跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖崇欽
研究生(外文):Chung-ChinLiao
論文名稱:使用SSCp-S-SUCr-U骨骼肌肉模型模擬上肢驅動輪椅與上肢帶動復健機械手的研究
論文名稱(外文):A Study of Using the SSCp-S-SUCr-U Musculoskeletal Model on Simulating an Upper Limb Propelling a Wheelchair and Driving a Rehabilitation Robot
指導教授:邱顯堂
指導教授(外文):Shen-Tarng Chiou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:416
中文關鍵詞:骨骼肌肉模型上肢Obstacle-set方法Hill模型肌力分析EMG訊號復健機械手輪椅
外文關鍵詞:Musculoskeletal modelUpper limbObstacle-set methodHill-type modelMuscle force analysisEMG signalRehabilitation robotWheelchair
相關次數:
  • 被引用被引用:1
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
為了研發手動器械並預估其操作時的效果,許多人致力於發展一套更準確且可靠的上肢骨骼肌肉模型及其分析模式。本研究嘗試提出一包含肩帶、肱骨、橈骨、尺骨與手部之骨骼肌肉模型,並進而建立其位移分析、肌肉長度分析及肌力分析等模式,以期能針對上肢在操作各式器械時,有更準確而可靠的設計與分析模式。
本研究提出以SSCp-S-SUCr-UR空間機構模擬手推輪椅的模型;又以SSCp-S-SUCr-U空間機構模擬上肢帶動復健機械手之運動。接著分別以齊次坐標轉換矩陣及迴路方程式推導其位移分析方程式,且利用一影像量測系統追蹤上肢在運動過程中,各關節之位置,並以其當作輸入,進而進行運動分析。
另外,參考前人所提供共35個上肢肌群的數據,並且針對肌肉參數進行正規化,及使用Obstacle-set方法,建立在運動過程中其路徑與長度之分析模式。接著,加入適當之限制條件讓肌力的作用能使關節結合,再配合Hill肌力模型建立可分析上肢肌力與關節負荷之二次規劃的分析模式。最後分別將此模式分別應用於上肢以三種速度驅動輪椅與模擬上肢以三種速度帶動復健機械手的實例分析,而分別說明各分析模式的使用及顯示各分析所得之結果;此外,於實例分析的過程中,不僅分別加入一彈力繩,以提供適當而可量測的阻力,又針對4主要肌群擷取8個EMG訊號,並與肌力分析結果進行比較,以驗證其合理性。另外,也根據在不同速度下所量得的EMG訊號,探討互為拮抗肌間的共同收縮現象。
本文所提出的模型及所建立的各種分析模式,應有助於進一步建立更完整的上肢骨骼肌肉模型;對於醫療器材、上肢輔具以及手動器械之設計與研發亦應有其參考價值。
For the development of hand-operating apparatuses and investigating their effects, many musculoskeletal models of the upper limb were given in existing reports. The purpose of this study is to propose a musculoskeletal model including the shoulder girdle, humerus, radius, ulna and hand, then, to develop models for its motion, muscular length and muscle force analyses so as to construct more precise and reliable design and analysis models during operating various devices with upper limbs.
The SSCp-S-SUCr-UR spatial mechanism and the SSCp-S-SUCr-U spatial mechanism are proposed to simulate an upper limb propelling a wheelchair, and driving a rehabilitation robot, respectively. The homogeneous coordinate transformation and loop-closure equations are applied to derive the displacement analysis equations. A 2-camera tracking system is applied to measure the positions of the joints during the upper limb movements, and these data are used as the inputs for the kinematic analysis.
In order to build the analysis models of muscle paths and their lengths during the motions, parameters of 35 muscles of upper limb collected by former researchers are applied; also, a normalize method is proposed for scaling the bone and muscle parameters, and the obstacle-set method is adopted. Based on the Hill-type muscular model and considering constraints to avoid joint-separation, the models for the muscle force and joint load analysis are developed as quadratic programming forms. Finally, an upper limb propelling a wheelchair and operating a rehabilitation robot with three different speeds are used as examples, to show the usages of the developed models and to display the analysis results. Furthermore for each example, an elastic rope is applied to provide an appropriate and measurable resistance force, and 8 EMG signals of main muscles are measured and compared with those calculated by using the models, so as to verify the usability of the proposed models. In addition, the co-contraction of antagonists is discussed based on measured EMG signals in different speeds.
The musculoskeletal models and the analysis methodologies proposed in this study may give aids on further design and development of various apparatuses, such as medical instruments, upper limb assisting devices and hand tools, etc.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 xii
符號說明 lv
第一章 前言 1
1-1 研究動機 1
1-2 文獻回顧 1
1-2-1 上肢驅動輪椅理論模型 1
1-2-2 復健機械手 4
1-2-3 肌肉路徑及肌力分析模型 6
1-2-4 上肢肌肉骨骼模型 8
1-3 研究目的及方法 13
1-4 本文內容 13
第二章 上肢骨骼關節模型及其位置分析 15
2-1 上肢骨骼及關節模型 15
2-2 位置分析 16
2-2-1 手推輪椅 17
2-2-2 模擬上肢帶動復健機械手 27
2-3 實例分析 33
2-3-1 手推輪椅 33
2-3-2 模擬上肢帶動復健機械手 42
2-4 本章小結 53
第三章 肌肉長度與等長肌力分析 54
3-1 肌肉相關參數之正規化 54
3-2 實例分析 55
3-2-1 肌肉相關參數 55
3-2-2 未繞經障礙物 57
3-2-2-1 手推輪椅 57
3-2-2-2 模擬上肢帶動復健機械手 58
3-2-3 球演算法 58
3-2-3-1 手推輪椅 59
3-2-3-2 模擬上肢帶動復健機械手 61
3-2-4 單圓柱演算法 62
3-2-4-1 手推輪椅 62
3-2-4-2 模擬上肢帶動復健機械手 63
3-2-5 雙圓柱演算法 64
3-2-5-1 手推輪椅 64
3-2-5-2 模擬上肢帶動復健機械手 66
3-2-6 球筒演算法 67
3-2-6-1 手推輪椅 67
3-2-6-2 模擬上肢帶動復健機械手 68
3-3 本章小結 69
第四章 肌力與關節負荷分析 70
4-1 理論模式 70
4-1-1 手推輪椅 70
4-1-2 模擬上肢帶動復健機械手 78
4-2 肌電訊號之量測 79
4-2-1 肌電訊號之正規化 80
4-2-2 肌電訊號之訊號處裡 83
4-3 實例分析 83
4-3-1 手推輪椅 84
4-3-2 模擬上肢帶動復健機械手 100
4-4 本章小結 115
第五章 結論與建議 117
參考文獻 120
附錄A 人體上肢骨骼與肌肉 130
A.1 骨骼與關節 130
A.2 肌肉 135
A.3 肌肉與動作 143
附錄B 空間點位置之量測 147
附錄C 位置分析結果 153
C.1 手推輪椅 153
C.1.1 歷時約3秒的位置分析結果 154
C.1.2 歷時約6秒的位置分析結果 157
C.1.3 歷時約9秒的位置分析結果 162
C.2 模擬上肢帶動復健機械手 167
C.2.1 歷時約4秒的位置分析結果 167
C.2.2 歷時約6秒的位置分析結果 171
C.2.3 歷時約8秒的位置分析結果 176
附錄D 肌肉路徑演算法 183
D.1 齊次坐標轉換矩陣 183
D.2 肌肉路徑演算法 184
D.2.1 球 184
D.2.2 單圓柱 187
D.2.3 雙圓柱 190
D.2.4 球筒 192
D.3 肌肉長度之驗證 195
D.3.1 球演算法之驗證模式 195
D.3.2 單圓柱演算法之驗證模式 197
D.3.3 雙圓柱演算法之驗證模式 199
附錄E 肌肉路徑與位置分析的相關數據 201
E.1 計算肌肉繞經障礙物之路徑所需的數據 201
E.2 各肌肉路徑上之經過點 215
E.3 經由手腕連至手掌的肌肉與其肌肉路徑上之經過點 223
附錄F Hill模型 228
F.1 等長肌力 228
F.2 肌肉參數 230
F.3 肌力特性曲線數據 232
附錄G 肌肉長度分析結果 234
G.1 手推輪椅 234
G.1.1 歷時約3秒的肌肉長度分析結果 234
G.1.2 歷時約6秒的肌肉長度分析結果 242
G.1.3 歷時約9秒的肌肉長度分析結果 251
G.2 模擬上肢帶動復健機械手 259
G.2.1 歷時約4秒的肌肉長度分析結果 259
G.2.2 歷時約6秒的肌肉長度分析結果 268
G.2.3 歷時約8秒的肌肉長度分析結果 276
附錄H 肌肉等長肌力分析結果 285
H.1 手推輪椅 285
H.1.1 歷時約3秒的肌肉等長肌力分析結果 285
H.1.2 歷時約6秒的肌肉等長肌力分析結果 293
H.1.3 歷時約9秒的肌肉等長肌力分析結果 302
H.2 模擬上肢帶動復健機械手 310
H.2.1 歷時約4秒的肌肉等長肌力分析結果 310
H.2.2 歷時約6秒的肌肉等長肌力分析結果 319
H.2.3 歷時約8秒的肌肉等長肌力分析結果 327
附錄I 肌力分析結果 336
I.1 模式一肌力分析結果 336
I.1.1 手推輪椅 336
I.1.1.1 歷時約3秒的肌肉激發因子分析結果 336
I.1.1.2 歷時約6秒的肌肉激發因子分析結果 346
I.1.1.3 歷時約9秒的肌肉激發因子分析結果 356
I.1.2 模擬上肢帶動復健機械手 365
I.1.2.1 歷時約4秒的肌肉激發因子分析結果 365
I.1.2.2 歷時約6秒的肌肉激發因子分析結果 375
I.1.2.3 歷時約8秒的肌肉激發因子分析結果 385
I.2 模式二肌力分析結果 395
I.2.1 手推輪椅 395
I.2.1.1 歷時約3秒的肌肉激發因子分析結果 395
I.2.2 模擬上肢帶動復健機械手 405
I.2.2.1 歷時約4秒的肌肉激發因子分析結果 405
自述 415
著作權聲明 416
Ambrósio, J., Quental, C., Pilarczyk, B, Folgado, J., and Monteiro, J., 2011, Multibody Biomechanical Models of the Upper Limb, Procedia IUTAM, 2011 Symposium on Human Body Dynamics, Vol. 2, pp. 4-17.
Angel, G.-A., Antonio, D. A.-E., Enrique, P.-R., Soraya, P.-N., and Luis P. R.-R., 2010, Upper Limb Joint Kinetics during Manual Wheelchair Propulsion in Patients with Different Levels of Spinal Cord Injury, Journal of Biomechanics, Vol. 43, No. 13, pp. 2508-2515.
Argosy Publishing, 2010, http://www.visiblebody.com, 31st May.
Audenaert, A., and Audenaert, E., 2008, Global Optimization Method for Combined Spherical–Cylindrical Wrapping in Musculoskeletal Upper Limb Modeling, Computer Methods and Programs in Biomedicine, Vol. 92, pp. 8-19.
Blajer, W., Czaplicki, A., Dziewiecki, K., and Mazur, Z., 2010, Influence of Selected Modeling and Computational Issues on Muscle Force Estimates, Multibody System Dynamics, Vol. 24, No. 4, pp. 473-492.
Blana, D., Hincapie, J. G., Chadwick, E. K., and Kirsch, R. F., 2008, A Musculoskeletal Model of the Upper Extremity for Use in the Development of Neuroprosthetic Systems, Journal of Biomechanics, Vol. 41, No. 8, pp. 1714-1721.
Blemker, S. S., and Delp S. L., 2006, Rectus Femoris and Vastus Intermedius Fiber Excursions Predicted by Three-Dimensional Muscle Models, Journal of Biomechanics, Vol. 39, pp. 1383-1391.
Burgar, C. G., Lum, P. S., Erika S., Garber, S. L., van der Loos, M., Kenney, D., and Shor, P., 2011, Robot-Assisted Upper-Limb Therapy in Acute Rehabilitation Setting Following Stroke: Department of Veterans Affairs Multisite Clinical Trial, Journal of Rehabilitation Research and Development, Vol. 48, No 4, pp. 445-458.
Campbell W. W., 2005, DeJong’s the Neurologic Examination : Incorporating the Fundamentals of Neuroanatomy and Neurophysiology, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, United States, pp. 358-363.
Charlton, I. W., and Johnson, G. R., 2001, Application of Spherical and Cylindrical Wrapping Algorithms in a Musculoskeletal Model of the Upper Limb, Journal of Biomechanics, Vol. 34, pp. 1209-1216.
Cheng, E. J., Brown, I. E., and Loeb, G. E., 2000, Virtual Muscle: A Computational Approach to Understanding the Effects of Muscle Properties on Motor Control, Journal of Neuroscience Methods, Vol. 101, pp. 117-130.
Chumanov, E. S., Heiderscheit, B. C., and Thelen, D. C., 2007, The Effect of Speed and Influence of Individual Muscles on Hamstring Mechanics during the Swing Phase of Sprinting, Journal of Biomechanics, Vol. 40 pp. 3555–3562.
Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M. C., Dario, P., and Minuco, G., 2005, Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, No. 3, pp. 311-324.
Crowninshield, R. D., and Brand, R. A., 1981, A Physiologically Based Criterion of Muscle Force Prediction in Locomotion, Journal of Biomechanics, Vol. 14, No. 11, pp. 793-801.
Damsgaard, M., Rasmussen, J., Visser, B., Christensen, S. T., Surma, E., and Zee, M. D., 2006, Analysis of Musculoskeletal Systems in the AnyBody Modeling System, Simulation Modeling Practice and Theory, Vol. 14, pp. 1100-1111.
Davoodi, R., Brown, I. E., and Loeb, G. E., 2003, Advanced Modeling Environment for Developing and Testing FES Control Systems, Medical Engineering & Physics, Vol. 25, pp. 3-9.
Desailly, E., Sardain, P., Khouri, N., Yepremian, D., and Lacouture, P., 2010, The Convex Wrapping Algorithm: A Method for Identifying Muscle Paths Using the Underlying Bone Mesh, Journal of Biomechanics, Vol. 43, No. 13, pp. 2601-2607.
Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F.-X., and Chèze, L., 2010, Upper Limb Joint Dynamics during Manual Wheelchair Propulsion, Clinical Biomechanics, Vol. 25, No. 4, pp. 299-306.
Dickerson, C. R., Chaffin, D. B., and Hughes, R. E., 2007, A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 10, No. 6, pp. 389-400.
Ding, M., Hirasawa, K., Kurita, Y., Takemura, H., Takamatsu, J., Mizoguchi, H., and Ogasawara, T., 2010, Pinpointed Muscle Force Control In Consideration of Human Motion and External Force, IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, December 14-18, pp. 739-744.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A, and Langrana, N. A, 2008, Validation of a Musculoskeletal Model of Wheelchair Propulsion and Its Application to Minimizing Shoulder Joint Forces, Journal of Biomechanics, Vol. 41, pp. 2981-2988.
Erol, D., and Sarkar, N., 2008, Coordinated Control of Assistive Robotic Devices for Activities of Daily Living Tasks, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 16, No. 3, pp. 278-285.
Formica, D., Zollo1, L., Guglielmelli, E., and Rodgers, M. M., 2006, Torque-Dependent Compliance Control in the Joint Space for Robot-Mediated Motor Therapy, Journal of Dynamic Systems, Measurements and Control, Vol. 128, pp. 152-158.
Gao, F., Damsgaard, M., Rasmussen, J., and Christensen, S. T., 2002, Computational Method for Muscle-Path Representation in Musculoskeletal Models, Biological Cybernetics, Vol. 87, pp. 199-210.
Garner, B. A., and Pandy, M. G., 1999, A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 2, No. 2, pp. 107-124.
Garner, B. A., and Pandy, M. G., 2000a, The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 3, pp. 1-30.
Garner, B. A., and Pandy, M. G., 2000b, Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 4, No. 2, pp. 93-126.
Garner, B. A., and Pandy, M. G., 2003, Estimation of Musculotendon Properties in the Human Upper Limb, Annals of Biomedical Engineering, Vol. 31, No. 2, pp. 207-220.
Guo, L.-Y., Su, F.-C., and An, K.-N., 2006, Effect of Handrim Diameter on Manual Wheelchair Propulsion: Mechanical Energy and Power Flow Analysis, Clinical Biomechanics, Vol. 21, pp. 107-115.
Hayashibe, M., Venture, G. Ayusawa, K., and Nakamura, Y., 2011, Muscle Strength and Mass Distribution Identification toward Subject-Specific Musculoskeletal Modeling, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 25-30.
Heintz, S., and Gutierrez-Farewik, E. M., 2007, Static Optimization of Muscle Forces during Gait in Comparison to EMG-to-Force Processing Approach, Gait & Posture, Vol. 26, pp. 279-288.
Högfors, C., Sigholm, G., and Herberts, P., 1987, Biomechanical Model of the Human Shoulder — I. Elements, Journal of Biomechanics, Vol. 20, No. 2, pp. 157-166.
Högfors, C., Sigholm, G., and Herberts, P., 1991, Biomechanical Model of the Human Shoulder — II. The Shoulder Rhythm, Journal of Biomechanics, Vol. 24, No. 8, pp. 699-709.
Holzbaur, K. R. S., Murray, W. M., and Delp, S. L., 2005, A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control, Annals of Biomedical Engineering, Vol. 33, No. 6, pp. 829-840.
Howarth, S. J., Pronovost, L. M., Polgar, J. M., Dickerson, C. R., and Callaghan, J. P., 2010, Use of a Geared Wheelchair Wheel to Reduce Propulsive Muscular Demand During Ramp Ascent: Analysis of Muscle Activation and Kinematics, Clinical Biomechanics, Vol. 25, No. 1, pp. 21-28.
Hughes, A., Freeman, C., Burridge, J., Chappell, P., Lewin, P., and Rogers, E., 2009, Upper Limb Rehabilitation of Stroke Participants Using Electrical Stimulation: Changes in Tracking and EMG Timing, IEEE 11th International Conference on Rehabilitation Robotics.
Huq, R., Kan, P., Goetshalckx, R., Hebert, D., Hoey, J., and Mihailidis, A., 2011, A Decision-Theoretic Approach in the Design of an Adaptive Upper-Limb Stroke Rehabilitation Robot,, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1-8.
Iida, T., Ding, M., Takemura, H., and Mizoguchi, H., 2011, Development and Validation of Lower Limb Musculoskeletal Model for Pinpointed Muscle Force Control, 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1355-1360.
Jacobson, M. D., Raab, R., Fazeli, B. M., Abrams, R. A., Botte, M. J., and Lieber, R. L., 1992, Architectural Design of the Human Intrinsic Hand Muscles, The Journal of Hand Surgery, Vol. 17, No. 5, pp. 804-809.
Karlsson, D., and Peterson, B., 1992, Toward a Model for Force Predictions in the Human Shoulder, Journal of Biomechanics, Vol. 25, No. 2, pp. 189-199.
Kiguchi, K., and Hayashi, Y., 2012, An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol. 42, No. 4, pp. 1064-1071.
Kikuuwe, R., Yamamoto, T., and Fujimoto, H., 2008, A Guideline for Low-Force Robotic Guidance for Enhancing Human Performance of Positioning and Trajectory Tracking: It Should Be Stiff and Appropriately Slow, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 4, pp. 945-957.
Kirihara, K., Saga, N., and Saito, N., 2010, Design and Control of an Upper Limb Rehabilitation Support Device for Disabled People Using a Pneumatic Cylinder, Industrial Robot, Vol. 37, No. 4, pp. 354-363.
Kumar, P., Chen, C. H., Sebastian, A., Anugolu, M., Potluri, C., Fassih, A., Yihun, Y., Jensen, A., Tang, Y., Chiu, S., Bosworth, K., Naidu, D. S., Schoen, M. P. , Creelman, J., and Urfer, A., 2011, An Adaptive Hybrid Data Fusion Based Identification of Skeletal Muscle Force with ANFIS and Smoothing Spline Curve Fitting, 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 932-938.
Kung, P.-C., Lin, C.-C. K., and Ju, M.-S., 2009, Time Course of Abnormal Synergies of Stroke Patients Treated and Assessed by a Neuro-rehabilitation Robot, IEEE International Conference on Rehabilitation Robotics, ICORR 2009, pp. 12-17.
Langenderfer, J., LaScalza, S., Mell, A., Carpenter, J. E., Kuhn, J. E., and Hughes, R. E., 2005, An EMG-Driven Model of the Upper Extremity and Estimation of Long Head Biceps Force, Computer in Biology and Medicine, Vol. 35, pp. 25-39.
Laurence, R., and Agnes, R.-B., 2006, Shoulder Movements during the Initial Phase of Learning Manual Wheelchair Propulsion in Able-Bodied Subjects, Clinical Biomechanics, Vol. 21, pp. S45-S51.
Laursen. B., Sogaard, K., and Sjogaard, G., 2003, Biomechanical Model Predicting Electromyographic Activity in Three Shoulder Muscles from 3D Kinematics and External Forces during Cleaning Work, Clinical Biomechanics, Vol. 18 pp. 287-295.
Lee, S.-Y., Kim, S.-C., Lee, M.-H., and Yoo, J.-S., 2012, Effect of the Height of a Wheelchair on the Shoulder and Forearm Muscular Activation during Wheelchair Propulsion, Journal of Physical Therapy Science, Vol. 24, No. 1, pp. 51-53.
Li, L., Tong, K., Song, R., and Koo, T. K. K., 2007, Is Maximum Isometric Muscle Stress the Same among Prime Elbow Flexors, Clinical Biomechanics, Vol. 22, pp. 874-883.
Lieber, R. L., Jacobson, M. D., Fazeli, B. M., Abrams, R. A., and Botte, M. J., 1992, Architecture of Selected Muscles of the Arm and Forearm: Anatomy and Implications for Tendon Transfer, The Journal of Hand Surgery, Vol. 17A, No. 5, pp. 787-798.
Lin, C.-J., Lin, P.-C., and Su, F.-C., 2009, Preferred Elbow Position in Confined Wheelchair Configuration, Journal of Biomechanics, Vol. 42, pp. 1005-1009.
Louis, N., and Gorce, P., 2009, Upper Limb Muscle Forces during a Simple Reach-to-Grasp Movement: A Comparative Study, Medical and Biological Engineering, Vol. 47, pp. 1173-1179.
Louis, N., and Gorce, P., 2010, Surface Electromyography Activity of Upper Limb Muscle during Wheelchair Propulsion: Influence of Wheelchair Configuration, Clinical Biomechanics, Vol. 25, No. 9, pp. 879-885.
Mao, K., Li, X., Jiang, N., Meng, F., Jin, Y. and Dai, Y., 2012, The Design and Implementation of the Passive Upper Limb Rehabilitation Robot Based on Magnetic Powder Brakes, International Symposium on IT in Medicine and Education (ITME), Vol. 1, pp. 341-345.
Masia, L., Krebs, H. I., Cappa, P., and Hogan, N., 2007, Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke, IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 4, pp. 399-407.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2003, Biomechanical Modeling and Optimal Control of Human Posture, Journal of Biomechanics, Vol. 36, pp. 1701–1712.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2004, Moment Arms and Musculotendon Lengths Estimation for a Three-Dimensional Lower-Limb Model, Journal of Biomechanics, Vol. 37, pp. 1447-1453.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2006, A 'Cheap' Optimal Control Approach to Estimate Muscle Forces in Musculoskeletal Systems, Journal of Biomechanics, Vol. 39, pp. 1787-1795.
Mercer, J. L., Boninger, M., Koontz, A., Ren, D., Dyson-Hudson, T., and Cooper, R., 2006, Shoulder Joint Kinetics and Pathology in Manual Wheelchair Users, Clinical Biomechanics, Vol. 21, No. 8, pp. 781-789.
Moody, C. B., Barhorst, A. A., and Schovanec, L., 2009, A Neuro-Muscular Elasto-Dynamic Model of the Human Arm Part 2: Musculotendon Dynamics and Related Stress Effects, Journal of Bionic Engineering, Vol. 6, pp. 108-119.
Morrow, M. M. B., Hurd, W. J., Kaufman, K. R., and An, K. N., 2010, Shoulder Demands in Manual Wheelchair Users Across a Spectrum of Activities, Journal of Electromyography and Kinesiology, Vol. 20, pp. 61-67.
Murray, I. A., and Johnson, G. R., 2004, A Study of the External Forces and Moments at the Shoulder and Elbow while Performing Every Day Tasks, Clinical Biomechanics, Vol. 19, No. 6, pp. 586-594.
Muscles and Tendons, 2012, http://www.wheelessonline.com/ortho/muscle_index, 21st May.
Nunes, W. M., Rodrigues, L. A. O., Oliveira, L. P., Ribeiro, J. F., Carvalho, J. C. M. and Goncalves, R. S., 2011, Cable-Based Parallel Manipulator for Rehabilitation of Shoulder and Elbow Movements, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1-6.
Ogihara, N., and Yamazaki, N., 1999, Generation of Human Reaching Movement Using a Recurrent Neural Network Model, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 692-697.
Ohara, E., Watanabe, T., Oishi, T., Aoki, T., Nishimoto, Y, and Yano, K., 2011, Assistance Control of Wheel Chair Operation Using Active Cast for the Upper Limb, IEEE International Conference on Robotics and Automation (ICRA), pp. 2223-2228.
Ozawa, T., Furusho, J., Kikuchi, T., Akai, H., Fukushima, K., Fukuda, T., Tanida, S., Fujikawa, T., and Kano, S., 2010, Development of Rehabilitation System for Upper Limbs, PLEMO-P3 System for Hemiplegic Subject (Motor Function Test for Assessment and Training, and Research for Development of Practical Type), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 76, No. 762, pp. 323-330.
Pennestrì, E., Stefanelli, R., Valentini, P. P., Vita, L., 2007, Virtual Musculo-Skeletal Model for the Biomechanical Analysis of the Upper Limb, Journal of Biomechanics, Vol. 40, No. 6, pp. 1350-1361.
Rengifo, C., Aoustin, Y., Plestan, F., and Chevallereau, C., 2010, Distribution of Forces Between Synergistics and Antagonistics Muscles Using an Optimization Criterion Depending on Muscle Contraction Behavior, Journal of Biomechanical Engineering, Vol. 132, No. 4, pp.1-10.
Ronald L. L. M. D., 1992, Biomechanics of the Distal Radioulnar Joint, Clinical Orthopaedics and Related Research, No. 275, pp. 46-56.
Rosati, G., Gallina, P., and Masiero, S., 2007, Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, No. 4, pp. 560-569.
Rosen, J., and Perry, J. C., 2007, Upper Limb Powered Exoskeleton, International Journal of Humanoid Robotics, Vol. 4, No. 3, pp. 529-548.
Sasaki, M., Shimakura, T., Obinata, G. and Yammaguchi, M., 2010, Adaptability Evaluation of Wheelchair Based on Physical and Mental Load, IEEE International Symposium on Micro-Nano Mechatronics and Human Science (MHS), pp. 198-202.
Seth, A., and Pandy, M. G., 2007, A Neuromusculoskeletal Tracking Method for Estimating Individual Muscle Forces in Human Movement, Journal of Biomechanics, Vol. 40, pp. 356-366.
Shan, G., and Bohn, C., 2003, Anthropometrical Data and Coefficients of Regression Related to Gender and Race, Applied Ergonomics, Vol. 34, No. 4, pp. 327-337.
Soetanto, D.,and Kuo, C-Y., 2002, Improved Dynamics Model for Human Standing Posture Control Using Functional Neuromuscular Stimulation, International Journal of Systems Science, Vol. 33, No. 2, pp. 129-140.
Song, Z.,and Guo, S., 2011, Implementation of Self-Rehabilitation for Upper Limb Based on a Haptic Device and an Exoskeleton Device, 2011 International Conference on Mechatronics and Automation (ICMA), pp. 1911-1916.
Tang, G., and Wang, C.-T., 2010, A Muscle-path-plane Method for Representing Muscle Contraction During Joint Movement, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 13, No. 6, pp. 723-729.
Terrier, A., Vogel, A., Capezzali, M., and Farron, A., 2008, An Algorithm to Allow Humerus Translation in the Indeterminate Problem of Shoulder Abduction, Medical Engineering and Physics, Vol. 30, No. 6, pp. 710-716.
Tsai, C.-Y., Lin, C.-J., Huang, Y.-C., Lin, P.-C., and Su, F.-C., 2012, The Effects of Rear-wheel Camber on the Kinematics of Upper Extremity During Wheelchair Propulsion, BioMedical Engineering OnLine, Vol. 11, No. 87, pp. 1-12.
Van der Helm, F. C. T., Veeger, H. E. J., Pronk, G. M., Van der Woude, L. H. V., and Rozendal, R. H., 1992, Geometry Parameters for Musculoskeletal Modelling of the Shoulder System, Journal of Biomechanics, Vol. 25, No. 2, pp. 129-144.
Van der Helm, F. C. T., 1994, A Finite Element Musculoskeletal Model of the Shoulder Mechanism, Journal of Biomechanics, Vol. 27, No. 5, pp. 551-569.
Veeger, H. E. J., Yu, B., An, K. N., and Rozendal, R. H., 1997, Parameters for Modeling the Upper Extremity, Journal of Biomechanics, Vol. 30, No. 6, pp. 647-652.
Veeger, H. E. J., Rozendaal, L. A., and Van der Helm, F. C. T., 2002, Load on the Shoulder in Low Intensity Wheelchair Propulsion, Clinical Biomechanics, Vol. 17, No. 3, pp. 211-218.
Wei, S.-H., Huang, S.-L., Jiang, C.-J., and Chiu, J.-C., 2003, Wrist Kinematic Characterization of Wheelchair Propulsion in Various Seating Positions: Implication to Wrist Pain, Clinical Biomechanics, Vol. 18, No. 6, pp. S46-S52.
Westerhoff, P., Graichen, F., Bender, A., Halder, A., Beier, A., Rohlmann, A., and Bergmann G., 2011, Measurement of Shoulder Joint Loads during Wheelchair Propulsion Measured in Vivo, Clinical Biomechanics, Vol. 26, pp. 982-989.
Winter D. A., 1990, Biomechanics and Motor Control of Human Movement, Lippincott John Wiley & Sons, Hoboken, New Jersey, United States, pp.204-206.
Wu, H., van der Helm, Frans, C. T., Veeger, H. E. J. (DirkJan), Makhsouse, M., Roy, P. V., Angling, C., Nagelsh, J., Kardunai, A. K., McQuadej, K., Wangk, X., Wernerl, F. W., and Buchholzm, B., 2005, ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand, Journal of Biomechanics, Vol. 38, pp. 981-992.
Yang, Y.-S., Koontz, A. M., Yeh, S.-J., and Chang, J.-J., 2012, Effect of Backrest Height on Wheelchair Propulsion Biomechanics for Level and Uphill Conditions, Archives of Physical Medicine and Rehabilitation, Vol. 93, pp. 654-659.
Zajac, F. E., 1989, Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control, Biomedical Engineering, Vol. 17, No. 4, pp. 359-411.
Zhang, Z., 1999, A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334.
Zhang, L.-L., Zhou, J., Zhang, X.-A., and Wang, C.-T., 2011, Upper Limb Musculo-Skeletal Model for Biomechanical Investigation of Elbow Flexion Movement, Journal of Shanghai Jiaotong University (Science), Vol. 16, No. 1, pp. 61-64.
江迦拿,2005,降低相對不舒適度、關節負荷及驅動扭矩之輪椅尺寸最佳設計,碩士論文,國立成功大學機械工程研究所,台南,台灣。
江傳江 編譯,2003,肌肉骨骼評估:基礎與技術,合記圖書出版社,內湖區,台北市,台灣,101〜103頁與133〜135頁。(原著:Palmer M. L., and Epler M. E., 1998, Fundamentals of Musculoskeletal Assessment Techniques, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, United States.)
沈柏宇,2010,一SSCP-S肩部肌肉骨骼模型及其於手臂外展動作之運動及肌力分析的應用,碩士論文,國立成功大學機械工程研究所,台南,台灣。
林槐庭,2005,肩關節骨骼肌肉系統動態圖像模擬及生物力學分析,博士論文,國立成功大學醫學工程研究所,台南市,台灣。
吳思穎,2003,上肢復健機器臨床試驗與改良,碩士論文,國立成功大學機械工程研究所,台南,台灣。
吳庭岳,2011,使用S-SUCr-U肌肉骨骼模型於上肢驅動輪椅與一復健機械手之肌力分析的研究,碩士論文,國立成功大學機械工程研究所,台南,台灣。
范宏竹,2003,設計發展機器手臂輔助系統於中風病人的上肢治療訓練,碩士論文,國立成功大學機械工程研究所,台南,台灣。
徐玉珍,2003,輪椅設計系統之研發,碩士論文,國立台北科技大學機電整合研究所,台北,台灣。
秦崇閔,2012,一SSCP-SUU上肢肌肉骨骼模型及其於上肢驅動輪椅與一復健機械手之肌力分析的應用,碩士論文,國立成功大學機械工程研究所,台南,台灣。
許世昌,2001,解剖生理學,永大書局有限公司,台北,台灣。
陳宜成,2010,使用SUU為基礎之模型於上肢驅動輪椅及復健機械手之運動及靜力分析,碩士論文,國立成功大學機械工程研究所,台南,台灣。
陳秋旺,2000,肘關節神經復健用機器人之研究,碩士論文,國立成功大學機械工程研究所,台南,台灣。
郭藍遠,2003,推力最佳化輪椅研究,博士論文,國立成功大學醫學工程研究所,台南,台灣。
張豐榮與郭玉梅 編譯,1990,人體的地圖,暢文出版社,台北,台灣。(原著:高橋長雄,1898,からだの地図帳,講談社,音羽,文京區,東京都,日本)
張駿偉,2002,人體上肢三維電腦模型之建構,碩士論文,國立台灣大學醫學工程學研究所,台北市,台灣。
劉定宣,2003,3D電腦視覺之攝影機校正,碩士論文,國立成功大學航空太空工程研究所,台南,台灣。
劉豪哲,2011,一S-SUCr-U上肢骨骼模型及其於上肢驅動輪椅與復健機械手的運動及負荷分析,碩士論文,國立成功大學機械工程研究所,台南,台灣。
鄭博文,2010,一SUU上肢肌肉骨骼模型及其於驅動輪椅與一復健機械手之肌力分析的應用,碩士論文,國立成功大學機械工程研究所,台南,台灣。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top