Interscience Publisher, 1999.
55.A. Klimpel, A. Rzeźnikiewicz and L. Janik, Study of laser welding of copper sheets, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 20, pp.467-470, 2007.
56.ASTM, Standard Practice for Microetching Metals and Alloys, 2011.
57.N. M., K. K., Effect of soldering condition on formation of intermetallic phases developed between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate, Journal of Alloys and Compounds, Vol.509, pp.6276-6279, 2011.
58.A.S.M., Metals handbook-alloy phase diagrams, ASM International, pp.173, 1992.
59.A. Pequegnat, H.J. Kim, M. Mayer, Y. Zhou, J. Persic and J.T. Moon, Effect of gas type and flow rate on Cu free air ball formation in thermosonic wire bonding , Microelectronics Reliability, Vol.51, pp.43-52, 2011.
60.M. Sanchez, N. Aouina, D. Rose, P. Rousseau, H. Takenouti and V. Vivier, Assessment of the electrochemical microcell geometry by local electrochemical impedance spectroscopy of copper corrosion, Electrochimica Acta, Vol.62, pp.276-281, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 唐先梅(1999),〈從家務工作的本質談雙薪家庭夫妻家事分工〉,《應用心理研究》,4,131-173。
2. 吳慧瑛(2007),〈家庭背景與教育成就:五個出生世代的比較分析〉,《人口學刊》,34,109-143頁。
3. 蔡淑鈴(2004),〈高等教育的擴張對教育機會分配的影響〉,《臺灣社會學》,7,頁47-88。
4. 陳惠馨(1993),〈從法律面談如何落實婚姻中之兩性平等〉,《政大法學評論》,49,85-98。
5. 林鶴玲、李香潔(1999),〈臺灣閩、客、外省族群家庭中之性別資源配置〉,《人文及社會科學集刊》,11卷4期, 475-528。
6. 陳玉華、伊慶春與呂玉瑕(2000),〈婦女家庭地位之研究:以家庭決策模式為例〉,《臺灣社會學刊》,24,1-58。
7. 林芳玫(2009),〈性別主流化在臺灣:從國際發展到在地化實踐〉,《新世紀智庫論壇》,45,32-38。
8. 李美玲、楊亞潔與伊慶春(2000),〈家務分工:就業現實還是平等理念〉,《臺灣社會學刊》,24,59-88。
9. 郭振恭(2007),〈民法親屬編結規定修正之評述〉,《月旦法學》,147,35-40。
10. 王甫昌(2005),〈由「中國族群」到「臺灣族群」:戶口普查籍別類屬轉變之分析〉,《臺灣社會學》,9,頁59-117。
11. 鄧學仁(2002),〈新法定財產制之抉擇〉,《月旦法學》,89,21-29。
12. 戴東雄(2007),〈論民法親屬編修正內容與檢討〉,《月旦法學》,147,5-34。
13. 39.王總守, 雷射銲接原理、特點及其應用, 機械月刊, 第21卷第4期, pp.220-232, 1995.
14. 余民寧(2006)。影響學習成就因素的探討。教育資料與研究雙月刊,73,11-24。
15. 李文益、黃毅志(2004)。文化資本、社會資本與學生成就的關聯性之研究─以臺東師院為例。臺東大學教育學報,15(2),23-58。